Skip to main content

Defining Genetic Blueprints – Kidney and Craniofacial Development

  • Chapter
  • First Online:
  • 1138 Accesses

Part of the book series: Translational Bioinformatics ((TRBIO,volume 2))

Abstract

Genomics tools are revolutionizing the way we study developmental processes. Microarrays and RNA-Seq allow the sensitive, quantitative and global analysis of gene expression patterns. Instead of examining a few select genes, it is now routine to generate global gene expression profiles of developing systems. The early experiments examined entire developing organs, thereby identifying, for example, all transcription factors, growth factors, and receptors expressed. Subsequent experiments dramatically improved the genomics analysis by providing higher spatio-temporal resolution. Organ development is remarkably complex, with discrete substructures, a developmental time course of events, and the simultaneous differentiation of discrete cell types. It is not possible, therefore, to homogenize the developing organ, apply genomics tools, and derive deep insight. Laser capture microdissection allows the purification of single developmental compartments. Transgenic mice with gene specific promoters driving the expression of markers, such as green fluorescent protein, can be used to purify specific cell types from developing organs. Even higher resolution analysis can be carried out with tools that allow the gene expression profiling of single cells. The use of these genomics approaches produces enormous volumes of data that need to be captured, annotated in a systematic way, stored, integrated and analyzed, using the resources of biomedical informatics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bafico A, et al. Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/arrow. Nat Cell Biol. 2001;3(7):683–6.

    Article  PubMed  CAS  Google Scholar 

  • Brady G, Iscove NN. Construction of cDNA libraries from single cells. Methods Enzymol. 1993;225:611–23.

    Article  PubMed  CAS  Google Scholar 

  • Brunskill EW, Potter SS. Gene expression programs of mouse endothelial cells in kidney development and disease. PLoS One. 2010;5(8):e12034.

    Article  PubMed  Google Scholar 

  • Brunskill EW, Potter SS. RNA-Seq defines novel genes, RNA processing patterns and enhancer maps for the early stages of nephrogenesis: Hox supergenes. Dev Biol. 2012;368:4–17.

    Article  PubMed  CAS  Google Scholar 

  • Brunskill EW, et al. Atlas of gene expression in the developing kidney at microanatomic resolution. Dev Cell. 2008;15(5):781–91.

    Article  PubMed  CAS  Google Scholar 

  • Brunskill EW, et al. Defining the molecular character of the developing and adult kidney podocyte. PLoS One. 2011a;6(9):e24640.

    Article  PubMed  CAS  Google Scholar 

  • Brunskill EW, et al. Genes that confer the identity of the renin cell. J Am Soc Nephrol. 2011b;22(12):2213–25.

    Article  PubMed  CAS  Google Scholar 

  • Carroll TJ, et al. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell. 2005;9(2):283–92.

    Article  PubMed  CAS  Google Scholar 

  • Chai Y, Maxson Jr RE. Recent advances in craniofacial morphogenesis. Dev Dyn. 2006;235(9):2353–75.

    Article  PubMed  Google Scholar 

  • Challen G, et al. Temporal and spatial transcriptional programs in murine kidney development. Physiol Genomics. 2005;23(2):159–71.

    Article  PubMed  CAS  Google Scholar 

  • Chang HH, et al. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature. 2008;453(7194):544–7.

    Article  PubMed  CAS  Google Scholar 

  • Cherry TJ, et al. Development and diversification of retinal amacrine interneurons at single cell resolution. Proc Natl Acad Sci U S A. 2009;106(23):9495–500.

    Article  PubMed  CAS  Google Scholar 

  • Chubb JR, et al. Transcriptional pulsing of a developmental gene. Curr Biol. 2006;16(10):1018–25.

    Article  PubMed  CAS  Google Scholar 

  • Cloonan N, et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods. 2008;5(7):613–19.

    Article  PubMed  CAS  Google Scholar 

  • Copois V, et al. Assessment of RNA quality extracted from laser-captured tissues using miniaturized capillary electrophoresis. Lab Invest. 2003;83(4):599–602.

    PubMed  Google Scholar 

  • Costantini F, Kopan R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell. 2010;18(5):698–712.

    Article  PubMed  CAS  Google Scholar 

  • De Santa F, et al. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 2010;8(5):e184.

    Google Scholar 

  • Elowitz MB, et al. Stochastic gene expression in a single cell. Science. 2002;297(5584):1183–6.

    Article  PubMed  CAS  Google Scholar 

  • Feng W, et al. Spatial and temporal analysis of gene expression during growth and fusion of the mouse facial prominences. PLoS One. 2009;4(12):e8066.

    Article  PubMed  Google Scholar 

  • Golding I, et al. Real-time kinetics of gene activity in individual bacteria. Cell. 2005;123(6):1025–36.

    Article  PubMed  CAS  Google Scholar 

  • Iscove NN, et al. Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat Biotechnol. 2002;20(9):940–3.

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, et al. Visualization of focal sites of transcription within human nuclei. EMBO J. 1993;12(3):1059–65.

    PubMed  CAS  Google Scholar 

  • Kamme F, et al. Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J Neurosci. 2003;23(9):3607–15.

    PubMed  CAS  Google Scholar 

  • Kane MD, et al. Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res. 2000;28(22):4552–7.

    Article  PubMed  CAS  Google Scholar 

  • Keller G, et al. Nephron number in patients with primary hypertension. N Engl J Med. 2003;348(2):101–8.

    Article  PubMed  Google Scholar 

  • Kim TK, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465(7295):182–7.

    Article  PubMed  CAS  Google Scholar 

  • Ko MS, Nakauchi H, Takahashi N. The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates. EMBO J. 1990;9(9):2835–42.

    PubMed  CAS  Google Scholar 

  • Kobayashi A, et al. Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development. 2005;132(12):2809–23.

    Article  PubMed  CAS  Google Scholar 

  • Kurn N, et al. Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications. Clin Chem. 2005;51(10):1973–81.

    Article  PubMed  CAS  Google Scholar 

  • Mao B, et al. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature. 2001;411(6835):321–5.

    Article  PubMed  CAS  Google Scholar 

  • McGinnis N, Kuziora MA, McGinnis W. Human Hox-4.2 and Drosophila deformed encode similar regulatory specificities in Drosophila embryos and larvae. Cell. 1990;63(5):969–76.

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi A, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.

    Article  PubMed  CAS  Google Scholar 

  • Nagalakshmi U, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008;320(5881):1344–9.

    Article  PubMed  CAS  Google Scholar 

  • Novick A, Weiner M. Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci U S A. 1957;43(7):553–66.

    Article  PubMed  CAS  Google Scholar 

  • Osborne CS, et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet. 2004;36(10):1065–71.

    Article  PubMed  CAS  Google Scholar 

  • Ozbudak EM, et al. Regulation of noise in the expression of a single gene. Nat Genet. 2002;31(1):69–73.

    Article  PubMed  CAS  Google Scholar 

  • Poladia DP, et al. Link between reduced nephron number and hypertension: studies in a mutant mouse model. Pediatr Res. 2006;59(4 Pt 1):489–93.

    Article  PubMed  Google Scholar 

  • Potter SS, et al. Laser capture-microarray analysis of Lim1 mutant kidney development. Genesis. 2007;45(7):432–9.

    Article  PubMed  CAS  Google Scholar 

  • Raj A, et al. Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods. 2008;5(10):877–9.

    Article  PubMed  CAS  Google Scholar 

  • Ross IL, Browne CM, Hume DA. Transcription of individual genes in eukaryotic cells occurs randomly and infrequently. Immunol Cell Biol. 1994;72(2):177–85.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Ott KM, et al. Novel regulators of kidney development from the tips of the ureteric bud. J Am Soc Nephrol. 2005;16(7):1993–2002.

    Article  PubMed  CAS  Google Scholar 

  • Schwab K, et al. A catalogue of gene expression in the developing kidney. Kidney Int. 2003;64(5):1588–604.

    Article  PubMed  CAS  Google Scholar 

  • Schwab K, et al. Comprehensive microarray analysis of Hoxa11/Hoxd11 mutant kidney development. Dev Biol. 2006;293(2):540–54.

    Article  PubMed  CAS  Google Scholar 

  • Self M, et al. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 2006;25(21):5214–28.

    Article  PubMed  CAS  Google Scholar 

  • Shawlot W, Behringer RR. Requirement for Lim1 in head-organizer function. Nature. 1995;374(6521):425–30.

    Article  PubMed  CAS  Google Scholar 

  • Stark K, et al. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature. 1994;372(6507):679–83.

    Article  PubMed  CAS  Google Scholar 

  • Stuart RO, Bush KT, Nigam SK. Changes in global gene expression patterns during development and maturation of the rat kidney. Proc Natl Acad Sci U S A. 2001;98(10):5649–54.

    Article  PubMed  CAS  Google Scholar 

  • Stuart RO, Bush KT, Nigam SK. Changes in gene expression patterns in the ureteric bud and metanephric mesenchyme in models of kidney development. Kidney Int. 2003;64(6):1997–2008.

    Article  PubMed  CAS  Google Scholar 

  • Takasuka N, et al. Dynamic changes in prolactin promoter activation in individual living lactotrophic cells. Endocrinology. 1998;139(3):1361–8.

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi A, et al. Olfactory neurons expressing closely linked and homologous odorant receptor genes tend to project their axons to neighboring glomeruli on the olfactory bulb. J Neurosci. 1999;19(19):8409–18.

    PubMed  CAS  Google Scholar 

  • Vassar R, Ngai J, Axel R. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell. 1993;74(2):309–18.

    Article  PubMed  CAS  Google Scholar 

  • Wansink DG, et al. Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol. 1993;122(2):283–93.

    Article  PubMed  CAS  Google Scholar 

  • Wernet MF, et al. Stochastic spineless expression creates the retinal mosaic for colour vision. Nature. 2006;440(7081):174–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by NIH grant number RC4-DK090891.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Steven Potter Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brunskill, E.W., Potter, A.S., Potter, S.S. (2012). Defining Genetic Blueprints – Kidney and Craniofacial Development. In: Hutton, J. (eds) Pediatric Biomedical Informatics. Translational Bioinformatics, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5149-1_18

Download citation

Publish with us

Policies and ethics