Skip to main content

Low-Density Parity-Check (LDPC) Codes

  • Chapter
  • First Online:
Inside Solid State Drives (SSDs)

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 37))

  • 4319 Accesses

Abstract

In this chapter, low-density parity-check (LDPC) codes, a class of powerful iteratively decodable error correcting codes, are introduced. The chapter first reviews some basic concepts and results in information theory such as Shannon’s channel capacity and channel coding theorem. It then overviews the Flash memory channel model. Finally, it addresses LDPC codes describing both their structure and efficient implementation, and their decoding algorithms. Simulation results are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The capacity of the BSC only depends on the crossover probability and not on the values assumed by X and Y.

  2. 2.

    For unstructured ensemble, the minimum variable and check nodes are usually set to 2. The reason for this choice is out of the scope of this chapter.

  3. 3.

    The described protograph-based technique is not the only one to construct good QC-LDPC codes. Another possible approach is based on Euclidean and projective finite geometries [5, 27].

  4. 4.

    The words “horizontal” and “vertical” remind us that the check nodes and the variable nodes are associated with the rows and the columns of the parity-check matrix, respectively.

References

  1. S. Abu-Surra, D. Divsalar, W.E. Ryan, Enumerators for protograph-based ensembles of LDPC and generalized LDPC codes. IEEE Trans. Inf. Theory 57(February), 858–886 (2011)

    Article  MathSciNet  Google Scholar 

  2. C. Berrou, A. Glavieux, P. Thitimajshima, Near shannon limit error-correcting coding and decoding: turbo-codes, in Proceedings of the 2003 International Conference on Communication, vol. 2, May 1993, Geneva, Switzerland, pp. 1064–1070

    Google Scholar 

  3. N. Bonello, S. Chen, L. Hanzo, Low-density parity-check codes and their rateless relatives. IEEE Commun. Surveys & Tutorials 13(February), 3–26 (2011)

    Article  Google Scholar 

  4. D. Cavus, C. Haymes, Low BER performance estimation of LDPC codes via application of importance sampling to trapping sets. IEEE Trans. Commun. 57(July), 1886–1888 (2009)

    Article  Google Scholar 

  5. L. Chen, J. Xu, I. Djurdjevic, S. Lin, Near Shannon limit quasi cyclic low-density parity-check codes. IEEE Trans. Commun. 52(July), 1038–1042 (2004)

    Article  Google Scholar 

  6. J. Chen, M. Tanner, C. Jones, Y. Li, Improved min-sum decoding algorithms for irregular LDPC codes, in Proceedings of the 2005 IEEE International Symposium on Information Theory, Sept 2005, Adelaide, Australia, pp. 449–453

    Google Scholar 

  7. J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, X.-Y. Hu, Reduced-complexity decoding of LDPC codes. IEEE Trans. Commun. 53(August), 1288–1299 (2005)

    Article  Google Scholar 

  8. M. Chiani, A. Ventura, Design and performance evaluation of some high-rate irregular low-density parity-check codes, in Proceedings of the 2001 Global Telecommunication Conference, San Antonio, TX, Nov 2001, pp. 990–994

    Google Scholar 

  9. S.-Y. Chung, G.D. Forney Jr., T. Richardson, R. Urbanke, On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Commun. Lett. 5(February), 58–60 (2001)

    Article  Google Scholar 

  10. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)

    Book  MATH  Google Scholar 

  11. L. Dolecek et al., Predicting error floors of structured LDPC codes: Deterministic bounds and estimates. IEEE J. Sel. Areas Commun. 27(August), 908–917 (2009)

    Google Scholar 

  12. M. Flanagan, E. Paolini, M. Chiani, M. Fossorier, On the growth rate of the weight distribution of irregular doubly-generalized LDPC codes. IEEE Trans. Inf. Theory 57(June), 3721–3737 (2011)

    Article  MathSciNet  Google Scholar 

  13. M. Fossorier, Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. Inf. Theory 50(August), 1788–1793 (2004)

    Article  MathSciNet  Google Scholar 

  14. R.D. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. Royal Soc. London 119(May), 173–181 (1928)

    ADS  MATH  Google Scholar 

  15. R.G. Gallager, Low-Density Parity-Check Codes (MIT Press, Cambridge, 1963)

    Google Scholar 

  16. X.-Y. Hu, M. Fossorier, E. Eleftheriou, On the computation of the minimum distance of low-density parity-check codes, in Proceedings of the 2004 International Conference on Communication, June 2004, Paris, France, pp. 767–771

    Google Scholar 

  17. S. Li, T. Zhang, Improving multi-level NAND flash memory storage reliability using concatenated BCH-TCM coding. IEEE Trans. VLSI 18(October), 1412–1420 (2010)

    Article  Google Scholar 

  18. Z. Li, L. Chen, L. Zeng, S. Lin, W. Fong, Efficient encoding of low-density parity-check codes. IEEE Trans. Commun. 54(January), 71–81 (2006)

    Google Scholar 

  19. G. Liva, M. Chiani, Protograph LDPC codes design based on EXIT analysis, in Proceedings of the 2007 IEEE Global Telecommunications Conference, Washington, DC, Nov 2007, pp. 3250–3254

    Google Scholar 

  20. M. Mansour, High-performance decoders for regular and irregular repeat-accumulate codes, in Proceedings of the IEEE 2004 IEEE Global Telecommunications Conference, Nov/Dec 2004, Dallas, TX, USA, pp. 2583–2588

    Google Scholar 

  21. R. Micheloni, L. Crippa, A. Marelli (eds.), Inside NAND Flash Memories (Springer, Berlin, 2010)

    Google Scholar 

  22. N. Mielke et al., Bit error rate in NAND Flash memories, in Proceedings of the 2008 IEEE International Symposium on Reliability Physics, Phoenix, AZ, Apr/May 2008, pp. 9–19

    Google Scholar 

  23. T. Richardson, Error floors of LDPC codes, in Proceedings of the 41st Annual Allerton Conference on Communication, Control and Computing, (Monticello, IL, USA, 2003)

    Google Scholar 

  24. T. Richardson, M. Shokrollahi, R. Urbanke, Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inf. Theory 47(February), 619–637 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Richardson, R. Urbanke, The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans. Inf. Theory 47(February), 599–618 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Richardson, R. Urbanke, The renaissance of Gallager’s low-density parity-check codes. IEEE Commun. Mag. 41(August), 126–131 (2003)

    Article  Google Scholar 

  27. H. Tang, J. Xu, Y. Kou, S. Lin, K. Abdel-Ghaffar, On algebraic construction of Gallager and circulant low density parity-check codes. IEEE Trans. Inf. Theory 50(June), 1269–1279 (2004)

    Article  MathSciNet  Google Scholar 

  28. M. Tanner, A recursive approach to low complexity codes. IEEE Trans. Inf. Theory 27(September), 533–547 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. S. ten Brink, Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Trans. Commun. 49(October), 1727–1737 (2001)

    Article  MATH  Google Scholar 

  30. J. Thorpe, Low-density parity-check (LDPC) codes constructed from protographs. JPL INP, Tech. Rep. August 42–154 (2003)

    Google Scholar 

  31. J. Xu, L. Chen, L. Zeng, L. Lan, S. Lin, Construction of low-density parity-check codes by superposition. IEEE Trans. Commun. 53(February), 243–251 (2005)

    Article  Google Scholar 

  32. J. Wang, T. Courtade, H. Shankar, R. Wesel, Soft information for LDPC decoding in flash: Mutual-information optimized quantization, in Proceedings of the 2011 IEEE Global Telecommunication Conference, Houston, TX, Dec 2011

    Google Scholar 

  33. J. Zhao, F. Zarkeshvari, A. Banihashemi, On implementation of min-sum algorithm and its modifications for decoding low-density parity-check (LDPC) codes. IEEE Trans. Commun. 53(April), 549–554 (2005)

    Article  Google Scholar 

Download references

Acknowledgment

The author wishes to thank Prof. M. Chiani (University of Bologna) and Dr. G. Liva (DLR) for their useful feedback. He also wishes to thank Ing. R. Micheloni and A. Marelli (IDT Italy) for their careful proof check of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Paolini .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paolini, E. (2013). Low-Density Parity-Check (LDPC) Codes. In: Inside Solid State Drives (SSDs). Springer Series in Advanced Microelectronics, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5146-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5146-0_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5145-3

  • Online ISBN: 978-94-007-5146-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics