Skip to main content

MicroRNAs as Engineering Targets: Pathway Manipulation to Impact Bioprocess Phenotypes

  • Chapter
  • First Online:
  • 816 Accesses

Abstract

Chinese hamster ovary (CHO) cells are the primary mammalian culture system used for recombinant protein production; therefore there are continuous research and development efforts to improve cell production capabilities by both genetic modification and process optimization strategies. The genetic modifications are used to increase specific growth rate, to reduce apoptosis and to improve nutrients utilization. Since altering the expression of a single gene or even a single pathway may not be sufficient to produce desirable phenotypes, regulation of global gene expression may be a better approach for pathway engineering in CHO cells. miRNA(s) were found to be global regulators of gene expression with the ability to simultaneously alter multiple cellular pathways such as cell growth, apoptosis, stress resistance, metabolism and protein secretion. Therefore, modifications of miRNA expression profiles may facilitate the design of high-producing CHO cells. Recent advances in transfection techniques allow the insertion of miRNA mimics or inhibitors into CHO cells at specific stages of the bioprocess. Unlike traditional engineering approaches, manipulation of miRNA expression profiles does not burden the translational machinery of the cell and therefore, cellular metabolic resources are allocated to recombinant protein production. In this chapter we highlight the industrially-relevant pathways, report on miRNA involvement in their regulation, discuss how these miRNAs can be used to improve performance of CHO cells for industrial applications and propose specific miRNA candidates for CHO cell engineering.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akao Y, Nakagawa Y, Naoe T (2006) let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29(5):903–906

    Article  PubMed  CAS  Google Scholar 

  • Altamirano C, Cairo JJ, Godia F (2001) Decoupling cell growth and product formation in Chinese hamster ovary cells through metabolic control. Biotechnol Bioeng 76(4):351–360

    Article  PubMed  CAS  Google Scholar 

  • Barlowe C (2000) Traffic COPs of the early secretory pathway. Traffic 1(5):371–377

    Article  PubMed  CAS  Google Scholar 

  • Barron N et al (2011a) Engineering CHO cell growth and recombinant protein productivity by overexpression of miR-7. J Biotechnol 151(2):204–211

    Article  CAS  Google Scholar 

  • Barron N et al (2011b) MicroRNAs: tiny targets for engineering CHO cell phenotypes? Biotechnol Lett 33(1):11–21

    Article  CAS  Google Scholar 

  • Behrman S, Acosta-Alvear D, Walter P (2011) A CHOP-regulated microRNA controls rhodopsin expression. J Cell Biol 192(6):919–927

    Article  PubMed  CAS  Google Scholar 

  • Bhaumik D et al (2009) MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany NY) 1(4):402–411

    PubMed  CAS  Google Scholar 

  • Bi JX, Shuttleworth J, Al-Rubeai M (2004) Uncoupling of cell growth and proliferation results in enhancement of productivity in p21CIP1-arrested CHO cells. Biotechnol Bioeng 85(7):741–749

    Article  PubMed  CAS  Google Scholar 

  • Borth N et al (2005) Effect of increased expression of protein disulfide isomerase and heavy chain binding protein on antibody secretion in a recombinant CHO cell line. Biotechnol Prog 21(1):106–111

    Article  PubMed  CAS  Google Scholar 

  • Calin GA et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529

    Article  PubMed  CAS  Google Scholar 

  • Carvalhal AV, Marcelino I, Carrondo MJ (2003) Metabolic changes during cell growth inhibition by p27 overexpression. Appl Microbiol Biotechnol 63(2):164–173

    Article  PubMed  CAS  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033

    Article  PubMed  CAS  Google Scholar 

  • Chang TC et al (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40(1):43–50

    Article  PubMed  CAS  Google Scholar 

  • Chen JF et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2):228–233

    Article  PubMed  CAS  Google Scholar 

  • Chen K et al (2001) Engineering of a mammalian cell line for reduction of lactate formation and high monoclonal antibody production. Biotechnol Bioeng 72(1):55–61

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Harcum SW (2006) Effects of elevated ammonium on glycosylation gene expression in CHO cells. Metab Eng 8(2):123–132

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Harcum SW (2007) Differential display identifies genes in Chinese hamster ovary cells sensitive to elevated ammonium. Appl Biochem Biotechnol 141(2–3):349–359

    Article  PubMed  CAS  Google Scholar 

  • Cheng AM et al (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33(4):1290–1297

    Article  PubMed  CAS  Google Scholar 

  • Chiang GG, Sisk WP (2005) Bcl-x(L) mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells. Biotechnol Bioeng 91(7):779–792

    Article  PubMed  CAS  Google Scholar 

  • Chung JY et al (2004) Effect of doxycycline-regulated calnexin and calreticulin expression on specific thrombopoietin productivity of recombinant Chinese hamster ovary cells. Biotechnol Bioeng 85(5):539–546

    Article  PubMed  CAS  Google Scholar 

  • Cimmino A et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102(39):13944–13949

    Article  PubMed  CAS  Google Scholar 

  • Clarke C et al (2011) Predicting cell-specific productivity from CHO gene expression. J Biotechnol 151(2):159–165

    Article  PubMed  CAS  Google Scholar 

  • Creighton CJ et al (2010) Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res 70(5):1906–1915

    Article  PubMed  CAS  Google Scholar 

  • Dai R et al (2010) miR-221/222 suppression protects against endoplasmic reticulum stress-induced apoptosis via p27(Kip1)- and MEK/ERK-mediated cell cycle regulation. Biol Chem 391(7):791–801

    Article  PubMed  CAS  Google Scholar 

  • de Boer L, Gray PP, Sunstrom NA (2004) Enhanced productivity of G1 phase Chinese hamster ovary cells using the GADD153 promoter. Biotechnol Lett 26(1):61–65

    Article  PubMed  CAS  Google Scholar 

  • Dinnis DM, James DC (2005) Engineering mammalian cell factories for improved recombinant monoclonal antibody production: lessons from nature? Biotechnol Bioeng 91(2):180–189

    Article  PubMed  CAS  Google Scholar 

  • Druz A et al (2011) A novel microRNA mmu-miR-466h affects apoptosis regulation in mammalian cells. Biotechnol Bioeng 108(7):1651–1661

    Article  PubMed  CAS  Google Scholar 

  • Dunster CA, Cheeseman KH, Maddix SP (1997) The effect of oxidative stress on the production of the recombinant protein, interferon gamma, produced by Chinese hamster ovary cells in stirred-batch culture. Appl Microbiol Biotechnol 48(2):198–203

    Article  PubMed  CAS  Google Scholar 

  • Eichner LJ et al (2010) miR-378(*) mediates metabolic shift in breast cancer cells via the PGC-1beta/ERRgamma transcriptional pathway. Cell Metab 12(4):352–361

    Article  PubMed  CAS  Google Scholar 

  • El Ouaamari A et al (2008) miR-375 targets 3’-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57(10):2708–2717

    Article  PubMed  CAS  Google Scholar 

  • Elias CB et al (2003) Improving glucose and glutamine metabolism of human HEK 293 and Trichoplusia ni insect cells engineered to express a cytosolic pyruvate carboxylase enzyme. Biotechnol Prog 19(1):90–97

    Article  PubMed  CAS  Google Scholar 

  • Esau C et al (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279(50):52361–52365

    Article  PubMed  CAS  Google Scholar 

  • Esau C et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3(2):87–98

    Article  PubMed  CAS  Google Scholar 

  • Fasanaro P et al (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283(23):15878–15883

    Article  PubMed  CAS  Google Scholar 

  • Fassnacht D et al (1999) Influence of bcl-2 on antibody productivity in high cell density perfusion cultures of hybridoma. Cytotechnology 30(1–3):95–106

    Article  PubMed  CAS  Google Scholar 

  • Felli N et al (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A 102(50):18081–18086

    Article  PubMed  CAS  Google Scholar 

  • Figueroa B Jr et al (2007) Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Biotechnol Bioeng 97(4):877–892

    Article  PubMed  CAS  Google Scholar 

  • Fox SR et al (2005) A detailed understanding of the enhanced hypothermic productivity of interferon-gamma by Chinese-hamster ovary cells. Biotechnol Appl Biochem 41(Pt 3):255–264

    PubMed  CAS  Google Scholar 

  • Fussenegger M et al (2000) Regulated overexpression of the survival factor bcl-2 in CHO cells increases viable cell density in batch culture and decreases DNA release in extended fixed-bed cultivation. Cytotechnology 32(1):45–61

    Article  PubMed  CAS  Google Scholar 

  • Fussenegger M, Bailey JE (1998) Molecular regulation of cell-cycle progression and apoptosis in mammalian cells: implications for biotechnology. Biotechnol Prog 14(6):807–833

    Article  PubMed  CAS  Google Scholar 

  • Gammell P (2007) MicroRNAs: recently discovered key regulators of proliferation and apoptosis in animal cells: Identification of miRNAs regulating growth and survival. Cytotechnology 53(1–3):55–63

    Article  PubMed  CAS  Google Scholar 

  • Gao C et al (2010) Reduced microRNA-218 expression is associated with high nuclear factor kappa B activation in gastric cancer. Cancer 116(1):41–49

    PubMed  CAS  Google Scholar 

  • Gao P et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239):762–765

    Article  PubMed  CAS  Google Scholar 

  • Gauthier BR, Wollheim CB (2006) MicroRNAs: ‘ribo-regulators’ of glucose homeostasis. Nat Med 12(1):36–38

    Article  PubMed  CAS  Google Scholar 

  • Hackl M et al (2011) Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: Identification, annotation and profiling of microRNAs as targets for cellular engineering. J Biotechnol 153(1–2):62–75

    Article  PubMed  CAS  Google Scholar 

  • He L et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134

    Article  PubMed  CAS  Google Scholar 

  • Heal R, McGivan J (1998) Induction of calreticulin expression in response to amino acid deprivation in Chinese hamster ovary cells. Biochem J 329 (Pt 2):389–394

    PubMed  CAS  Google Scholar 

  • Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199

    Article  PubMed  CAS  Google Scholar 

  • Hua Z et al (2006) MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 1:e116

    Article  PubMed  CAS  Google Scholar 

  • Huang W et al (2010) Tonicity-responsive microRNAs contribute to the maximal induction of osmoregulatory transcription factor OREBP in response to high-NaCl hypertonicity. Nucleic Acids Res 39(2):475–485

    Article  PubMed  CAS  Google Scholar 

  • Ifandi V, Al-Rubeai M (2005) Regulation of cell proliferation and apoptosis in CHO-K1 cells by the coexpression of c-Myc and Bcl-2. Biotechnol Prog 21(3):671–677

    Article  PubMed  CAS  Google Scholar 

  • Imam JS et al (2010) MicroRNA-185 suppresses tumor growth and progression by targeting the Six1 oncogene in human cancers. Oncogene 29(35):4971–4979

    Article  PubMed  CAS  Google Scholar 

  • Irani N, Beccaria AJ, Wagner R (2002) Expression of recombinant cytoplasmic yeast pyruvate carboxylase for the improvement of the production of human erythropoietin by recombinant BHK-21 cells. J Biotechnol 93(3):269–282

    Article  PubMed  CAS  Google Scholar 

  • Jeong DW et al (2004) Modification of glycolysis affects cell sensitivity to apoptosis induced by oxidative stress and mediated by mitochondria. Biochem Biophys Res Commun 313(4):984–991

    Article  PubMed  CAS  Google Scholar 

  • Johnson KC et al (2011) Conserved microRNAs in Chinese hamster ovary cell lines. Biotechnol Bioeng 108(2):475–480

    Article  PubMed  CAS  Google Scholar 

  • Johnson SM et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647

    Article  PubMed  CAS  Google Scholar 

  • Kantardjieff A et al (2010) Transcriptome and proteome analysis of Chinese hamster ovary cells under low temperature and butyrate treatment. J Biotechnol 145(2):143–159

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann H et al (1999) Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells. Biotechnol Bioeng 63(5):573–582

    Article  PubMed  CAS  Google Scholar 

  • Keane JT, Ryan D, Gray PP (2003) Effect of shear stress on expression of a recombinant protein by Chinese hamster ovary cells. Biotechnol Bioeng 81(2):211–220

    Article  PubMed  CAS  Google Scholar 

  • Kefas B et al (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68(10):3566–3572

    Article  PubMed  CAS  Google Scholar 

  • Kim CH, Oh Y, Lee TH (1997) Codon optimization for high-level expression of human erythropoietin (EPO) in mammalian cells. Gene 199(1–2):293–301

    Article  PubMed  CAS  Google Scholar 

  • Kim NS, Lee GM (2002) Response of recombinant Chinese hamster ovary cells to hyperosmotic pressure: effect of Bcl-2 overexpression. J Biotechnol 95(3):237–248

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Lee GM (2007) Down-regulation of lactate dehydrogenase-A by siRNAs for reduced lactic acid formation of Chinese hamster ovary cells producing thrombopoietin. Appl Microbiol Biotechnol 74(1):152–159

    Article  PubMed  CAS  Google Scholar 

  • Korke R et al (2004) Large scale gene expression profiling of metabolic shift of mammalian cells in culture. J Biotechnol 107(1):1–17

    Article  PubMed  CAS  Google Scholar 

  • Kramer O, Klausing S, Noll T (2010) Methods in mammalian cell line engineering: from random mutagenesis to sequence-specific approaches. Appl Microbiol Biotechnol 88(2):425–436

    Article  PubMed  CAS  Google Scholar 

  • Krutzfeldt J, Stoffel M (2006) MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab 4(1):9–12

    Article  PubMed  CAS  Google Scholar 

  • Ku SC et al (2008) Effects of overexpression of X-box binding protein 1 on recombinant protein production in Chinese hamster ovary and NS0 myeloma cells. Biotechnol Bioeng 99(1):155–164

    Article  PubMed  CAS  Google Scholar 

  • Kulshreshtha R et al (2007) A microRNA signature of hypoxia. Mol Cell Biol 27(5):1859–1867

    Article  PubMed  CAS  Google Scholar 

  • Kwon RJ et al (2006) Artificial transcription factors increase production of recombinant antibodies in Chinese hamster ovary cells. Biotechnol Lett 28(1):9–15

    Article  PubMed  CAS  Google Scholar 

  • Lal A et al (2009) miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol 16(5):492–498

    Article  PubMed  CAS  Google Scholar 

  • Lanceta J et al (2010) MicroRNA group disorganization in aging. Exp Gerontol 45(4):269–278

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Palkovits M, Young WS (2006) 3rd, miR-7b, a microRNA up-regulated in the hypothalamus after chronic hyperosmolar stimulation, inhibits Fos translation. Proc Natl Acad Sci U S A 103(42):15669–15674

    Article  PubMed  CAS  Google Scholar 

  • Lee ST et al (2010) Let-7 microRNA inhibits the proliferation of human glioblastoma cells. J Neurooncol 102(1):19–24

    Article  PubMed  CAS  Google Scholar 

  • Lee YS et al (2005) Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem 280(17):16635–16641

    Article  PubMed  CAS  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  PubMed  CAS  Google Scholar 

  • Li G et al (2011) Role of miR-204 in the regulation of apoptosis, endoplasmic reticulum stress response, and inflammation in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 52(6):2999–3007

    Article  PubMed  CAS  Google Scholar 

  • Li N et al (2011) Increased expression of miR-34a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1. Mech Ageing Dev 132(3):75–85

    Article  PubMed  CAS  Google Scholar 

  • Lim SF et al (2006) RNAi suppression of Bax and Bak enhances viability in fed-batch cultures of CHO cells. Metab Eng 8(6):509–522

    Article  PubMed  CAS  Google Scholar 

  • Lim Y et al (2010) Engineering mammalian cells in bioprocessing—current achievements and future perspectives. Biotechnol Appl Biochem 55(4):175–189

    Article  PubMed  CAS  Google Scholar 

  • Liu CJ et al (2010) miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res 70(4):1635–1644

    Article  PubMed  CAS  Google Scholar 

  • Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389(3):305–312

    Article  PubMed  CAS  Google Scholar 

  • Lu J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    Article  PubMed  CAS  Google Scholar 

  • Maes OC et al (2008) Murine microRNAs implicated in liver functions and aging process. Mech Ageing Dev 129(9):534–541

    Article  PubMed  CAS  Google Scholar 

  • Majors BS, Betenbaugh MJ, Chiang GG (2007) Links between metabolism and apoptosis in mammalian cells: applications for anti-apoptosis engineering. Metab Eng 9(4):317–326

    Article  PubMed  CAS  Google Scholar 

  • Martello G et al (2010) A MicroRNA targeting dicer for metastasis control. Cell 141(7):1195–1207

    Article  PubMed  CAS  Google Scholar 

  • Mastrangelo AJ et al (2000) Part II. Overexpression of bcl-2 family members enhances survival of mammalian cells in response to various culture insults. Biotechnol Bioeng 67(5):555–564

    Article  PubMed  CAS  Google Scholar 

  • Masuda S et al (2000) A new biological strategy for high productivity of recombinant proteins in animal cells by the use of hypoxia-response enhancer. Biotechnol Bioeng 67(2):157–164

    Article  PubMed  CAS  Google Scholar 

  • Meng F et al (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130(7):2113–2129

    Article  PubMed  CAS  Google Scholar 

  • Mercille S, Massie B (1999) Apoptosis-resistant E1B-19K-expressing NS/0 myeloma cells exhibit increased viability and chimeric antibody productivity under perfusion culture conditions. Biotechnol Bioeng 63(5):529–543

    Article  PubMed  CAS  Google Scholar 

  • Mersey BD, Jin P, Danner DJ (2005) Human microRNA (miR29b) expression controls the amount of branched chain alpha-ketoacid dehydrogenase complex in a cell. Hum Mol Genet 14(22):3371–3377

    Article  PubMed  CAS  Google Scholar 

  • Muller D, Katinger H, Grillari J (2008) MicroRNAs as targets for engineering of CHO cell factories. Trends Biotechnol 26(7):359–365

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell KA et al (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843

    Article  PubMed  CAS  Google Scholar 

  • Ohya T et al (2008) Improved production of recombinant human antithrombin III in Chinese hamster ovary cells by ATF4 overexpression. Biotechnol Bioeng 100(2):317–324

    Article  PubMed  CAS  Google Scholar 

  • Ovcharenko D et al (2007) Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res 67(22):10782–10788

    Article  PubMed  CAS  Google Scholar 

  • Ozturk SS, Riley MR, Palsson BO (1992) Effects of ammonia and lactate on hybridoma growth, metabolism, and antibody production. Biotechnol Bioeng 39(4):418–431

    Article  PubMed  CAS  Google Scholar 

  • Patrick DM et al (2010) Defective erythroid differentiation in miR-451 mutant mice mediated by 14–3-3zeta. Genes Dev 24(15):1614–1619

    Article  PubMed  CAS  Google Scholar 

  • Peng RW et al (2010) Munc18b regulates core SNARE complex assembly and constitutive exocytosis by interacting with the N-peptide and the closed-conformation C-terminus of syntaxin 3. Biochem J 431(3):353–361

    PubMed  CAS  Google Scholar 

  • Peng RW, Abellan E, Fussenegger M (2011) Differential effect of exocytic SNAREs on the production of recombinant proteins in mammalian cells. Biotechnol Bioeng 108(3):611–620

    Article  PubMed  CAS  Google Scholar 

  • Plaisance V et al (2006) MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 281(37):26932–26942

    Article  PubMed  CAS  Google Scholar 

  • Poy MN, Spranger M, Stoffel M (2007) microRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab 9 Suppl 2:67–73

    Article  CAS  Google Scholar 

  • Qin X et al (2010) MicroRNA-19a mediates the suppressive effect of laminar flow on cyclin D1 expression in human umbilical vein endothelial cells. Proc Natl Acad Sci U S A 107(7):3240–3244

    Article  PubMed  CAS  Google Scholar 

  • Saito Y et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6):435–443

    Article  PubMed  CAS  Google Scholar 

  • Sangokoya C, Telen MJ, Chi JT (2010) microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 116(20):4338–4348

    Article  PubMed  CAS  Google Scholar 

  • Sauerwald TM, Betenbaugh MJ, Oyler GA (2002) Inhibiting apoptosis in mammalian cell culture using the caspase inhibitor XIAP and deletion mutants. Biotechnol Bioeng 77(6):704–716

    Article  PubMed  CAS  Google Scholar 

  • Sauerwald TM et al (2006) Combining caspase and mitochondrial dysfunction inhibitors of apoptosis to limit cell death in mammalian cell cultures. Biotechnol Bioeng 94(2):362–372

    Article  PubMed  CAS  Google Scholar 

  • Scherr M et al (2007) Lentivirus-mediated antagomir expression for specific inhibition of miRNA function. Nucleic Acids Res 35(22):e149

    Article  CAS  Google Scholar 

  • Senger RS, Karim MN (2003) Effect of shear stress on intrinsic CHO culture state and glycosylation of recombinant tissue-type plasminogen activator protein. Biotechnol Prog 19(4):1199–1209

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S et al (2010) The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol 52(5):698–704

    Article  PubMed  CAS  Google Scholar 

  • Si ML et al (2007) miR-21-mediated tumor growth. Oncogene 26(19):2799–2803

    Article  PubMed  CAS  Google Scholar 

  • Sun W et al (2010) microRNA: a master regulator of cellular processes for bioengineering systems. Annu Rev Biomed Eng 12:1–27

    Article  PubMed  CAS  Google Scholar 

  • Sung YH et al (2007) Influence of co-down-regulation of caspase-3 and caspase-7 by siRNAs on sodium butyrate-induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin. Metab Eng 9(5–6):452–464

    Article  PubMed  CAS  Google Scholar 

  • Taguchi A et al (2008) Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17–92 microRNA cluster. Cancer Res 68(14):5540–5545

    Article  PubMed  CAS  Google Scholar 

  • Tan HK et al (2008) Overexpression of cold-inducible RNA-binding protein increases interferon-gamma production in Chinese-hamster ovary cells. Biotechnol Appl Biochem 49(Pt 4):247–257

    Article  PubMed  CAS  Google Scholar 

  • Tang X et al (2009) Identification of glucose-regulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription. RNA 15(2):287–293

    Article  PubMed  CAS  Google Scholar 

  • Tey BT et al (2000) Influence of bcl-2 on cell death during the cultivation of a Chinese hamster ovary cell line expressing a chimeric antibody. Biotechnol Bioeng 68(1):31–43

    Article  PubMed  CAS  Google Scholar 

  • Tigges M, Fussenegger M (2006) Xbp1-based engineering of secretory capacity enhances the productivity of Chinese hamster ovary cells. Metab Eng 8:264-272

    Article  PubMed  CAS  Google Scholar 

  • Tseng CF et al (2004) Antioxidant role of human haptoglobin. Proteomics 4(8):2221–2228

    Article  PubMed  CAS  Google Scholar 

  • Weber M et al (2010) MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun 393(4):643–648

    Article  PubMed  CAS  Google Scholar 

  • Weber W, Fussenegger M (2007) Inducible product gene expression technology tailored to bioprocess engineering. Curr Opin Biotechnol 18(5):399–410

    Article  PubMed  CAS  Google Scholar 

  • Wong DC et al (2006) Targeting early apoptotic genes in batch and fed-batch CHO cell cultures. Biotechnol Bioeng 95(3):350–361

    Article  PubMed  CAS  Google Scholar 

  • Xu C et al (2007) The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 120(Pt 17):3045–3052

    Article  PubMed  CAS  Google Scholar 

  • Xu X et al (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29(8):735–741

    Article  PubMed  CAS  Google Scholar 

  • Yallop CA, Svendsen I (2001) The effects of G418 on the growth and metabolism of recombinant mammalian cell lines. Cytotechnology 35(2):101–114

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Butler M (2000) Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnol Bioeng 68(4):370–380

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Paschen W (2008) Conditional gene silencing in mammalian cells mediated by a stress-inducible promoter. Biochem Biophys Res Commun 365(3):521–527

    Article  PubMed  CAS  Google Scholar 

  • Yoon SK, Song JY, Lee GM (2003) Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnol Bioeng 82(3):289–298

    Article  PubMed  CAS  Google Scholar 

  • Yu F et al (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 29(29):4194–4204

    Article  PubMed  CAS  Google Scholar 

  • Zamboni N, Sauer U (2009) Novel biological insights through metabolomics and 13C-flux analysis. Curr Opin Microbiol 12(5):553–558

    Article  PubMed  CAS  Google Scholar 

  • Zanghi JA, Fussenegger M, Bailey JE (1999) Serum protects protein-free competent Chinese hamster ovary cells against apoptosis induced by nutrient deprivation in batch culture. Biotechnol Bioeng 64(1):108–119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by the intramural program of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health. The authors would like to thank Mrs. D. Livnat and Mrs. A Shiloach for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Shiloach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shiloach, J., Druz, A., Betenbaugh, M. (2012). MicroRNAs as Engineering Targets: Pathway Manipulation to Impact Bioprocess Phenotypes. In: Barron, N. (eds) MicroRNAs as Tools in Biopharmaceutical Production. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5128-6_5

Download citation

Publish with us

Policies and ethics