Skip to main content

Production of the Atmospheric Oxidant Radicals OH and HO2 from the Ozonolysis of Alkenes

  • Conference paper
  • First Online:
  • 1694 Accesses

Abstract

The reactions of ozone with alkenes are of importance within atmospheric chemistry as a non-photolytic source of the oxidant radicals OH, HO2 and RO2. While OH yields are relatively well constrained, few data exist for production of HO2 or RO2. We report direct measurements of total radical yields from a range of small (C2–C5) alkenes, using LIF and PERCA techniques within large simulation chamber experiments. OH yields are found to be consistent with established understanding, while HO2 yields are substantially smaller than previous measurements suggest, but in good agreement with those assumed within current atmospheric chemical mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alam MS, Camredon M, Rickard AR, Carr T, Wyche KP, Hornsby KE, Monks PS, Bloss WJ (2011) Total radical yields from tropospheric ethene ozonolysis. Phys Chem Chem Phys 13:11002–11015

    Article  CAS  Google Scholar 

  2. Atkinson R (1997) Gas-phase tropospheric chemistry of volatile organic compounds: 1. alkanes and alkenes. J Phys Chem Ref Data 26:215–290

    Article  CAS  Google Scholar 

  3. Becker KH (1996) EUPHORE: final report to the European Commission. contract EV5V-CT92-0059. Bergische Universität Wuppertal, Germany

    Google Scholar 

  4. Bloss WJ, Lee JD, Bloss C, Heard DE, Pilling MJ, Wirtz K, Martin-Reviejo M, Siese M (2004) Evaluation of the Calibration of a laser-induced fluorescence instrument for the measurement of OH radials in the atmosphere. Atmos Chem Phys 4:571–583

    Article  CAS  Google Scholar 

  5. Bloss C, Wagner V, Jenkin ME, Volkamer R, Bloss WJ, Lee JD, Heard DE, Wirtz K, Martin-Reviejo M, Rea G, Wenger JC, Pilling MJ (2005) Development of a detailed chemical mechanism (MCMv3. 1) for the atmospheric oxidation of aromatic hydrocarbons. Atmos Chem Phys 5:641–664

    Article  CAS  Google Scholar 

  6. Calvert JG, Atkinson R, Kerr JA, Madronich S, Moortgat GK, Wallington TJ, Yarwood G (2000) The mechanism of atmospheric oxidation of the alkenes. Oxford University Press, New York

    Google Scholar 

  7. Criegee R (1975) Mechanism of ozonolysis. Angew Chem 14:745–752

    Article  Google Scholar 

  8. Dillon TJ, Crowley JN (2008) Direct detection of OH formation in the reactions of HO2 with CH3C(O)O2 and other substituted peroxy radicals. Atmos Chem Phys 8:4877–4889

    Article  CAS  Google Scholar 

  9. Donahue NM, Drozd GT, Epstein SA, Presto AA, Kroll JH (2011) Adventures in ozoneland: down the rabbit-hole. Phys Chem Chem Phys 13:10848–10857

    Article  CAS  Google Scholar 

  10. Fenske JD, Hasson AS, Ho AW, Paulson SE (2000) Measurement of absolute unimolecular and bimolecular rate constants for CH3CHOO generated by the trans-2-butene reaction with ozone in the gas phase. J Phys Chem A 104:9921–9932

    Article  CAS  Google Scholar 

  11. Fuchs H, Bohn B, Hofzumahaus A, Holland F, Lu KD, Nehr S, Rohrer F, Wahner A (2011) Detection of HO2 by laser-induced fluorescence: calibration and interferences from RO2 radicals. Atmos Meas Tech 4:1209–1225

    Article  CAS  Google Scholar 

  12. Green TJ, Reeves CE, Fleming ZL, Brough N, Rickard AR, Bandy BJ, Monks PS, Penkett SA (2006) An improved dual channel PERCA instrument for atmospheric measurements of peroxy radicals. J Environ Monit 8:530–536

    Article  CAS  Google Scholar 

  13. Hatakeyama S, Akimoto H (1994) Reactions of Criegee intermediates in the gas phase. Res Chem Intermed 20:503–524

    Article  CAS  Google Scholar 

  14. IUPAC (2009) International union of pure and applied chemistry subcommittee on gas kinetic data evaluation. http://www.iupac-kinetic.ch.cam.ac.uk/

  15. Jenkin ME, Saunders SM, Pilling MJ (1997) The tropospheric degradation of volatile organic compounds: a protocol for mechanism development. Atmos Environ 31:81–104

    Article  CAS  Google Scholar 

  16. Jenkin ME, Hurley MD, Wallington TJ (2007) Investigation of the radical product channel of the CH3C(O)O2 + HO2 reaction in the gas phase. Phys Chem Chem Phys 9:3149–3162

    Article  CAS  Google Scholar 

  17. Johnson D, Marston G (2008) The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere. Chem Soc Rev 37:699–716

    Article  CAS  Google Scholar 

  18. Johnson D, Lewin AG, Marston G (2001) The effect of Criegee-intermediate scavengers on the OH yield from the reaction of ozone with 2-methylbut-2-ene. J Phys Chem A 105:2933–2935

    Article  CAS  Google Scholar 

  19. Kuwata KT, Hasson AS, Dickinson RV, Petersen EB, Valin LC (2005) Quantum chemical and master equation simulations of the oxidation and isomerization of vinoxy radicals. J Phys Chem A 109:2514–2524

    Article  CAS  Google Scholar 

  20. Leather KE, McGillen MR, Cooke MC, Utembe SR, Archibald AT, Jenkin ME, Derwent RG, Shallcross DE, Percival CJ (2011) Acid-yield measurements of the gas-phase ozonolysis of ethene as a function of humidity using Chemical Ionisation Mass Spectrometry (CIMS). Atmos Chem Phys Discuss 11:25173–25204

    Article  Google Scholar 

  21. Lee JD, Lewis AC, Monks PS, Jacob M, Hamilton JF, Hopkins JR, Watson NM, Saxton JE, Ennis C, Carpenter LJ, Carslaw N, Fleming Z, Bandy BJ, Oram DE, Penkett SA, Slemr J, Norton E, Rickard AR, Whalley LK, Heard DE, Bloss WJ, Gravestock T, Smith SC, Stanton J, Pillin MJ, Jenkin ME (2006) Ozone photochemistry and elevated isoprene during the UK heatwave of August 2003. Atmos Environ 40:7598–7613

    Article  CAS  Google Scholar 

  22. Malkin TL, Goddard A, Heard DE, Seakins PW (2010) Measurements of OH and HO2 yields from the gas phase ozonolysis of isoprene. Atmos Chem Phys 10:1441–1459

    Article  CAS  Google Scholar 

  23. McGill CD, Rickard AR, Johnson D, Marston G (1999) Product yields in the reactions of ozone with Z-but-2-ene, E-but-2-ene and 2-methylbut-2-ene. Chemosphere 38:1205–1212

    Article  CAS  Google Scholar 

  24. Mihelcic D, Heitlinger M, Kley D, Musgen P, Volz-Thomas A (1999) Formation of hydroxyl and hydroperoxy radicals in the gas-phase ozonolysis of ethene. Chem Phys Lett 301:559–564

    Article  CAS  Google Scholar 

  25. Niki H, Maker PD, Savage CM, Breitenbach LP, Hurley MD (1987) FTIR spectroscopic study of the mechanism for the gas-phase reaction between ozone and tetramethylethylene. J Phys Chem 91:941–946

    Article  CAS  Google Scholar 

  26. Olzmann M, Kraka E, Cremer D, Gutbrod R, Andersson S (1997) Energetics, kinetics, and product distributions of the reactions of ozone with ethene and 2, 3-dimethyl-2-butene. J Phys Chem A 101:9421–9429

    Article  CAS  Google Scholar 

  27. Qi B, Sato K, Imarnura T, Takami A, Hatakeyama S, Ma Y (2006) Production of the radicals in the ozonolysis of ethene: a chamber study by FT-IR and PERCA. Chem Phys Lett 427:461–465

    Article  CAS  Google Scholar 

  28. Qi B, Yang B, Wang ZQ, Yang HY, Liu L (2009) Production of radicals in the ozonolysis of propene in air. Sci China B Chem 52:356–361

    Article  CAS  Google Scholar 

  29. Rathman WCD, Claxton TA, Rickard AR, Marston G (1999) A theoretical investigation of OH formation in the gas-phase ozonolysis of E-but-2-ene and Z-but-2-ene. Phys Chem Chem Phys 1:3981–3985

    Article  CAS  Google Scholar 

  30. Rickard AR, Johnson D, McGill CD, Marston G (1999) OH yields in the gas-phase reactions of ozone with alkenes. J Phys Chem A 103:7656–7664

    Article  CAS  Google Scholar 

  31. Saunders SM, Jenkin ME, Derwent RG, Pilling MJ (2003) Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds. Atmos Chem Phys 3:161–180

    Article  CAS  Google Scholar 

  32. Siese M, Becker KH, Brockmann KJ, Geiger H, Hofzumahaus A, Holland F, Mihelcic D, Wirtz K (2001) Direct measurement of OH radicals from ozonolysis of selected alkenes: a EUPHORE simulation chamber study. Environ Sci Technol 35:4660–4667

    Article  CAS  Google Scholar 

  33. Wegener R, Brauers T, Koppmann R, Bares SR, Rohrer F, Tillmann R, Wahner A, Hansel A, Wisthaler A (2007) Simulation chamber investigation of the reactions of ozone with short-chained alkenes. J Geophys Atmos 112. doi: 10.1029/2006JD007531

    Google Scholar 

  34. Wyche KP, Blake RS, Ellis AM, Monks PS, Brauers T, Koppmann R, Apel EC (2007) Technical note: performance of chemical ionization reaction time-of-flight mass spectrometry (CIR-TOF-MS) for the measurement of atmospherically significant oxygenated volatile organic compounds. Atmos Chem Phys 7:609–620

    Article  CAS  Google Scholar 

  35. Zador J, Turanyi T, Wirtz K, Pilling MJ (2006) Measurement and investigation of chamber radical sources in the European Photoreactor (EUPHORE). J Atmos Chem 55:147–166

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The contributions of the staff at EUPHORE is gratefully acknowledged, in particular Paco Alacreu, Mónica Vázquez, Mila Rodenas, Amalia Muñoz, and Teresa Vera Espallardo. This work was funded by the UK Natural Environment Research Council (NERC) as part of the TRAPOZ – Total Radical Production from Alkene Ozonolysis project, Grant Ref. NE/E016081/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Bloss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bloss, W.J. et al. (2013). Production of the Atmospheric Oxidant Radicals OH and HO2 from the Ozonolysis of Alkenes. In: Barnes, I., Rudziński, K. (eds) Disposal of Dangerous Chemicals in Urban Areas and Mega Cities. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5034-0_12

Download citation

Publish with us

Policies and ethics