Skip to main content

Graphene Oxide: Theoretical Perspectives

  • Chapter

Abstract

This chapter reviews recent progress on theoretical studies of graphene oxide (GO). Due to the complexity of GO’s atomic structure, first-principles calculations are essential for GO structure characterization. For example, energetics is useful to identify stable building blocks of GO structure. Computational spectroscopy is even more powerful and allows to verify different structure models by directly comparing theoretical results with experimental spectroscopic data. The results suggest that the experimentally available GO is in a kinetically constrained metastable state, which is consistent with calculated oxidation group diffusion kinetics. Electronic, optical, and mechanical properties of GO have also been addressed by first-principles calculations. Mechanisms of graphite oxidation and GO reduction is very complicated. Theoretical studies have suggested possible reaction paths for oxidation induced cutting of graphene and both thermal and chemical reduction of GO. More theoretical effects are required to better understand this important material.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259

    Article  Google Scholar 

  2. Boehm H-P, Scholz W (1966) Untersuchungen am Graphitoxyd, IV. Vergleich der Darstellungsverfahren für Graphitoxyd. Justus Liebigs Ann Chem 691:1–8

    Article  CAS  Google Scholar 

  3. Staudenmaier L (1898) Verfahren zur Darstellung der Graphitsäure. Ber Dtsch Chem Ges 31:1481–1487

    Article  CAS  Google Scholar 

  4. Hummers WS, Offeman RE (1958) Preparation of graphite oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  5. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  6. Katsnelson MI (2007) Graphene: carbon in two dimensions. Mater Today 10:20–27

    Article  CAS  Google Scholar 

  7. Castr Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    Article  Google Scholar 

  8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  9. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  10. Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394–3398

    Article  CAS  Google Scholar 

  11. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  12. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay, IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404

    Article  CAS  Google Scholar 

  13. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539

    Article  CAS  Google Scholar 

  14. Cote LJ, Cruz-Silva R, Huang J (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131:11027–11032

    Article  CAS  Google Scholar 

  15. Mativetsky JM, Treossi E, Orgiu E, Melucci M, Veronese GP, Samori P, Palermo V (2010) Local current mapping and patterning of reduced graphene oxide. J Am Chem Soc 132:14130–14136

    Article  CAS  Google Scholar 

  16. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites: UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491

    Article  CAS  Google Scholar 

  17. Wu T, Liu S, Luo Y, Lu W, Wang L, Sun X (2011) Surface plasmon resonance-induced visible light photocatalytic reduction of graphene oxide: using Ag nanoparticles as a plasmonic photocatalyst. Nanoscale 3:2142–2144

    Article  CAS  Google Scholar 

  18. Zhou Y, Bao Q, Varghese B, Ai L, Tang L, Tan CK, Sow CH, Loh KP (2010) Microstructuring of graphene oxide nanosheets using direct laser writing. Adv Mater 22:67–71

    Article  CAS  Google Scholar 

  19. Wu X, Sprinkle M, Li X, Ming F, Berger C, de Heer WA (2008) Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. Phys Rev Lett 101:026801

    Article  Google Scholar 

  20. Kim WK, Jung YM, Cho JH, Kang JY, Oh JY, Kang H, Lee H-J, Kim JH, Lee S, Shin HJ, Choi JY, Lee SY, Kim YC, Han IT, Kim JM, Yook J-G, Baik S, Jun SC (2010) Radio-frequency characteristics of graphene oxide. Appl Phys Lett 97:193103

    Article  Google Scholar 

  21. Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mülhaupt R (2009) Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J Am Chem Soc 131:8262–8270

    Article  CAS  Google Scholar 

  22. Ng YH, Iwase A, Kudo A, Amal R (2010) Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett 1:2607–2612

    Article  CAS  Google Scholar 

  23. Psofogiannakis GM, Froudakis GE (2009) DFT study of hydrogen storage by spillover on graphite with oxygen surface groups. J Am Chem Soc 131:15133–15135

    Article  CAS  Google Scholar 

  24. Tylianakis E, Psofogiannakis GM (2010) Li-doped pillared graphene oxide: a graphene-based nanostructured material for hydrogen storage. J Phys Chem Lett 1:2459–2464

    Article  CAS  Google Scholar 

  25. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Article  CAS  Google Scholar 

  26. Burress JW, Gadipelli S, Ford J, Simmons JM, Zhou W, Yildirim T (2010) Graphene oxide framework materials: theoretical predictions and experimental results. Angew Chem Int Ed 49:8902–8904

    Article  CAS  Google Scholar 

  27. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  28. Gao X, Jiang D, Zhao Y, Nagase S, Zhang SB, Chen Z (2011) Theoretical insights into the structures of graphene oxide and its chemical conversions between graphene. J Comput Theor Nanosci 8:2406–2422

    Article  CAS  Google Scholar 

  29. Hoffman U, Holst R (1939) Über die Säurenatur und die Methylierung von Graphitoxyd. Ber Dtsch Chem Ges 72:754–771

    Article  Google Scholar 

  30. Ruess G (1947) Über das Graphitoxyhydroxyd (Graphitoxyd). Monatsch Chem 76:381–417

    Article  CAS  Google Scholar 

  31. Scholz W, Boehm H-P (1969) Untersuchungen am Graphitoxyd. Z Anorg Allg Chem 369:327–340

    Article  CAS  Google Scholar 

  32. Nakajima T, Mabuchi A, Hagiwara R (1988) A new structure model of graphite oxide. Carbon 26:357–361

    Article  CAS  Google Scholar 

  33. Nakajima T, Matsuo Y (1994) Formation process and structure of graphite oxide. Carbon 32:469–475

    Article  CAS  Google Scholar 

  34. He H, Riedl T, Lerf A, Klinowski J (1996) Solid-state NMR studies of the structure of graphite oxide. J Phys Chem 100:19954–19958

    Article  CAS  Google Scholar 

  35. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482

    Article  CAS  Google Scholar 

  36. He H, Klinowski J, Forster M, Lerf A (1998) A new structural model for graphite oxide. Chem Phys Lett 287:53–56

    Article  CAS  Google Scholar 

  37. Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749

    Article  Google Scholar 

  38. Szabó T, Berkesi O, Dékány I (2005) DRIFT study of deuterium-exchanged graphite oxide. Carbon 43:3186–3189

    Article  Google Scholar 

  39. Szabó T, Tombácz E, Illés E, Dékány I (2006) Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon 44:537–545

    Article  Google Scholar 

  40. Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, Wilson NR (2011) The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew Chem Int Ed 50:3173–3177

    Article  CAS  Google Scholar 

  41. Boukhvalov DW, Katsnelson MI (2008) Modeling of graphite oxide. J Am Chem Soc 130:10697–10701

    Article  CAS  Google Scholar 

  42. Lahaye RJWE, Jeong HK, Park CY, Lee YH (2009) Density functional theory study of graphite oxide for different oxidation levels. Phys Rev B 79:125435

    Article  Google Scholar 

  43. Yan JA, Xian L, Chou MY (2009) Structural and electronic properties of oxidized graphene. Phys Rev Lett 103:086802

    Article  Google Scholar 

  44. Yan JA, Chou MY (2010) Oxidation functional groups on graphene: structural and electronic properties. Phys Rev B 82:125403

    Article  Google Scholar 

  45. Wang L, Lee K, Sun Y-Y, Lucking M, Chen Z, Zhao JJ, Zhang SB (2009) Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 3:2995–3000

    Article  CAS  Google Scholar 

  46. Wang L, Sun YY, Lee K, West D, Chen ZF, Zhao JJ, Zhang SB (2010) Stability of graphene oxide phases from first-principles calculations. Phys Rev B 82:161406

    Article  Google Scholar 

  47. Xiang HJ, Wei S-H, Gong XG (2010) Structural motifs in oxidized graphene: a genetic algorithm study based on density functional theory. Phys Rev B 82:035416

    Article  Google Scholar 

  48. Jeong H-K, Lee YP, Lahaye RJW, Park M-H, An KH, Kim IJ, Yang C-W, Park CY, Ruoff RS, Lee YH (2008) Evidence of graphitic AB stacking order of graphite oxides. J Am Chem Soc 130:1362–1366

    Article  CAS  Google Scholar 

  49. Fan XB, Peng WC, Li Y, Li XY, Wang SL, Zhang GL, Zhang FB (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20:4490–4493

    Article  CAS  Google Scholar 

  50. Park SJ, Lee KS, Bozoklu G, Cai WW, Nguyen ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578

    Article  CAS  Google Scholar 

  51. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventric CA Jr, Ruoff RS (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47:145–152

    Article  CAS  Google Scholar 

  52. Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, Mostrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 19:2577–2583

    Article  CAS  Google Scholar 

  53. Cai W, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, Yang D, Velamakanni A, An SJ, Stoller M, An J, Chen D, Ruoff RS (2008) Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321:1815–1817

    Article  CAS  Google Scholar 

  54. Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403–408

    Article  CAS  Google Scholar 

  55. Zhang W, Carravetta V, Li Z, Luo Y, Yang J (2009) Oxidation states of graphene: insights from computational spectroscopy. J Chem Phys 131:244505

    Article  Google Scholar 

  56. Lu N, Huang Y, Li H, Li Z, Yang J (2010) First principles nuclear magnetic resonance signatures of graphene oxide. J Chem Phys 133:034502

    Article  Google Scholar 

  57. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41

    Article  CAS  Google Scholar 

  58. Wang L, Zhao J, Sun Y-Y, Zhang SB (2011) Characteristics of Raman spectra for graphene oxide from ab initio simulations. J Chem Phys 135:184503

    Article  Google Scholar 

  59. Lu N, Yin D, Li Z, Yang J (2011) Structure of graphene oxide: thermodynamics versus kinetics. J Phys Chem C 115:11991–11995

    Article  CAS  Google Scholar 

  60. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc, Perkin Trans 2 5:799

    Article  Google Scholar 

  61. Delley B (2006) The conductor-like screening model for polymers and surfaces. Maol Simul 32:117–123

    Article  CAS  Google Scholar 

  62. Jung I, Dikin DA, Piner RD, Ruoff RS (2008) Tunable electrical conductivity of individual graphene oxide sheets reduced at “Low” temperatures. Nano Lett 8:4283–4287

    Article  CAS  Google Scholar 

  63. Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024

    Article  CAS  Google Scholar 

  64. Yeh TF, Syu JM, Cheng C, Chang TH, Teng HS (2010) Graphite oxide as a photocatalyst for hydrogen production from water. Adv Funct Mater 20:2255–2262

    Article  CAS  Google Scholar 

  65. Johari P, Shenoy VB (2011) Modulating optical properties of graphene oxide: role of prominent functional groups. ACS Nano 5:7640–7647

    Article  CAS  Google Scholar 

  66. Incze A, Pasturel A, Peyla P (2004) Mechanical properties of graphite oxides: ab initio simulations and continuum theory. Phys Rev B 70:212103

    Article  Google Scholar 

  67. Paci JT, Belytschko T, Schatz GC (2007) Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. J Phys Chem C 111:18099–18111

    Article  CAS  Google Scholar 

  68. Sendt K, Haynes BS (2005) Density functional study of the chemisorption of O2 on the armchair surface of graphite. Proc Combust Inst 30:2141–2149

    Article  Google Scholar 

  69. Sendt K, Haynes BS (2007) Density functional study of the chemisorption of O2 across two rings of the armchair surface of graphite. J Phys Chem C 111:5465–5473

    Article  CAS  Google Scholar 

  70. Zhu ZH, Finnerty J, Lu GQ, Yang RT (2002) A comparative study of carbon gasification with O2 and CO2 by density functional theory calculations. Energy Fuels 16:1359–1368

    Article  CAS  Google Scholar 

  71. Carlsson JM, Hanke F, Linic S, Scheffler M (2009) Two-step mechanism for low-temperature oxidation of vacancies in graphene. Phys Rev Lett 102:166104

    Article  Google Scholar 

  72. Li J-L, Kudin KN, McAllister MJ, Prud’homme RK, Aksay IA, Car R (2006) Oxygen-driven unzipping of graphitic materials. Phys Rev Lett 96:176101

    Article  Google Scholar 

  73. Li Z, Zhang W, Luo Y, Yang J, Hou JG (2009) How graphene is cut upon oxidation? J Am Chem Soc 131:6320–6321

    Article  CAS  Google Scholar 

  74. Ma L, Wang J, Ding F (2012) Strain-induced orientation-selective cutting of graphene into graphene nanoribbons on oxidation. Angew Chem Int Ed 51:1161–1164

    Article  CAS  Google Scholar 

  75. McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404

    Article  CAS  Google Scholar 

  76. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon Y-S, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280:1253–1256

    Article  CAS  Google Scholar 

  77. Ajayan PM, Yakobson BI (2006) Material science: oxygen breaks into carbon world. Nature 441:818–819

    Article  CAS  Google Scholar 

  78. Bagri A, Grantab R, Medhekar NV, Shenoy VB (2010) Stability and formation mechanisms of carbonyl- and hydroxyl-decorated holes in graphene oxide. J Phys Chem C 114:12053–12061

    Article  CAS  Google Scholar 

  79. Kim MC, Hwang GS, Ruoff RS (2005) Epoxide reduction with hydrazine on graphene: a first principles study. J Chem Phys 131:064704

    Article  Google Scholar 

  80. Gao X, Jang J, Nagase S (2010) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114:832–842

    Article  CAS  Google Scholar 

  81. Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK (2012) Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335:442–444

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lu, N., Li, Z. (2012). Graphene Oxide: Theoretical Perspectives. In: Zeng, J., Zhang, RQ., Treutlein, H. (eds) Quantum Simulations of Materials and Biological Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4948-1_5

Download citation

Publish with us

Policies and ethics