Skip to main content

Apoptotic Pathways upon Arsenite Treatment

  • Chapter
  • First Online:
Novel Apoptotic Regulators in Carcinogenesis
  • 603 Accesses

Abstract

Apoptosis is considered to be an essential ongoing normal event in multicellular organisms. Deregulation of apoptosis is induced by a variety of toxicants, including many of the toxic metals, resulting in aberrant proliferation or eradication of affected cell populations. Arsenic has been recognized as both a toxicant and a therapeutic agent for centuries. Extensive attention has been given to the elucidation of the mechanisms by which arsenite induces cellular apoptotic responses on treated cells. In this chapter, we mainly summarize the mechanisms that are responsible for regulating cellular apoptotic effect, including regulating intracellular oxidative stress, induction of various transcription factors, and activating apoptotic signaling pathways following arsenite treatment. It’s expected that readers could obtain essential information about the mode of action for arsenic in regulating apoptotic events, which could underlie its double-edged function in both therapeutic application and toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbadie C, Kabrun N, Bouali F, Smardova J, Stehelin D, Vandenbunder B et al (1993) High levels of c-rel expression are associated with programmed cell death in the developing avian embryo and in bone marrow cells in vitro. Cell 75:899–912

    Article  PubMed  CAS  Google Scholar 

  • Achanta G, Huang P (2004) Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents. Cancer Res 64:6233–6239

    Article  PubMed  CAS  Google Scholar 

  • Agarwal A, Das K, Lerner N, Sathe S, Cicek M, Casey G et al (2004) The AKT/I[kappa]B kinase pathway promotes angiogenic//metastatic gene expression in colorectal cancer by activating nuclear factor-[kappa]B and [beta]-catenin. Oncogene 24:1021–1031

    Article  CAS  Google Scholar 

  • Ahmad S, Kitchin KT, Cullen WR (2000) Arsenic species that cause release of iron from ferritin and generation of activated oxygen. Arch Biochem Biophys 382:195–202

    Article  PubMed  CAS  Google Scholar 

  • Akao Y, Mizoguchi H, Kojima S, Naoe T, Ohishi N, Yagi K (1998) Arsenic induces apoptosis in B-cell leukaemic cell lines in vitro: activation of caspases and down-regulation of Bcl-2 protein. Br J Haematol 102:1055–1060

    Article  PubMed  CAS  Google Scholar 

  • Akao Y, Nakagawa Y, Akiyama K (1999) Arsenic trioxide induces apoptosis in neuroblastoma cell lines through the activation of caspase 3 in vitro. FEBS Lett 455:59–62

    Article  PubMed  CAS  Google Scholar 

  • Alexandra CN (1995) Protein kinase C: seeing two domains. Curr Biol 5:973–976

    Article  Google Scholar 

  • Aposhian VH, Zakharyan RA, Avram MD, Sampayo-Reyes A, Wollenberg ML (2004) A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species. Toxicol Appl Pharmacol 198:327–335

    Article  PubMed  CAS  Google Scholar 

  • Baeuerle PA, Baltimore D (1996) NF-kB: ten years after. Cell 87:13–20

    Article  PubMed  CAS  Google Scholar 

  • Baldwin AS (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kB. J Clin Invest 107:241–246

    Article  PubMed  CAS  Google Scholar 

  • Balla T, Szentpetery Z, Kim YJ (2009) Phosphoinositide signaling: new tools and insights. Physiology 24:231–244

    Article  PubMed  CAS  Google Scholar 

  • Barchowsky A, Dudek EJ, Treadwell MD, Wetterhahn KE (1996) Arsenic induces oxidant stress and NF-KB activation in cultured aortic endothelial cells. Free Radic Biol Med 21:783–790

    Article  PubMed  CAS  Google Scholar 

  • Barchowsky A, Klei LR, Dudek EJ, Swartz HM, James PE (1999) Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic Biol Med 27:1405–1412

    Article  PubMed  CAS  Google Scholar 

  • Barkett M, Gilmore T (1999) Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene 18:6910–6924

    Article  PubMed  CAS  Google Scholar 

  • Beezhold K, Liu J, Kan H, Meighan T, Castranova V, Shi X et al (2011) miR-190-mediated downregulation of PHLPP contributes to arsenic-induced Akt activation and carcinogenesis. Toxicol Sci 123:411–420

    Article  PubMed  CAS  Google Scholar 

  • Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D (1995) Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-[kappa]B. Nature 376:167–170

    Article  PubMed  CAS  Google Scholar 

  • Bellodi C, Kopmar N, Ruggero D (2010) Deregulation of oncogene-induced senescence and p53 translational control in X-linked dyskeratosis congenita. EMBO J 29:1865–1876

    Article  PubMed  CAS  Google Scholar 

  • Benbrahim-Tallaa L, Webber M, Waalkes M (2005) Acquisition of androgen independence by human prostate epithelial cells during arsenic-induced malignant transformation. Environ Health Perspect 113:1134–1139

    Article  PubMed  CAS  Google Scholar 

  • Benbrahim-Tallaa L, Webber MM, Waalkes MP (2007) Mechanisms of acquired androgen independence during arsenic-induced malignant transformation of human prostate epithelial cells. Environ Health Perspect 115:243–247

    Article  PubMed  CAS  Google Scholar 

  • Bennett RL, Malamy MH (1970) Arsenate resistant mutants of Escherichia coli and phosphate transport. Biochem Biophys Res Commun 40:496–503

    Article  PubMed  CAS  Google Scholar 

  • Bernstam L, Nriagu J (2000) Molecular aspects of arsenic stress. J Toxicol Environ Health Part B 3:293–322

    Article  CAS  Google Scholar 

  • Bode AM, Dong Z (2002) The paradox of arsenic: molecular mechanisms of cell transformation and chemotherapeutic effects. Crit Rev Oncol Hematol 42:5–24

    Article  PubMed  Google Scholar 

  • Brown JL, Kitchin RT, George M (1997) Dimethylarsinic acid treatment alters six different rat biochemical parameters: relevance to arsenic carcinogenesis. Teratogenesis, Carcinogenesis, and Mutagenesis 17:71–84

    Google Scholar 

  • Bubici C, Papa S, Pham C, Zazzeroni F, Franzoso G (2004) NF-kappaB and JNK: an intricate affair. Cell Cycle 3:1524–1529

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Shen Y, Zhu Q, Jia P, Yu Y, Zhou L et al (2000) Arsenic trioxide-induced apoptosis and differentiation are associated respectively with mitochondrial transmembrane potential collapse and retinoic acid signaling pathways in acute promyelocytic leukemia. Leukemia 14:262–270

    Article  PubMed  CAS  Google Scholar 

  • Campbell KJ, Rocha S, Perkins ND (2004) Active repression of antiapoptotic gene expression by RelA(p65) NF-kB. Mol Cell 13:853–865

    Article  PubMed  CAS  Google Scholar 

  • Carbrey JM, Song L, Zhou Y, Yoshinaga M, Rojek A, Wang Y et al (2009) Reduced arsenic clearance and increased toxicity in aquaglyceroporin-9-null mice. Proc Natl Acad Sci 106:15956–15960

    Article  PubMed  CAS  Google Scholar 

  • Cavigelli M, Li W, Lin A, Su B, Yoshioka K, Karin M (1996) The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase. EMBO J 15:6269–6279

    PubMed  CAS  Google Scholar 

  • Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay S, Bhaumik S, Purkayastha M, Basu S, Nag Chaudhuri A, Das Gupta S (2002) Apoptosis and necrosis in developing brain cells due to arsenic toxicity and protection with antioxidants. Toxicol Lett 136:65–76

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri A, Basu S, Chattopadhyay S, Das GS (1999) Effect of high arsenic content in drinking water on rat brain. Indian J Biochem Biophys 36:51–54

    PubMed  CAS  Google Scholar 

  • Chen C-J, Hsueh Y-M, Lai M-S, Shyu M-P, Chen S-Y, Wu M-M et al (1995) Increased prevalence of hypertension and long-term arsenic exposure. Hypertension 25:53–60

    Article  PubMed  Google Scholar 

  • Chen G, Zhu J, Shi X, Ni J, Zhong H, Si G et al (1996) In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 88:1052–1061

    PubMed  CAS  Google Scholar 

  • Chen N, Ma W, Huang C, Ding M, Dong Z (2000a) Activation of PKC is required for arsenite-induced signal transduction. J Environ Pathol Toxicol Oncol 19:297–305

    PubMed  CAS  Google Scholar 

  • Chen N, Ma W, Yang C, Dong Z (2000b) Inhibition of arsenite-induced apoptosis and AP-1 activity by epiallocathechin-3-gallate and theaflavins. J Environ Pathol Toxicol Oncol 19: 287–296

    Google Scholar 

  • Chen F, Vallyathan V, Castranova V, Shi X (2001) Cell apoptosis induced by carcinogenic metals. Mol Cell Biochem 222:183–188

    Article  PubMed  CAS  Google Scholar 

  • Chen P-H, Lan C-CE, Chiou M-H, Hsieh M-C, Chen G-S (2005) Effects of arsenic and UVB on normal human cultured keratinocytes: impact on apoptosis and implication on photocarcinogenesis. Chem Res Toxicol 18:139–144

    Article  PubMed  CAS  Google Scholar 

  • Chen C-J, Wang S-L, Chiou J-M, Tseng C-H, Chiou H-Y, Hsueh Y-M et al (2007) Arsenic and diabetes and hypertension in human populations: a review. Toxicol Appl Pharmacol 222:298–304

    Article  PubMed  CAS  Google Scholar 

  • Cherney BW, McBride OW, Chen DF, Alkhatib H, Bhatia K, Hensley P et al (1987) cDNA sequence, protein structure, and chromosomal location of the human gene for poly(ADP-ribose) polymerase. Proc Natl Acad Sci 84:8370–8374

    Article  PubMed  CAS  Google Scholar 

  • Chiou H-Y, Hsueh Y-M, Liaw K-F, Horng S-F, Chiang M-H, Pu Y-S et al (1995) Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up study in Taiwan. Cancer Res 55:1296–1300

    PubMed  CAS  Google Scholar 

  • Cho J, Tsichlis PN (2005) Phosphorylation at Thr-290 regulates Tpl2 binding to NF-kB1/p105 and Tpl2 activation and degradation by lipopolysaccharide. PNAS 102:2350–2355

    Article  PubMed  CAS  Google Scholar 

  • Cho J, Melnick M, Solidakis GP, Tsichlis PN (2005) Tpl2 (Tumor Progression Locus 2) phosphorylation at Thr290 is induced by lipopolysaccharide via an Ik-B kinase-b-dependent pathway and is required for Tpl2 activation by external signals. J Biol Chem 280:20442–20448

    Article  PubMed  CAS  Google Scholar 

  • Chou W-C, Hawkins AL, Barrett JF, Griffin CA, Dang CV (2001) Arsenic inhibition of telomerase transcription leads to genetic instability. J Clin Invest 108:1541–1547

    PubMed  CAS  Google Scholar 

  • Chowdhury R, Chowdhury S, Roychoudhury P, Mandal C, Chaudhuri K (2009) Arsenic induced apoptosis in malignant melanoma cells is enhanced by menadione through ROS generation, p38 signaling and p53 activation. Apoptosis 14:108–123

    Article  PubMed  CAS  Google Scholar 

  • Cicek M, Fukuyama R, Welch DR, Sizemore N, Casey G (2005) Breast cancer metastasis suppressor 1 inhibits gene expression by targeting nuclear factor-{kappa}B activity. Cancer Res 65:3586–3595

    Article  PubMed  CAS  Google Scholar 

  • Corsini E, Asti L, Viviani B, Marinovich M, Galli CL (1999) Sodium arsenate induces overproduction of interleukin-1[alpha] in murine keratinocytes: role of mitochondria. J Invest Dermatol 113:760–765

    Article  PubMed  CAS  Google Scholar 

  • Das S, Cho J, Lambertz I, Kelliher MA, Eliopoulos AG, Du K et al (2005) Tpl2/Cot signals activate ERK, JNK, and NF-kB in a cell-type and stimulus-specific manner. J Biol Chem 280:23748–23757

    Article  PubMed  CAS  Google Scholar 

  • Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  PubMed  CAS  Google Scholar 

  • de Castro MR, Lima JV, Salomao de Freitas DP, de Souza Valente R, Dummer NS, de Aguiar RB et al (2009) Behavioral and neurotoxic effects of arsenic exposure in zebrafish (Danio rerio, Teleostei: Cyprinidae). Comp Biochem Physiol C Toxicol Pharmacol 150:337–342

    Article  PubMed  CAS  Google Scholar 

  • De Laurenzi V, Melino G (2000) Apoptosis: the little devil of death. Nature 406:135–136

    Article  PubMed  Google Scholar 

  • De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J et al (2001) Induction of gadd45b by NF-kB downregulates pro-apoptotic JNK signalling. Nature 414:308

    Article  PubMed  Google Scholar 

  • de Vera ME, Kim YM, Wong HR, Wang Q, Billiar TR, Geller DA (1996) Heat shock response inhibits cytokine-inducible nitric oxide synthase expression in rat hepatocytes. Hepatology 24:1238–1245

    Article  PubMed  Google Scholar 

  • Dinerman J, Lowenstein C, Snyder S (1993) Molecular mechanisms of nitric oxide regulation. Potential relevance to cardiovascular disease. Circ Res 73:217–222

    Article  PubMed  CAS  Google Scholar 

  • Ding J, Li J, Xue C, Wu K, Ouyang W, Zhang D et al (2006a) Cyclooxygenase-2 induction by arsenite is through a nuclear factor of activated T-cell-dependent pathway and plays an antiapoptotic role in Beas-2B cells. J Biol Chem 281:24405–24413

    Article  PubMed  CAS  Google Scholar 

  • Ding J, Zhang X, Li J, Song L, Ouyang W, Zhang D et al (2006b) Nickel compounds render anti-apoptotic effect to human bronchial epithelial Beas-2B cells by induction of cyclooxygenase-2 through an IKKb/p65-dependent and IKKa- and p50-independent pathway. J Biol Chem 281:39022–39032

    Article  PubMed  CAS  Google Scholar 

  • Ding J, Wu K, Zhang D, Luo W, Li J, Ouyang W et al (2007) Activation of both nuclear factor of activated T cells and inhibitor of nuclear factor-κB kinase β-subunit-/nuclear factor-κB is critical for cyclooxygenase-2 induction by benzo[a]pyrene in human bronchial epithelial cells. Cancer Sci 98:1323–1329

    Article  PubMed  CAS  Google Scholar 

  • Ding J, Ning B, Huang Y, Zhang D, Li J, Chen C-Y et al (2009) PI3K/Akt/JNK/c-Jun signaling pathway is a mediator for arsenite- induced cyclin D1 expression and cell growth in human bronchial Epithelial Cells. Curr Cancer Drug Targets 9:500–509

    Article  PubMed  CAS  Google Scholar 

  • Druwe I, Vaillancourt R (2010) Influence of arsenate and arsenite on signal transduction pathways: an update. Arch Toxicol 84:585–596

    Article  PubMed  CAS  Google Scholar 

  • Eblin KE, Hau AM, Jensen TJ, Futscher BW, Gandolfi AJ (2008) The role of reactive oxygen species in arsenite and monomethylarsonous acid-induced signal transduction in human bladder cells: acute studies. Toxicology 250:47–54

    Article  PubMed  CAS  Google Scholar 

  • Eguchi N, Kuroda K, Endo G (1997) Metabolites of arsenic induced tetraploids and mitotic arrest in cultured cells. Arch Environ Contam Toxicol 32:141–145

    Article  PubMed  CAS  Google Scholar 

  • Eliopoulos AG, Davies C, Blake SSM, Murray P, Najafipour S, Tsichlis PN et al (2002) The oncogenic protein kinase Tpl-2/Cot contributes to Epstein-Barr virus-encoded latent infection membrane protein 1-induced NF-kB signaling downstream of TRAF2. J Virol 76:4567–4579

    Article  PubMed  CAS  Google Scholar 

  • Elizabeth TS (1992) Metal carcinogenesis: mechanistic implications. Pharmacol Therapeutics 53:31–65

    Article  Google Scholar 

  • Engel RR, Hopenhayn-Rich C, Receveur O, Smith AH (1994) Vascular effects of chronic arsenic exposure: a review. Epidemiol Rev 16:184–209

    PubMed  CAS  Google Scholar 

  • Evens AM, Tallman MS, Gartenhaus RB (2004) The potential of arsenic trioxide in the treatment of malignant disease: past, present, and future. Leuk Res 28:891–900

    Article  PubMed  CAS  Google Scholar 

  • Filippova M, Duerksen-Hughes PJ (2003) Inorganic and dimethylated arsenic species induce cellular p53. Chem Res Toxicol 16:423–431

    Article  PubMed  CAS  Google Scholar 

  • Flohe L, Brigelius-Flohe R, Saliou C, Traber MG, Packer L (1997) Redox regulation of NF-kappa B activation. Free Radic Biol Med 22:1115–1126

    Article  PubMed  CAS  Google Scholar 

  • Franke TF, Kaplan DR, Cantley LC (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88:435–437

    Article  PubMed  CAS  Google Scholar 

  • Fukuyama R, Ng KP, Cicek M, Kelleher C, Niculaita R, Casey G et al (2007) Role of IKK and oscillatory NFkB kinetics in MMP-9 gene expression and chemoresistance to 5-fluorouracil in RKO colorectal cancer cells. Mol Carcinog 46:402–413

    Article  PubMed  CAS  Google Scholar 

  • Ganyc D, Talbot S, Konate F, Jackson S, Schanen B, Cullen W et al (2006) Impact of trivalent arsenicals on selenoprotein synthesis. Environ Health Perspect 115:346–353

    Article  PubMed  CAS  Google Scholar 

  • Gao T, Furnari F, Newton AC (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 18:13–24

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Chavez E, Santamaria A, Diaz-Barriga F, Mandeville P, Juarez BI, Jimenez-Capdeville ME (2003) Arsenite-induced formation of hydroxyl radical in the striatum of awake rats. Brain Res 976:82–89

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Karin M (2002) Missing pieces in the NF-kB puzzle. Cell 109:S81–S96

    Article  PubMed  CAS  Google Scholar 

  • Hai T, Curran T (1991) Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci 88:3720–3724

    Article  PubMed  CAS  Google Scholar 

  • Hayden MS, Ghosh S (2004) Signaling to NF-kB. Genes Dev 18:2195–2224

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A, Bjornstedt M (1995) Thioredoxin and thioredoxin reductase. Methods Enzymol 252:199–208

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Jin X, Snow ET (2002) Effect of arsenic on transcription factor AP-1 and NF-kB DNA binding activity and related gene expression. Toxicol Lett 133:33–45

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Ma WY, Li J, Dong Z (1999a) Arsenic induces apoptosis through a c-Jun NH2-terminal kinase-dependent, p53-independent pathway. Cancer Res 59:3053–3058

    PubMed  CAS  Google Scholar 

  • Huang C, Ma W-Y, Li J, Goranson A, Dong Z (1999b) Requirement of Erk, but Not JNK, for arsenite-induced cell transformation. J Biol Chem 274:14595–14601

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Wiernik P, Klein R, Gallagher R (1999c) Arsenic trioxide induces apoptosis of myeloid leukemia cells by activation of caspases. Med Oncol 16:58–64

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Bode AM, Chen NY, Ma WY, Li J, Nomura M et al (2001) Transactivation of AP-1 in AP-1-luciferase reporter transgenic mice by arsenite and arsenate. Anticancer Res 21:261–267

    PubMed  CAS  Google Scholar 

  • Huang Y, Zhang J, McHenry KT, Kim MM, Zeng W, Lopez-Pajares V et al (2008) Induction of cytoplasmic accumulation of p53: a mechanism for low levels of arsenic exposure to predispose cells for malignant transformation. Cancer Res 68:9131–9136

    Article  PubMed  CAS  Google Scholar 

  • Husain I, Van Houten B, Thomas DC, Sancar A (1986) Sequences of Escherichia coli uvrA gene and protein reveal two potential ATP binding sites. J Biol Chem 261:4895–4901

    PubMed  CAS  Google Scholar 

  • Hutchinson JA, Shanware NP, Chang H, Tibbetts RS (2011) Regulation of ribosomal protein S6 phosphorylation by casein kinase 1 and protein phosphatase 1. J Biol Chem 286:8688–8696

    Article  PubMed  CAS  Google Scholar 

  • IARC (1987) IARC monographs on the evaluation of the carcinogenic risk of chemicals to man-overall evaluations of carcinogenicity: an update of IARC monograph 1–42: arsenic and arsenic compound. IARC, Lyon

    Google Scholar 

  • Iwama K, Nakajo S, Aiuchi T, Nakaya K (2001) Apoptosis induced by arsenic trioxide in leukemia U937 cells is dependent on activation of p38, inactivation of ERK and the Ca2  +  −dependent production of superoxide. Int J Cancer 92:518–526

    Article  PubMed  CAS  Google Scholar 

  • Jiang T, Huang Z, Chan JY, Zhang DD (2009) Nrf2 protects against As(III)-induced damage in mouse liver and bladder. Toxicol Appl Pharmacol 240:8–14

    Article  PubMed  CAS  Google Scholar 

  • Jing Y, Dai J, Chalmers-Redman RME, Tatton WG, Waxman S (1999) Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94:2102–2111

    PubMed  CAS  Google Scholar 

  • Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D et al (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107

    PubMed  CAS  Google Scholar 

  • Jones J, Weber S, Prakash L (1988) The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence. Nucleic Acids Res 16:7119–7131

    Article  PubMed  CAS  Google Scholar 

  • Kannan-Thulasiraman P, Katsoulidis E, Tallman MS, Arthur JSC, Platanias LC (2006) Activation of the mitogen- and stress-activated kinase 1 by arsenic trioxide. J Biol Chem 281:22446–22452

    Article  PubMed  CAS  Google Scholar 

  • Kapahi P, Takahashi T, Natoli G, Adams SR, Chen Y, Tsien RY et al (2000) Inhibition of NF-kB activation by arsenite through reaction with a critical cysteine in the activation loop of IkB kinase. J Biol Chem 275:36062–36066

    Article  PubMed  CAS  Google Scholar 

  • Karin M (2006) Nuclear factor-[kappa]B in cancer development and progression. Nature 441:431–436

    Article  PubMed  CAS  Google Scholar 

  • Karin M, Greten FR (2005) NF-[kappa]B: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759

    Article  PubMed  CAS  Google Scholar 

  • Kirk TK (2001) Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol 172:249–261

    Article  CAS  Google Scholar 

  • Kitchin KT, Wallace K (2008) The role of protein binding of trivalent arsenicals in arsenic carcinogenesis and toxicity. J Inorg Biochem 102:532–539

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, de The H (1999) Arsenic trioxide, a novel mitochondriotoxic anticancer agent? J Natl Cancer Inst 91:743–745

    Article  PubMed  CAS  Google Scholar 

  • Kumagai Y, Sumi D (2007) Arsenic: signal transduction, transcription factor, and biotransformation involved in cellular response and toxicity. Annu Rev Pharmacol Toxicol 47:243–262

    Article  PubMed  CAS  Google Scholar 

  • Lagerkvist B, Linderholm H, Nordberg GF (1986) Vasospastic tendency and Raynaud’s phenomenon in smelter workers exposed to arsenic. Environ Res 39:465–474

    Article  PubMed  CAS  Google Scholar 

  • Larochette N, Decaudin D, Jacotot E, Brenner C, Marzo I, Susin SA et al (1999) Arsenite induces apoptosis via a direct effect on the mitochondrial permeability transition pore. Exp Cell Res 249:413–421

    Article  PubMed  CAS  Google Scholar 

  • Le Guezennec X, Bulavin DV (2010) WIP1 phosphatase at the crossroads of cancer and aging. Trends Biochem Sci 35:109–114

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Ho I (1995) Modulation of cellular antioxidant defense activities by sodium arsenite in human fibroblasts. Arch Toxicol 69:498–504

    Article  PubMed  CAS  Google Scholar 

  • Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP et al (2000) Failure to regulate TNF-induced NF-kappa B and cell death responses in A20-deficient mice. Science 289:2350–2354

    Article  PubMed  CAS  Google Scholar 

  • Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9:99–111

    Article  PubMed  CAS  Google Scholar 

  • Li YM, Broome JD (1999) Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells. Cancer Res 59:776–780

    PubMed  CAS  Google Scholar 

  • Li J, Song L, Zhang D, Wei L, Huang C (2006) Knockdown of NFAT3 blocked TPA-induced COX-2 and iNOS expression, and enhanced cell transformation in Cl41 cells. J Cell Biochem 99:1010–1020

    Article  PubMed  CAS  Google Scholar 

  • Lin A (2003) Activation of the JNK signaling pathway: breaking the brake on apoptosis. Bioessays 25:17–24

    Article  PubMed  CAS  Google Scholar 

  • Liu Z-M, Huang H-S (2006) As2O3-induced c-Src/EGFR/ERK signaling is via Sp1 binding sites to stimulate p21WAF1/CIP1 expression in human epidermoid carcinoma A431 cells. Cell Signal 18:244–255

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Jan K-Y (2000) DNA damage in arsenite- and cadmium-treated bovine aortic endothelial cells. Free Radic Biol Med 28:55–63

    Article  PubMed  Google Scholar 

  • Liu J, Waalkes MP (2008) Liver is a target of arsenic carcinogenesis. Toxicol Sci 105:24–32

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Guyton KZ, Gorospe M, Xu Q, Lee JC, Holbrook NJ (1996) Differential activation of ERK, JNK/SAPK and P3/CSBP/RK map kinase family members during the cellular response to arsenite. Free Radic Biol Med 21:771–781

    Article  PubMed  CAS  Google Scholar 

  • Liu SX, Athar M, Lippai I, Waldren C, Hei TK (2001) Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc Natl Acad Sci 98:1643–1648

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci 99:6053–6058

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Hilsenbeck S, Gazitt Y (2003) Arsenic trioxide induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL. Blood 101:4078–4087

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Zhang D, Mi X, Xia Q, Yu Y, Zuo Z et al (2010) p27 suppresses arsenite-induced Hsp27/Hsp70 expression through inhibiting JNK2/c-Jun- and HSF-1-dependent pathways. J Biol Chem 285:26058–26065

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Chew E-H, Holmgren A (2007) Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc Natl Acad Sci 104:12288–12293

    Article  PubMed  CAS  Google Scholar 

  • Ludwig S, Hoffmeyer A, Goebeler M, Kilian K, Hafner H, Neufeld B et al (1998) The stress inducer arsenite activates mitogen-activated protein kinases extracellular signal-regulated kinases 1 and 2 via a MAPK Kinase 6/p38-dependent pathway. J Biol Chem 273:1917–1922

    Article  PubMed  CAS  Google Scholar 

  • Lunghi P, Tabilio A, Lo-Coco F, Pelicci P, Bonati A (2004) Arsenic trioxide (ATO) and MEK1 inhibition synergize to induce apoptosis in acute promyelocytic leukemia cells. Leukemia 19:234–244

    Article  CAS  Google Scholar 

  • Lunghi P, Costanzo A, Salvatore L, Noguera N, Mazzera L, Tabilio A et al (2006) MEK1 inhibition sensitizes primary acute myelogenous leukemia to arsenic trioxide-induced apoptosis. Blood 107:4549–4553

    Article  PubMed  CAS  Google Scholar 

  • Lunghi P, Giuliani N, Mazzera L, Lombardi G, Ricca M, Corradi A et al (2008) Targeting MEK/MAPK signal transduction module potentiates ATO-induced apoptosis in multiple myeloma cells through multiple signaling pathways. Blood 112:2450–2462

    Article  PubMed  CAS  Google Scholar 

  • Luo W, Li J, Zhang D, Cai T, Song L, Yin X et al (2010) Bid mediates anti-apoptotic COX-2 induction through the IKKbeta/NFkappaB pathway due to 5-MCDE exposure. Curr Cancer Drug Targets 10:96–106

    Article  PubMed  CAS  Google Scholar 

  • Lynn S, Lai H-T, Gurr J-R, Jan KY (1997) Arsenite retards DNA break rejoining by inhibiting DNA ligation. Mutagenesis 12:353–358

    Article  PubMed  CAS  Google Scholar 

  • Lynn S, Gurr J-R, Lai H-T, Jan K-Y (2000) NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Circ Res 86:514–519

    Article  PubMed  CAS  Google Scholar 

  • Mann KK, Colombo M, Miller WH (2008) Arsenic trioxide decreases AKT protein in a caspase-dependent manner. Mol Cancer Ther 7:1680–1687

    Article  PubMed  CAS  Google Scholar 

  • Mathas S, Lietz A, Janz M, Hinz M, Jundt F, Scheidereit C et al (2003) Inhibition of NF-kB essentially contributes to arsenic-induced apoptosis. Blood 102:1028–1034

    Article  PubMed  CAS  Google Scholar 

  • Matsui M, Nishigori C, Toyokuni S, Takada J, Akaboshi M, Ishikawa M et al (1999) The role of oxidative DNA damage in human arsenic carcinogenesis: detection of 8-Hydroxy-2[prime]-Deoxyguanosine in arsenic-related Bowen’s disease. J Invest Dermatol 113:26–31

    Article  PubMed  CAS  Google Scholar 

  • McCubrey JA, LaHair MM, Franklin RA (2006) Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 8:1775–1789

    Article  PubMed  CAS  Google Scholar 

  • Miller WH, Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of action of arsenic trioxide. Cancer Res 62:3893–3903

    PubMed  CAS  Google Scholar 

  • Morales AA, Gutman D, Lee KP, Boise LH (2008) BH3-only proteins Noxa, Bmf, and Bim are necessary for arsenic trioxide-induced cell death in myeloma. Blood 111:5152–5162

    Article  PubMed  CAS  Google Scholar 

  • Muller JM, Rupec RA, Baeuerle PA (1997) Study of gene regulation by NF-kB and AP-1 in response to reactive oxygen intermediates. Methods 11:301–312

    Article  PubMed  CAS  Google Scholar 

  • Nakano H (2004) Signaling crosstalk between NF-[kappa]B and JNK. Trends Immunol 25:402–405

    Article  PubMed  CAS  Google Scholar 

  • Nandi D, Patra RC, Swarup D (2005) Effect of cysteine, methionine, ascorbic acid and thiamine on arsenic-induced oxidative stress and biochemical alterations in rats. Toxicology 211:26–35

    Article  PubMed  CAS  Google Scholar 

  • Noreault TL, Kostrubsky VE, Wood SG, Nichols RC, Strom SC, Trask HW et al (2005) Arsenite decreases CYP3A4 and RXRa in primary human hepatocytes. Drug Metab Dispos 33:993–1003

    Article  PubMed  CAS  Google Scholar 

  • Ochi T, Kaise T, Oya-Ohta Y (1994) Glutathione plays different roles in the induction of the cytotoxic effects of inorganic and organic arsenic compounds in cultured BALB/c 3 T3 cells. Experientia 50:115–120

    Article  PubMed  CAS  Google Scholar 

  • Oketani M, Kohara K, Tuvdendorj D, Ishitsuka K, Komorizono Y, Ishibashi K et al (2002) Inhibition by arsenic trioxide of human hepatoma cell growth. Cancer Lett 183:147–153

    Article  PubMed  CAS  Google Scholar 

  • Ouyang W, Ma Q, Li J, Zhang D, Liu Z-g, Rustgi AK et al (2005) Cyclin D1 induction through IkB Kinase b/Nuclear Factor-kB pathway is responsible for arsenite-induced increased cell cycle G1-S phase transition in human keratinocytes. Cancer Res 65:9287–9293

    Article  PubMed  CAS  Google Scholar 

  • Ouyang W, Zhang D, Ma Q, Li J, Huang C (2006) Cyclooxygenase-2 Induction by arsenite through the IKKb/NFkB pathway exerts an antiapoptotic effect in mouse epidermal Cl41 cells. Environ Health Perspect 115:513–518

    Article  PubMed  CAS  Google Scholar 

  • Ouyang W, Li J, Zhang D, Jiang B-H, Huang DC (2007a) PI-3 K/Akt signal pathway plays a crucial role in arsenite-induced cell proliferation of human keratinocytes through induction of cyclin D1. J Cell Biochem 101:969–978

    Article  PubMed  CAS  Google Scholar 

  • Ouyang W, Luo W, Zhang D, Jian J, Ma Q, Li J et al (2007b) PI-3 K/Akt pathway-dependent cyclin D1 expression is responsible for arsenite-induced human keratinocyte transformation. Environ Health Perspect 116:1–6

    Article  CAS  Google Scholar 

  • Ouyang W, Ma Q, Li J, Zhang D, Ding J, Huang Y et al (2007c) Benzo[a]pyrene diol-epoxide (B[a]PDE) upregulates COX-2 expression through MAPKs/AP-1 and IKKβ/NF-κB in mouse epidermal Cl41 cells. Mol Carcinog 46:32–41

    Article  PubMed  CAS  Google Scholar 

  • Pantano C, Reynaert NL, Vliet AVD, Janssen-Heininger YMW (2006) Redox-sensitive kinases of the Nuclear Factor-kB signaling pathway. Antioxid Redox Signal 8:1791–1806

    Article  PubMed  CAS  Google Scholar 

  • Papa S, Zazzeroni F, Bubici C, Jayawardena S, Alvarez K, Matsuda S et al (2004) Gadd45b mediates the NF-kB suppression of JNK signalling by targeting MKK7/JNKK2. Nat Cell Biol 6:146–153

    Article  PubMed  CAS  Google Scholar 

  • Paul DS, Harmon AW, Devesa V, Thomas DJ, Styblo M (2007) Molecular mechanisms of the diabetogenic effects of arsenic: inhibition of insulin signaling by arsenite and methylarsonous acid. Environ Health Perspect 115:734–742

    Article  PubMed  CAS  Google Scholar 

  • Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W et al (2003) Inhibition of mitochondrial respiration. J Biol Chem 278:37832–37839

    Article  PubMed  CAS  Google Scholar 

  • Peterson RT, Schreiber SL (1998) Translation control: connecting mitogens and the ribosome. Curr Biol 8:R248–R250

    Article  PubMed  CAS  Google Scholar 

  • Pi J, Yamauchi H, Kumagai Y, Sun G, Yoshida T, Aikawa H et al (2002) Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water. Environ Health Perspect 110:331–336

    Article  PubMed  CAS  Google Scholar 

  • Pi J, Qu W, Reece JM, Kumagai Y, Waalkes MP (2003) Transcription factor Nrf2 activation by inorganic arsenic in cultured keratinocytes: involvement of hydrogen peroxide. Exp Cell Res 290:234–245

    Article  PubMed  CAS  Google Scholar 

  • Platanias LC (2009) Biological responses to arsenic compounds. J Biol Chem 284:18583–18587

    Article  PubMed  CAS  Google Scholar 

  • Porter AC, Fanger GR, Vaillancourt RR (1999) Signal transduction pathways regulated by arsenate and arsenite. Oncogene 18:7794–7802

    Article  PubMed  CAS  Google Scholar 

  • Qu W, Bortner CD, Sakurai T, Hobson MJ, Waalkes MP (2002) Acquisition of apoptotic resistance in arsenic-induced malignant transformation: role of the JNK signal transduction pathway. Carcinogenesis 23:151–159

    Article  PubMed  CAS  Google Scholar 

  • Ramos AM, Fernandez C, Amran D, Sancho P, de Blas E, Aller P (2005) Pharmacologic inhibitors of PI3K/Akt potentiate the apoptotic action of the antileukemic drug arsenic trioxide via glutathione depletion and increased peroxide accumulation in myeloid leukemia cells. Blood 105:4013–4020

    Article  PubMed  CAS  Google Scholar 

  • Romach EH, Zhao CQ, Razo LMD, Cebrian ME, Waalkes MP (2000) Studies on the mechanisms of arsenic-induced self tolerance developed in liver epithelial cells through continuous low-level arsenite exposure. Toxicol Sci 54:500–508

    Article  PubMed  CAS  Google Scholar 

  • Roussel RR, Barchowsky A (2000) Arsenic inhibits NF-kB-mediated gene transcription by blocking IkB kinase activity and IkBa phosphorylation and degradation. Arch Biochem Biophys 377:204–212

    Article  PubMed  CAS  Google Scholar 

  • Safe S, Abdelrahim M (2005) Sp transcription factor family and its role in cancer. Eur J Cancer 41:2438–2448

    Article  PubMed  CAS  Google Scholar 

  • Salazar AM, Ostrosky-Wegman P, Menendez D, Miranda E, Garcia-Carranca A, Rojas E (1997) Induction of p53 protein expression by sodium arsenite. Mutat Res 381:259–265

    Article  PubMed  CAS  Google Scholar 

  • Samuel S, Kathirvel R, Jayavelu T, Chinnakkannu P (2005) Protein oxidative damage in arsenic induced rat brain: influence of dl-a-lipoic acid. Toxicol Lett 155:27–34

    Article  PubMed  CAS  Google Scholar 

  • Santra A, Maiti A, Chowdhury A, Mazumder DN (2000a) Oxidative stress in liver of mice exposed to arsenic-contaminated water. Indian J Gastroenterol 19:112–115

    PubMed  CAS  Google Scholar 

  • Santra A, Maiti A, Das S, Lahiri S, Charkaborty SK, Guha Mazumder DN et al (2000b) Hepatic damage caused by chronic arsenic toxicity in experimental animals. Clin Toxicol 38:395–405

    Article  CAS  Google Scholar 

  • Sathe SS, Sizemore N, Li X, Vithalani K, Commane M, Swiatkowski SM et al (2004) Mutant human cells with constitutive activation of NF-{kappa}B. PNAS 101:192–197

    Article  PubMed  CAS  Google Scholar 

  • Schuliga M, Chouchane S, Snow ET (2002) Upregulation of glutathione-related genes and enzyme activities in cultured human cells by sublethal concentrations of inorganic arsenic. Toxicol Sci 70:183–192

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Hudson LG, Ding W, Wang S, Cooper KL, Liu S et al (2004a) Arsenite causes DNA damage in keratinocytes via generation of hydroxyl radicals. Chem Res Toxicol 17:871–878

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Hudson LG, Liu KJ (2004b) Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radic Biol Med 37:582–593

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Shi X, Liu KJ (2004c) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:67–78

    Article  PubMed  CAS  Google Scholar 

  • Simeonova P, Luster M (2000) Mechanisms of arsenic carcinogenicity: genetic or epigenetic mechanisms? J Environ Pathol Toxicol Oncol 19:281–286

    PubMed  CAS  Google Scholar 

  • Singh P, Sharma R (1994) Effect of orpiment (As2S3) on cytochrome P-450, glutathione and lipid peroxide levels of rat liver. J Environ Pathol Toxicol Oncol 13:199–203

    PubMed  CAS  Google Scholar 

  • Sizemore N, Lerner N, Dombrowski N, Sakurai H, Stark GR (2002) Distinct roles of the Ikappa B kinase alpha and beta subunits in liberating nuclear factor kappa B (NF-kappa B) from Ikappa B and in phosphorylating the p65 subunit of NF-kappa B. J Biol Chem 277:3863–3869

    Article  PubMed  CAS  Google Scholar 

  • Sizemore N, Agarwal A, Das K, Lerner N, Sulak M, Rani S et al (2004) Inhibitor of kB kinase is required to activate a subset of interferon g-stimulated genes. PNAS 101:7994–7998

    Article  PubMed  CAS  Google Scholar 

  • Soignet SL, Maslak P, Wang Z-G, Jhanwar S, Calleja E, Dardashti LJ et al (1998) Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Eng J Med 339:1341–1348

    Article  CAS  Google Scholar 

  • Song L, Li J, Zhang D, Liu Z-g, Ye J, Zhan Q et al (2006) IKKb programs to turn on the GADD45a-MKK4-JNK apoptotic cascade specifically via p50 NF-kB in arsenite response. J Cell Biol 175:607–617

    Article  PubMed  CAS  Google Scholar 

  • Sumi D, Shinkai Y, Kumagai Y (2010) Signal transduction pathways and transcription factors triggered by arsenic trioxide in leukemia cells. Toxicol Appl Pharmacol 244:385–392

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Oberley LW (1996) Redox regulation of transcriptional activators. Free Radic Biol Med 21:335–348

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Li B, Li X, Wang Y, Xu Y, Jin Y et al (2006) Effects of sodium arsenite on catalase activity, gene and protein expression in HaCaT cells. Toxicol Vitro 20:1139–1144

    Article  CAS  Google Scholar 

  • Suske G (1999) The Sp-family of transcription factors. Gene 238:291–300

    Article  PubMed  CAS  Google Scholar 

  • Tabellini G, Cappellini A, Tazzari PL, FalĂ  F, Billi AM, Manzoli L et al (2005a) Phosphoinositide 3-kinase/Akt involvement in arsenic trioxide resistance of human leukemia cells. J Cell Physiol 202:623–634

    Article  PubMed  CAS  Google Scholar 

  • Tabellini G, Tazzari PL, Bortul R, Evangelisti C, Billi AM, Grafone T et al (2005b) Phosphoinositide 3-kinase/Akt inhibition increases arsenic trioxide-induced apoptosis of acute promyelocytic and T-cell leukaemias. Br J Haematol 130:716–725

    Article  PubMed  CAS  Google Scholar 

  • Tahk S, Liu B, Chernishof V, Wong KA, Wu H, Shuai K (2007) Control of specificity and magnitude of NF-kB and STAT1-mediated gene activation through PIASy and PIAS1 cooperation. PNAS 104:11643–11648

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Miura N, Satokata I, Miyamoto I, Yoshida MC, Satoh Y et al (1990) Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature 348:73–76

    Article  PubMed  CAS  Google Scholar 

  • Tang G, Minemoto Y, Dibling B, Purcell NH, Li Z, Karin M et al (2001) Inhibition of JNK activation through NF-[kappa]B target genes. Nature 414:313

    Article  PubMed  CAS  Google Scholar 

  • Thyss R, Virolle V, Imbert V, Peyron J-F, Aberdam D, Virolle T (2005) NF-B/Egr-1/Gadd45 are sequentially activated upon UVB irradiation to mediate epidermal cell death. EMBO J 24:128–137

    Article  PubMed  CAS  Google Scholar 

  • Tomczak MF, Gadjeva M, Wang YY, Brown K, Maroulakou I, Tsichlis PN et al (2006) Defective activation of ERK in macrophages lacking the p50/p105 subunit of NF-kB is responsible for elevated expression of IL-12 p40 observed after challenge with helicobacter hepaticus. J Immunol 176:1244–1251

    PubMed  CAS  Google Scholar 

  • Torres M, Forman HJ (2003) Redox signaling and the MAP kinase pathways. Biofactors 17:287–296

    Article  PubMed  CAS  Google Scholar 

  • Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A et al (2000) Requirement of JNK for stress- induced activation of the cytochrome c-mediated death pathway. Science 288:870–874

    Article  PubMed  CAS  Google Scholar 

  • Tseng C-H (2005) Blackfoot disease and arsenic: a never-ending story. J Environ Sci Health C 23:55–74

    Google Scholar 

  • Tseng W, Chu H, How S, Fong J, Lin C, Yeh S (1968) Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst 40:453–463

    PubMed  CAS  Google Scholar 

  • Tsuda T, Babazono A, Yamamoto E, Kurumatani N, Mino Y, Ogawa T et al (1995) Ingested arsenic and internal cancer: a historical cohort study followed for 33 years. Am J Epidemiol 141:198–209

    PubMed  CAS  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  PubMed  CAS  Google Scholar 

  • Ventura-Lima J, Bogo MR, Monserrat JM (2011) Arsenic toxicity in mammals and aquatic animals: a comparative biochemical approach. Ecotoxicol Environ Saf 74:211–218

    Article  PubMed  CAS  Google Scholar 

  • Verma A, Mohindru M, Deb DK, Sassano A, Kambhampati S, Ravandi F et al (2002) Activation of Rac1 and the p38 mitogen-activated protein kinase pathway in response to arsenic trioxide. J Biol Chem 277:44988–44995

    Article  PubMed  CAS  Google Scholar 

  • Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase-AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    Article  PubMed  CAS  Google Scholar 

  • Vivanco I, Palaskas N, Tran C, Finn SP, Getz G, Kennedy NJ et al (2007) Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell 11:555–569

    Article  PubMed  CAS  Google Scholar 

  • Wang T-S, Kuo C-F, Jan K-Y, Huang H (1996) Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. J Cell Physiol 169:256–268

    Article  PubMed  CAS  Google Scholar 

  • Wang X-J, Sun Z, Chen W, Li Y, Villeneuve NF, Zhang DD (2008) Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1-C151: enhanced Keap1-Cul3 interaction. Toxicol Appl Pharmacol 230:383–389

    Article  PubMed  CAS  Google Scholar 

  • Wanibuchi H, Hori T, Meenakshi V, Ichihara T, Yamamoto S, Yano Y et al (1997) Promotion of rat hepatocarcinogensesis by dimethylarsinic acid as assessed in rat in vivo models: a review. Mutat Res 386:353–361

    Article  PubMed  Google Scholar 

  • Wesselborg S, Bauer MKA, Vogt M, Schmitz ML, Schulze-Osthoff K (1997) Activation of transcription factor NF-kB and p38 mitogen-activated protein kinase is mediated by distinct and separate stress effector pathways. J Biol Chem 272:12422–12429

    Article  PubMed  CAS  Google Scholar 

  • Weston CR, Davis RJ (2002) The JNK signal transduction pathway. Curr Opin Genet Dev 12:14–21

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka K, Hoshino M, Okamoto M, Sawamura R, Hasegawa A, Okada S (1990) Induction of DNA damage by dimethylarsine, a metabolite of inorganic arsenics, is for the major part likely due to its peroxyl radical. Biochem Biophys Res Commun 168:58–64

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka K, Hasegawa A, Sawamura R, Okada S (1991) Cellular response to oxidative damage in lung induced by the administration of dimethylarsinic acid, a major metabolite of inorganic arsenics, in mice. Toxicol Appl Pharmacol 108:205–213

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka K, Kato K, Mizoi M, An Y, Nakanao M, Hoshino M et al (2009) Dimethylarsine likely acts as a mouse-pulmonary tumor initiator via the production of dimethylarsine radical and/or its peroxy radical. Life Sci 84:627–633

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Li J, Ouyang W, Ma Q, Hu Y, Zhang D et al (2006) NFAT3 is specifically required for TNF-伪-induced cyclooxygenase-2 (COX-2) expression and transformation of Cl41 cells. J Cell Sci 119:2985–2994

    Article  PubMed  CAS  Google Scholar 

  • Yang DQ, Halaby MJ, Zhang Y (2006) The identification of an internal ribosomal entry site in the 5[prime]-untranslated region of p53 mRNA provides a novel mechanism for the regulation of its translation following DNA damage. Oncogene 25:4613–4619

    Article  PubMed  CAS  Google Scholar 

  • Yang P, He X-Q, Peng L, Li A-P, Wang X-R, Zhou J-W et al (2007) The role of oxidative stress in hormesis induced by sodium arsenite in Human Embryo Lung Fibroblast (HELF) cellular proliferation model. J Toxicol Environ Health A 70:976–983

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Kim TW, Qin J, Jiang Z, Qian Y, Xiao H et al (2007) Interleukin-1 (IL-1)-induced TAK1-dependent versus MEKK3-dependent NFkB activation pathways bifurcate at IL-1 receptor-associated kinase modification. J Biol Chem 282:6075–6089

    Article  PubMed  CAS  Google Scholar 

  • Ye B, W-p Yu, Thomas GM, Huganir RL (2007) GRASP-1 is a neuronal scaffold protein for the JNK signaling pathway. FEBS Lett 581:4403–4410

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Wan Y, Huang C (2009) The biological functions of NF-kappaB1 (p50) and its potential as an anti-cancer target. Curr Cancer Drug Targets 9:566–571

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Li J, Zhang M, Wan Y, Gao J, Huang C (2012) NFkB p50 promotes p53 protein translation through miR-190 downregulation of PHLPP1 (In revision)

    Google Scholar 

  • Zerbini L, Libermann T (2005) Life and death in cancer. GADD45 alpha and gamma are critical regulators of NF-kappaB mediated escape from programmed cell death. Cell Cycle 4:18–20

    Article  PubMed  CAS  Google Scholar 

  • Zerbini LF, Wang Y, Czibere A, Correa RG, Cho J-Y, Ijiri K et al (2004) NF-kB-mediated repression of growth arrest- and DNA-damage-inducible proteins 45a and r is essential for cancer cell survival. Proc Natl Acad Sci USA 101:13618–13623

    Article  PubMed  CAS  Google Scholar 

  • Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38:769–789

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Cao E-H, Qin J-F (2005) Up-regulation of telomere-binding TRF1, TRF2 related to reactive oxygen species induced by As2O3 in MGC-803 cells. Eur J Pharmacol 516:1–9

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Li J, Wu K, Ouyang W, Ding J, Liu Z-g et al (2006a) JNK1, but not JNK2, is required for COX-2 induction by nickel compounds. Carcinogenesis 28:883–891

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Song L, Li J, Wu K, Huang C (2006b) Coordination of JNK1 and JNK2 is critical for GADD45a induction and its mediated cell apoptosis in arsenite responses. J Biol Chem 281:34113–34123

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Li J, Song L, Ouyang W, Gao J, Huang C (2008) A JNK1/AP-1-dependent, COX-2 induction is implicated in 12-O-Tetradecanoylphorbol-13-Acetate-induced cell transformation through regulating cell cycle progression. Mol Cancer Res 6:165–174

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Li J, Gao J, Huang C (2009) c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells. Toxicol Appl Pharmacol 235:18–24

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Yamaguchi H, Tian C, Lee MW, Tang H, Wang H-G et al (2005) Arsenic trioxide (As2O3) induces apoptosis through activation of Bax in hematopoietic cells. Oncogene 24:3339–3347

    Article  PubMed  CAS  Google Scholar 

  • Zuo Z, Ouyang W, Li J, Costa M, Huang C (2012) Cyclooxygenase-2 (COX-2) mediates arsenite inhibition of UVB-induced cellular apoptosis in mouse epidermal Cl41 cells. Curr Cancer Drug Targets (In publication)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanshu Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, D., Huang, C. (2012). Apoptotic Pathways upon Arsenite Treatment. In: Chen, G., Lai, P. (eds) Novel Apoptotic Regulators in Carcinogenesis. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4917-7_6

Download citation

Publish with us

Policies and ethics