Skip to main content

Understanding the Dynamics of Tumor Angiogenesis: A Systems Biology Approach

  • Chapter
  • First Online:
Systems Biology in Cancer Research and Drug Discovery

Abstract

The process of sprouting angiogenesis is extremely complex involving hundreds of proteins that regulate transcription and participate in signaling pathways controlling cellular movement, proliferation and phenotype alteration. Modeling has been attempted to understand all these mechanisms, and hence, in this chapter, we will focus on models that deal individually with each one of these mechanisms relevant to angiogenesis, as well as with platforms that integrate various models into multiscale models of the whole process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARA:

Aortic ring assay

BrDu:

Bromodeoxyuridine

CAM:

Chick chorioallantoic membrane

DII-4:

Delta like 4 ligand

ECM:

Extracellular matrix

FGF:

Fibroblast growth factors

MMPs:

Matrix metalloproteases

MTT:

(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide a yellow tetrazole)

NRP1:

Neuropilin coding gene 1

NRP2:

Neuropilin coding gene 2

PGC-1α:

Proliferator-activated-receptor-gamma co-activator

RBP-J:

Recombining binding protein suppressor of hairless

VEGF:

Vascular endothelial growth factor

References

  • Adair TH, Montani JP (2010) Angiogenesis. Morgan & Claypool Life Sciences, San Rafael

    Google Scholar 

  • Alarcón T (2009) Modelling tumour-induced angiogenesis: A review of individual-based models and multiscale approaches. In: Herrero MA, Giraldez F (eds) Mathematics, developmental biology and tumor growth. American Mathematical Society, Providence, pp 45–76

    Chapter  Google Scholar 

  • Alarcon T, Byrne HM, Maini PK (2005) A design principle for vascular beds: the role of complex blood rheology. Microvasc Res 69:156–172

    Article  PubMed  Google Scholar 

  • Alva JA, Iruela-Arispe M (2004) Notch signaling in vascular morphogenesis. Curr Opin Hematol 11(4):278–283

    Article  CAS  PubMed  Google Scholar 

  • Anderson AR, Chaplain MA (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60(5):857–899

    Google Scholar 

  • Ariano P, Distasi C, Gilardino A, Zamburlin P, Ferraro M (2005) A simple method to study cellular migration. J Neurosci Methods 141:271–276

    Article  CAS  PubMed  Google Scholar 

  • Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N (2003) Angiogenesis assays: a critical overview. Clin Chem 49:32–40

    Article  CAS  PubMed  Google Scholar 

  • Bahramsoltani M, Plendl J, Janczyk P, Custodis P, Kaessmeyer S (2009) Quantitation of angiogenesis and antiangiogenesis in vivo, ex vivo and in vitro – an overview. Altex-Alternativen Zu Tierexperimenten 26:95–107

    Google Scholar 

  • Baker JHE, Huxham LA, Kyle AH, Lam KK, Minchinton AI (2006) Vascular-specific quantification in an in vivo Matrigel chamber angiogenesis assay. Microvasc Res 71:69–75

    Article  PubMed  Google Scholar 

  • Baker M, Robinson SD, Lechertier T, Barber PR, Tavora B, D’Amico G, Jones DT, Vojnovic B, Hodivala-Dilke K (2011) Use of the mouse aortic ring assay to study angiogenesis. Nat Protoc 7(1):89–104

    Google Scholar 

  • Bauer AL, Jackson TL, Jiang Y (2007) A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J 92:3105–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer AL, Jackson TL, Jiang Y (2009) Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput Biol 5:e1000445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M, Adams RH (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–1135

    Article  CAS  PubMed  Google Scholar 

  • Bentley K, Gerhardt H, Bates PA (2008) Agent-based simulation of notch mediated tip cell selection in angiogenic sprout initialisation. J Theor Biol 250(1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Bentley K, Mariggi G, Gerhardt H, Bates PA (2009) Tipping the balance: robustness of Tip cell selection, migration and fusion in angiogenesis. PLoS Comput Biol 5:e1000549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737–744

    Google Scholar 

  • Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buschmann I, Schaper W (1999) Arteriogenesis versus angiogenesis: two mechanisms of vessel growth. News Physiol Sci 14(3):121–125

    PubMed  Google Scholar 

  • Byrne H, Preziosi L (2003) Modelling solid tumour growth using the theory of mixtures. Math Med Biol 20:341–366

    Article  PubMed  Google Scholar 

  • Cai Y, Gulnar K, Zhong H et al (2009) Numerical simulation of tumor-induced angiogenesis influenced by the extra-cellular matrix mechanical environment. Acta Mech Sin 25:889–895

    Article  Google Scholar 

  • Califano JP, Reinhart-King CA (2009) The effects of substrate elasticity on endothelial cell network formation and traction force generation. 31st Annual Inter Conference of the IEEE EMBS, Minneapolis, 3343–3345

    Google Scholar 

  • Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  CAS  PubMed  Google Scholar 

  • Chaplain MAJ, McDougall SR, Anderson ARA (2006) Mathematical modeling of tumor-induced angionenesis. Annu Rev Biomed Eng 8:233–257

    Article  CAS  PubMed  Google Scholar 

  • Chaplain MAJ, Macklin P, McDougall S, Anderson ARA, Lowengrub VCJ (2011) Multiscale mathematical modeling of vascular tumor growth: an exercise in transatlantic cooperation. In: Deisboeck TS, Stamatakos GS (eds) Multiscale cancer modeling. CRC Press, Boca Raton 253–308

    Google Scholar 

  • Cross NA, Fowles A, Reeves K, Jokonya N, Linton K, Holen I, Hamdy FC, Eaton CL (2008) Imaging the effects of castration on bone turnover and hormone-independent prostate cancer colonization of bone. Prostate 68:1707–1714

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Cai S, Ye Q, Jiang J, Yan X, Xiong X, Jiang Q, Wang AC-L, Tan Y (2011) A novel in vitro angiogenesis model based on a microfluidic device. Chin Sci Bull 56:3301–3309

    Article  CAS  Google Scholar 

  • Djonov VG, Kurz H, Burri PH (2002) Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev Dyn 224:391–402

    Article  PubMed  Google Scholar 

  • Dufraine J, Funahashi Y, Kitajewski J (2008) Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene 27(38):5132–5137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emmerich H (2008) Advances of and by phase field modeling in condensed-matter physics. Adv Phys 57:1

    Article  CAS  Google Scholar 

  • Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2(10):795–803

    Article  CAS  PubMed  Google Scholar 

  • Figg WD, Folkman J (2008) Angiogenesis – an integrative approach from science to medicine. Springer, New York

    Google Scholar 

  • Filipovic N, Tsuda A, Lee GS et al (2009) Computational flow dynamics in a geometric model of intussusceptive angiogenesis. Microvasc Res 78:286–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folkman J (1971) Tumour angiogenesis: therapeutical applications. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Folkman J, Hochenberg M (1973) Self-regulation of growth in three dimensions. J Exp Med 138:745–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folkman J, Klagsburn M (1987) Angiogenic factors. Science 235:442–447

    Article  CAS  PubMed  Google Scholar 

  • Frieboes HB, Lowengrub JS, Wise S, Zheng X, Macklin P, Bearer E, Cristini V (2007) Computer simulation of glioma growth and morphology. Neuroimage 37:S59–S70

    Article  PubMed  PubMed Central  Google Scholar 

  • Frieboes HB, Edgerton ME, Fruehauf JP, Rose FRAJ, Worrall LK, Gatenby RA, Ferrari M, Cristini V (2009) Prediction of drug response in breast cancer using integrative experimental/computational modeling. Cancer Res 69:4484–4492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frieboes HB, Jin F, Chuang Y-L, Wise SM, Lowengrub JS, Cristini V (2010) Three-dimensional multispecies nonlinear tumor growth—II: tumor invasion and angiogenesis. J Theor Biol 264:1254–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedl P, Wold K (2003) Tumor cell invasion and migration. Nat Rev Cancer 3:362–374

    Article  CAS  PubMed  Google Scholar 

  • Gagnon E, Cattaruzzi P, Griffith PM, Muzakare L, LeFlao K, Faure R, Beliveau R, Hussain SN, Koutsilieris M, Doillon CJ (2002) Human vascular endothelial cells with extended life spans: in vitro cell response, protein expression, and angiogenesis. Angiogenesis 5:21–33

    Article  CAS  PubMed  Google Scholar 

  • Garcia A, Kandel JJ (2012) Notch: a key regulator of tumor angiogenesis and metastasis. Histol Hispathol 27(2):151–156

    Google Scholar 

  • Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314(1):15–23

    Article  PubMed  Google Scholar 

  • Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez D, Reich NC (2003) Stimulation of primary human endothelial cell proliferation by IFN. J Immunol 170:5373–5381

    Article  CAS  PubMed  Google Scholar 

  • Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69:2013–2016

    Article  CAS  PubMed  Google Scholar 

  • Guedez L, Rivera AM, Salloum R, Miller ML, Diegmueller JJ, Bungay PM, Stetler-Stevenson WG (2003) Quantitative assessment of angiogenic responses by the directed in vivo angiogenesis assay. Am J Pathol 162:1431–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey K, Welch Z, Kovala AT, Garcia JGN, English D (2002) Comparative analysis of in vitro angiogenic activities of endothelial cells of heterogeneous origin. Microvasc Res 63:316–326

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Eitenmüller I, Schmitz-Rixen T et al (2006) Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 10(1):45–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellstrom M, Phng LK, Hofmann JJ et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780

    Article  PubMed  CAS  Google Scholar 

  • Herman A, Savage VM, West GB (2011) A quantitative theory of solid tumor growth, metabolic rate and vascularization. PLoS One 6(9):e22973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Héroult M, Schaffner F, Augustin HG (2006) Eph receptor and ephrin ligand-mediated interactions during angiogenesis and tumor progression. Exp Cell Res 312(5):642–650

    Article  PubMed  CAS  Google Scholar 

  • Hicklin JD, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23(5):1011–1027

    Article  CAS  PubMed  Google Scholar 

  • Hoffman RM (2002) Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncol 3:546–556

    Article  CAS  PubMed  Google Scholar 

  • Holmes MJ, Sleeman BD (2000) A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects. J Theor Biol 202:95–112

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  CAS  PubMed  Google Scholar 

  • Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cel Physiol 194(3):237–255

    Article  CAS  Google Scholar 

  • Jackson T, Zheng X (2010) A cell-based model of endothelial cell migration, proliferation and maturation during corneal angiogenesis. Bull Math Biol 72:830–868

    Article  PubMed  Google Scholar 

  • Jacobsen JCB, Hornbech MS, Holstein-Rathlou N-H (2009) A tissue in the tissue: models of microvascular plasticity. Eur J Pharm Sci 36:51–61

    Article  CAS  PubMed  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  CAS  PubMed  Google Scholar 

  • Jain RK, Tong RT, Munn LL (2007) Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res 67:2729–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain HV, Nor JE, Jackson TL (2008) Modelling the VEGF-Bcl-2-CXCL8 pathway in intra-tumoral angiogenesis. Bull Math Biol 70(1):89–117

    Article  PubMed  Google Scholar 

  • Jain HV, Nor JE, Jackson TL (2009) Quantification of endothelial cell-targeted anti Bcl-2 therapy and its suppression of tumor growth and vascularization. Mol Cancer Ther 8(10):2926–2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsson L, Franco C, Bentley K, Collins R, Ponsioen B et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12(10):943–953

    Article  CAS  PubMed  Google Scholar 

  • Jeong GS, Han S, Shin Y, Kwon GH, Kamm RD, Lee S-H, Chung S (2011) Sprouting angiogenesis under a chemical gradient regulated by interactions with an endothelial monolayer in a microfluidic platform. Anal Chem 83:8454–8459

    Article  CAS  PubMed  Google Scholar 

  • Ji JW, Tsoukias NM, Goldman D, Popel AS (2006) A computational model of oxygen transport in skeletal muscle for sprouting and splitting modes of angiogenesis. J Theor Biol 241:94–108

    Article  PubMed  Google Scholar 

  • Jones EAV, le Noble F, Eichmann A (2006) What determines blood vessel structure? Genetic prespecification vs. hemodynamics. Physiology 21:338–395

    Article  Google Scholar 

  • Karagiannis ED, Popel AS (2006) Distinct modes of collagen type I proteolysis by matrix metalloproteinase (MMP) 2 and membrane type I MMP during the migration of a tip endothelial cell: insights from a computational model. J Theor Biol 238:124–145

    Article  CAS  PubMed  Google Scholar 

  • Karkkainen MJ, Petrova TV (2000) Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene 19(49):5598–5605

    Article  CAS  PubMed  Google Scholar 

  • Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67

    Google Scholar 

  • Kragh M, Hjarnaa PJV, Bramm E, Kristjansen PEG, Rygaard J, Binderup L (2003) In vivo chamber angiogenesis assay: an optimized matrigel plug assay for fast assessment of anti-angiogenic activity. Int J Oncol 22:305–311

    CAS  PubMed  Google Scholar 

  • Krebs LT, Xue Y, Norton CR et al (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14(11):1343–1352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee W-S (2006) Endothelial cell proliferation assays. In: Staton CA, Lewis C, Bicknell R. (eds) Angiogenesis assays. Wiley, Chichester/Hoboken, pp 39–50

    Chapter  Google Scholar 

  • Ley CD, Olsen MWB, Lund EL, Kristjansen PEG (2004) Angiogenic synergy of bFGF and VEGF is antagonized by Angiopoietin-2 in a modified in vivo Matrigel assay. Microvasc Res 68:161–168

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Qutub AA, Vempati P, Mac Gabhann F, Popel AS (2011) Module-based multiscale simulation of angiogenesis in skeletal muscle. Theor Biol Med Model 8:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowengrub JS, Frieboes HB, Jin F, Chuang Y-L, Li X, Macklin P, Wise SM, Cristini V (2010) Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23:R1–R9

    Article  PubMed  PubMed Central  Google Scholar 

  • Mac Gabhann F, Popel AS (2007) Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: a computational model of human skeletal muscle. Am J Physiol Heart Circ Physiol 292:H459–H474

    Article  CAS  PubMed  Google Scholar 

  • Mac Gabhann F, Popel AS (2008) Systems biology of vascular endothelial growth factors. Microcirculation 15(8):715–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mac Gabhann F, Ji JW, Popel AS (2006) Computational model of vascular endothelial growth factor spatial distribution in muscle and pro-angiogenic cell therapy. PLoS Comput Biol 2:e127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manoussaki D, Lubkin SR, Vernon R, Murray JD (1996) A mechanical model for the formation of vascular networks in vitro. Acta Biotheor 44:271–282

    Article  CAS  PubMed  Google Scholar 

  • Mantzaris N, Webb S, Othmer H (2004) Mathematical modeling of tumor-induced angiogenesis. J Math Biol 49:111–187

    Article  PubMed  Google Scholar 

  • Markus M, Bohm D, Schmick M (1999) Simulation of vessel morphogenesis using cellular automata. Math Biosci 156:191–206

    Article  CAS  PubMed  Google Scholar 

  • Mayer RJ (2004) Two steps forward in the treatment of colorectal cancer. N Engl J Med 350:2406–2408

    Article  CAS  PubMed  Google Scholar 

  • McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical modelling of dynamic adaptive tumour -induced angiogenesis: clinical implication and therapeutic strategies. J Theor Biol 241:564–589

    Article  PubMed  Google Scholar 

  • Melillo G (2006) Inhibiting hypoxia-inducible factor 1 for cancer therapy. Mol Cancer Res 4:601–605

    Article  CAS  PubMed  Google Scholar 

  • Milde F, Bergdorf M, Koumoutsakos P (2008) A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys J 95:3146–3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreo P, Gaffney EA, Garcìa-Aznar JM, Doblaré M (2010) On the modelling of biological patterns with mechnochemical models: insights from analysis and computation. Bull Math Biol 72:400–431

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival - application to proliferation and cyto-toxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Mulvany MJ (1999) Vascular remodelling of resistance vessels: can we define this? Cardiovac Res 41:9–13

    Article  CAS  Google Scholar 

  • Murray JD, Oster GF (1984) Cell traction models for generation of pattern and form in morphogenesis. J Math Biol 19:265–279

    Article  CAS  PubMed  Google Scholar 

  • Murray JD, Manoussaki D, Lubkin SR, Vernon RB (1998) A mechanical theory of in vitro vascular network formation. In Little CD, Mironov V, Sage EH (eds) Vascular Morphogenesis: In Vivo, In Vitro and In Mente. Birkhäuser, Boston, pp 173–188

    Google Scholar 

  • Namy P, Ohayon J, Tracqui P (2004) Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J Theor Biol 227(1):103–120

    Article  PubMed  Google Scholar 

  • Napoli C, Giordano A, Casamassimi A, Pentimalli F, Ignarro LJ, De Nigris F (2011) Directed in vivo angiogenesis assay and the study of systemic neoangiogenesis in cancer. Int J Cancer 128:1505–1508

    Article  CAS  PubMed  Google Scholar 

  • Nehls V, Drenckhahn D (1995) A novel microcarrier-based in vitro assay for raid and reliable quantification of 3-dimensional cell-migration and angiogenesis. Microvasc Res 50:311–322

    Article  CAS  PubMed  Google Scholar 

  • Olsen L, Sherratt JA, Maini PK, Arnold F (1997) A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J Math Appl Med Biol 14:261–281

    Article  CAS  PubMed  Google Scholar 

  • Olsson A-K, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling: in control of vascular function. Natl Rev Mol Cell Biol 7:359–371

    Article  CAS  Google Scholar 

  • Othmer HG, Stevens A (1997) Aggregation, blowup and collapse: the ABCs of taxis in reinforced random walks. SIAM J Appl Math 57:1044–1087

    Article  Google Scholar 

  • Owen MR, Alarcón T, Byrne HM, Maini PK (2009) Angiogenesis and vascular remodelling in normal and cancerous tissues. J Math Biol 58L:689–721

    Article  Google Scholar 

  • Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR (1992) A simple quantitative method for assessing angiogenesis and antiangiogenesis using reconstituted basement-membrane, heparin, and fibroblast growth factor. Lab Invest 67:519–528

    CAS  PubMed  Google Scholar 

  • Perfahl H, Byrne HM, Chen T et al (2011) Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions. PLoS One 6:e14790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters K, Schmidt H, Unger RE, Otto M, Kamp G, Kirkpatrick CJ (2002) Software-supported image quantification of angiogenesis in an in vitro culture system: application to studies of biocompatibility. Biomaterials 23:3413–3419

    Article  CAS  PubMed  Google Scholar 

  • Pettet GJ, Byrne HM, McElwain DL, Norbury J (1996) A model of wound-healing angiogenesis in soft tissue. Math Biosci 136(1):35–63

    Article  CAS  PubMed  Google Scholar 

  • Plank MJ, Sleeman BD (2004) Lattice and non-lattice models of tumour angiogenesis. Bull Math Biol 66:1785–1819

    Article  CAS  PubMed  Google Scholar 

  • Pries A, Secomb T, Gaehtgens P, Gross J (1990) Blood flow in microvascular networks. Experiments and simulation. Circ Res 67:826–834

    Article  CAS  PubMed  Google Scholar 

  • Pries AR, Reglin B, Secomb TW (2005) Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension 46:725–731

    Article  CAS  PubMed  Google Scholar 

  • Pries AR, Höpfner M, le Noble F, Dewhirst MW, Secomb TW (2010) The shunt problem: control of functional shunting in normal and tumour vasculature. Nat Rev Cancer 10:587–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quigley JP, Deryugina EI (2012) Combating angiogenesis early: potential of targeting tumor-recruited neutrophils in cancer therapy. Future Oncol 8(1):5–8

    Article  PubMed  Google Scholar 

  • Qutub AA, Popel AS (2006) A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1 alpha. J Cell Sci 119:3467–3480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qutub AA, Popel AS (2009) Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst Biol 3:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qutub A, Mac Gabhann F, Karagiannis ED, Vempati P, Popel AS (2009) Multiscale molecular-based models of angiogenesis. IEEE Eng Med Biol Mag 28:14–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehman A, Wang C (2006) Notch signaling in the regulation of tumor angiogenesis. Trends Cell Biol 16(6):293–300

    Article  CAS  PubMed  Google Scholar 

  • Rivera RG, Mellberg S, Claesson-Welsh L, Bader JS, Popel AS (2011) Analysis of VEGF-A regulated gene expression in endothelial cells to identify genes linked to angiogenesis. PLoS One 6:e24887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosello C, Ballet P, Planus E, Tracqui P (2004) Model driven quantification of individual and collective cell migration. Acta Biotheor 52:343–363

    Article  PubMed  Google Scholar 

  • Rubinstein AL, Cook MA, Chen S, Rubinstein AL (2003) Rapid analysis of angiogenesis drugs in a live fluorescent zebrafish assay. Arterioscler Thromb Vasc Biol 23:911–912

    Article  PubMed  CAS  Google Scholar 

  • Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9(2):267–285

    Article  CAS  PubMed  Google Scholar 

  • Saiki A, Watanabe F, Murano T, Miyashita Y, Shirai K (2006) Hepatocyte growth factor secreted by cultured adipocytes promotes tube formation of vascular endothelial cells in vitro. Int J Obes 30:1676–1684

    Article  CAS  Google Scholar 

  • Sanga S, Frieboes HB, Zheng X, Gatenby R, Bearer EL, Cristini V (2007) Predictive oncology: multidisciplinary, multi-scale in-silico modeling linking phenotype, morphology and growth. Neuroimage 37:S120–S134

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt T, Carmeliet P (2011) Angiogenesis: a target in solid tumors, also in leukemia? A Soc Hemat 1:1–8

    Google Scholar 

  • Serini G, Ambrosi D, Giraudo E, Gamba A, Preziosi L, Bussolino F (2003) Modeling the early stages of vascular network assembly. EMBO J 22:1771–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamloo A, Heilshorn SC (2010) Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. Lab Chip 10:3061–3068

    Article  CAS  PubMed  Google Scholar 

  • Shim WSN, Ho IAW, Wong PEH (2007) Angiopoietin: a tie(d) balance in tumor angiogenesis. Mol Cancer Res 5(7):655–665

    Article  CAS  PubMed  Google Scholar 

  • Shirinifard A, Gens JS, Zaitlen BL et al (2009) 3D multicell simulation of tumor growth and angiogenesis. PLoS One 4(10):E7190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sinek JP, Sanga S, Zheng X, Frieboes HB, Ferrari M, Cristini V (2009) Predicting drug pharmacokinetics and effect in vascularized tumors using computer simulation. J Math Biol 58:485–510

    Article  PubMed  PubMed Central  Google Scholar 

  • Sleeman BD, Wallis IP (2002) Tumour induced angiogenesisas reinforced random walk: modelling capillary network formation without endothelial cell proliferation. Math Comput Model 36:339–358

    Article  Google Scholar 

  • Small AR, Neagu A, Amyot F, Sackett D, Chernomordik V et al (2008) Spatial distribution of VEGF isoforms and chemotactic signals in the vicinity of a tumor. J Theor Biol 252:593–607

    Article  CAS  PubMed  Google Scholar 

  • Smith EJ, Staton CA (2006) Tubule formation assays. In: Staton CA, Lewis C, Bicknell R. (eds) Angiogenesis assays. Wiley, Chichester/Hoboken, pp 65–87

    Chapter  Google Scholar 

  • Staton CA, Stribbling SM, Tazzyman S, Hughes R, Brown NJ, Lewis CE (2004) Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Pathol 85:233–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staton CA, Reed MWR, Brown NJ (2009) A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol 90:195–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanini MO, Wu FT, Mac Gabhann F, Popel AS (2009) The presence of VEGF receptors on the luminal surface of endothelial cells affects VEGF distribution and VEGF signaling. PLoS Comput Biol 5:e1000622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stephanou A, McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical modelling of the influence of blood rheological properties upon adaptative tumour induced angiogenesis. Math Comput Model 44:96–123

    Article  Google Scholar 

  • Stokes CL, Lauffenburger DA (1991) Analysis of the role of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J Theor Biol 152:377–403

    Article  CAS  PubMed  Google Scholar 

  • Styp-Rekowska B, Hlushchuk R, Pries AR, Djonov V (2011) Intussusceptive angiogenesis: pillars against blood flow. Acta Physiol 202:213–223

    Article  CAS  Google Scholar 

  • Szczerba D, Kurz H, Szekely G (2009) A computational model of intussusceptive microvascular growth and remodeling. J Theor Biol 261:570–583

    Article  PubMed  Google Scholar 

  • Terman BI, Stoletov KV (2001) VEGF and tumor angiogenesis. Einstein Q J Biol Med 18:59–66

    CAS  Google Scholar 

  • Thurston G, Kitajewski J (2008) VEGF and Delta-Notch: interacting signalling pathways in tumour angiogenesis. J Cancer 99(8):1204–1209

    Article  CAS  Google Scholar 

  • Tracqui P, Liu JW, Collin O, Clement-Lacroix J, Planus E (2005) Global analysis of endothelial cell line proliferation patterns based on nutrient-depletion models: implications for a standardization of cell proliferation assays. Cell Prolif 38:119–135

    Article  CAS  PubMed  Google Scholar 

  • Tranqui L, Tracqui P (2000) C Mechanical signalling and angiogenesis. The integration of cell-extracellular matrix couplings. C R Acad Sci III 323(1):31–47

    Article  CAS  Google Scholar 

  • Travasso RDM (2011) The mechanics of blood vessel growth. In: Simionescu DT, Simionescu A (eds) Vasculogenesis and angiogenesis – from embryonic development to regenerative medicine. InTechOpen, Rijeka Croatia 187–204

    Google Scholar 

  • Travasso RDM, Corvera Poiré E, Castro M, Rodríguez-Manzaneque JC, Hernández-Machado A (2011a) Tumor angiogenesis and vascular patterning: a mathematical model. PLoS One 6:e19989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travasso RDM, Castro M, Oliveira JCRE (2011b) The phase-field model in tumor growth. Philos Mag 91:183–206

    Article  CAS  Google Scholar 

  • Vailhe B, Vittet D, Feige JJ (2001) In vitro models of vasculogenesis and angiogenesis. Lab Invest 81:439–452

    Article  CAS  PubMed  Google Scholar 

  • Vempati P, Mac Gabhann F, Popel AS (2010) Quantifying the proteolytic release of extracellular matrix-sequestered VEGF with a computational model. PLoS One 5:e11860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vempati P, Popel AS, Mac Gabhann F (2011) Formation of VEGF isoform-specific spatial distributions governing angiogenesis: computational analysis. BMC Syst Biol 5:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhoelst E, De Ketelaere B, Bruggeman V, Villamor E, Decuypere E, De Baerdemaeker J (2011) Development of a fast, objective, quantitative methodology to monitor angiogenesis in the chicken chorioallantoic membrane during development. Int J Dev Biol 55:85–92

    Article  PubMed  Google Scholar 

  • Warren CM, Iruela-Arispe ML (2010) Signaling circuitry in vascular morphogenesis. Curr Opin Hematol 17:213–218

    PubMed  PubMed Central  Google Scholar 

  • Waters SL, Alastruey J, Beard DA et al (2011) Theoretical models for coronary vascular biomechanics: progresses & challenges. Prog Biophys Mol Biol 104:49–76

    Article  PubMed  Google Scholar 

  • Wieghaus KA, Gianchandani EP, Brown ML, Papin JA, Botchwey EA (2007) Mechanistic exploration of phthalimide neovascular factor 1 using network analysis tools. Tissue Eng 13:2561–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM (2007) Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc Natl Acad Sci USA 104:5860–5865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Smith LT, Plass C, Huang TH (2006) ChIP-chip comes of age for genome-wide functional analysis. Cancer Res 66:6899–6902

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Long Q, Xu S, Padhani AR (2009) Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature. J Biomech 42:712–721

    Article  PubMed  Google Scholar 

  • Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ et al (2003) A randomized trial of bevacizumab, an anti–vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349:427–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Wang G, Simha R, Peng W, Turano F, Zeng C (2007) Pathway switching explains the sharp response characteristic of hypoxia response network. PLoS Comput Biol 3:e171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong TP, Childs S, Leu JP, Fishman MC (2001) Gridlock signalling pathway fashions the first embryonic artery. Nature 414:216–220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RDMT and TMRR thank the support by Fundos FEDER through Programa Operacional Factores de Competitividade – COMPETE and by Fundação para a Ciência e Tecnologia, through the project with reference number FCOMP-01-0124-FEDER-015708. RDMT acknowledges the support of Fundação Calouste Gulbenkian and Fundação para a Ciência e Tecnologia through the Estímulo à Investigaçãoand Ciência 2007programs, respectively. This work was supported by a grant from the Instituto de Salud Carlos III/FIS/FEDER (PI10/00883) awarded to JCRM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui D. M. Travasso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Quinas-Guerra, M.M., Ribeiro-Rodrigues, T.M., Rodríguez-Manzaneque, J.C., Travasso, R.D.M. (2012). Understanding the Dynamics of Tumor Angiogenesis: A Systems Biology Approach. In: Azmi, A.S. (eds) Systems Biology in Cancer Research and Drug Discovery. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4819-4_8

Download citation

Publish with us

Policies and ethics