Skip to main content

Anisotropic Metamaterials for Transformation Acoustics and Imaging

  • Chapter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 166))

Abstract

Metamaterials are becoming a prominent class of artificial materials that allow us to have very precise and specific optical properties. Its associated engineering flexibility opens up a wide range of applications and provides an effective route in molding the flow of energy. By drawing analogies between electromagnetic and acoustic wave frameworks, many concepts like invisibility cloaking and subwavelength imaging can be transplanted from electromagnetic to acoustic waves easily. However, we need quite different ways of constructing the artificial materials and devices for acoustics. Here, we show how anisotropic metamaterials can be constructed to control the constitutive parameters of the effective medium through positioning hard plates in different preferred directions. We will then use them to construct an acoustic carpet cloak, an acoustic hyperlens and a superlens as examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ambati, M., Fang, N., Sun, C., Zhang, X.: Surface resonant states and superlensing in acoustic metamaterials. Phys. Rev. B 75, 195447 (2007)

    Article  Google Scholar 

  2. Ao, X., Chan, C.T.: Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials. Phys. Rev. E 77, 025601(R) (2008)

    Article  Google Scholar 

  3. Cai, F., Liu, F., He, Z., Liu, Z.: High refractive-index sonic material based on periodic subwavelength structure. Appl. Phys. Lett. 91, 203515 (2007)

    Article  Google Scholar 

  4. Chen, H., Chan, C.T.: Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518 (2007)

    Article  Google Scholar 

  5. Chen, X., Luo, Y., Zhang, J., Jiang, K., Pendry, J.B., Zhang, S.: Macroscopic invisibility cloaking of visible light. Nat. Commun. 2, 176 (2011)

    Article  CAS  Google Scholar 

  6. Cheng, Y., Yang, F., Xu, J.Y., Liu, X.J.: A multilayer structured acoustic cloak with homogeneous isotropic materials. Appl. Phys. Lett. 92, 151913 (2008)

    Article  Google Scholar 

  7. Christensen, J., Fernandez-Dominguez, A.I., de Leon-Perez, F., Martin-Moreno, L., Garcia-Vidal, F.J.: Collimation of sound assisted by acoustic surface waves. Nat. Phys. 3, 851–852 (2007)

    Article  CAS  Google Scholar 

  8. Christensen, J., Huidobro, P.A., Martin-Moreno, L., Garcia-Vidal, F.J.: Confining and slowing airborne sound with a corrugated metawire. Appl. Phys. Lett. 93, 083502 (2008)

    Article  Google Scholar 

  9. Christensen, J., Martin-Moreno, L., Garcia-Vidal, F.J.: Theory of resonant acoustic transmission through subwavelength apertures. Phys. Rev. Lett. 101, 014301 (2008)

    Article  CAS  Google Scholar 

  10. Cervera, F., Sanchis, L., Sanchez-Perez, J.V., Martinez-Sala, R., Rubio, C., Meseguer, F.: Refractive acoustic devices for airborne sound. Phys. Rev. Lett. 88, 023902 (2002)

    Article  CAS  Google Scholar 

  11. Cummer, S.A., Schurig, D.: One path to acoustic cloaking. New J. Phys. 9, 45 (2007)

    Article  Google Scholar 

  12. Cummer, S.A., Popa, B.-I., Schurig, D., Smith, D.R., Pendry, J.B., Rahm, M., Starr, A.: Scattering theory derivation of a 3D acoustic cloaking shell. Phys. Rev. Lett. 100, 024301 (2008)

    Article  Google Scholar 

  13. de Rosny, J., Fink, M.: Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink. Phys. Rev. Lett. 89, 124301 (2002)

    Article  Google Scholar 

  14. Ergin, T., Stenger, N., Brenner, P., Pendry, J.B., Wegener, M.: Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337 (2010)

    Article  CAS  Google Scholar 

  15. Estrada, H., Candelas, P., Uris, A., Belmar, F., Garcia de Abajo, F.J., Meseguer, F.: Extraordinary sound screening in perforated plates. Phys. Rev. Lett. 101, 084302 (2008)

    Article  Google Scholar 

  16. Fang, N., Lee, H., Sun, C., Zhang, X.: Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534 (2005)

    Article  CAS  Google Scholar 

  17. Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., Zhang, X.: Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452–456 (2006)

    Article  CAS  Google Scholar 

  18. Farhat, M., Guenneau, S., Enoch, S., Movchan, A., Zolla, F., Nicolet, A.: A homogenization route towards square cylindrical acoustic cloaks. New J. Phys. 10, 115030 (2008)

    Article  Google Scholar 

  19. Fok, L., Zhang, X.: Negative acoustic index metamaterial. Phys. Rev. B 83, 214304 (2011)

    Article  Google Scholar 

  20. Gabrielli, L.H., Cardenas, J., Poitras, C.B., Lipson, M.: Silicon nanostructure cloak operating at optical frequencies. Nat. Photonics 3, 461 (2009)

    Article  CAS  Google Scholar 

  21. Greenleaf, A., Lassas, M., Uhlmann, G.: On nonuniqueness for Calderon’s inverse problem. Math. Res. Lett. 10, 685 (2003)

    Google Scholar 

  22. Greenleaf, A., Lassas, M., Uhlmann, G.: Anisotropic conductivities that cannot be detected by EIT. Physiol. Meas. 24, 413 (2003)

    Article  Google Scholar 

  23. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Full-wave invisibility of active devices at all frequencies. Commun. Math. Phys. 275, 749–789 (2007)

    Article  Google Scholar 

  24. Guenneau, S., Movchan, A., Petursson, G., Ramakrishna, S.A.: Acoustic metamaterials for sound focusing and confinement. New J. Phys. 9, 399 (2007)

    Article  Google Scholar 

  25. He, Z., Cai, F., Ding, Y., Liu, Z.: Subwavelength imaging of acoustic waves by a canalization mechanism in a two-dimensional phononic crystal. Appl. Phys. Lett. 93, 233503 (2008)

    Article  Google Scholar 

  26. Ikonen, P., Simovski, C.R., Tretyakov, S., Belov, P., Hao, Y.: Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime. Appl. Phys. Lett. 91, 104102 (2007)

    Article  Google Scholar 

  27. Jacob, Z., Alekseyev, L.V., Narimanov, E.: Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006)

    Article  Google Scholar 

  28. Jia, H., Ke, M., Hao, R., Ye, Y., Liu, F., Liu, Z.: Subwavelength imaging by a simple planar acoustic superlens. Appl. Phys. Lett. 97, 173507 (2010)

    Article  Google Scholar 

  29. Jung, J., Garcia-Vidal, F.J., Martin-Moreno, L., Pendry, J.B.: Holey metal films make perfect endoscopes. Phys. Rev. B 79, 153407 (2009)

    Article  Google Scholar 

  30. Kawata, S., Ono, A., Verma, P.: Subwavelength colour imaging with a metallic nanolens. Nat. Photonics 2, 438–442 (2008)

    Article  CAS  Google Scholar 

  31. Ke, M., Liu, Z., Cheng, Z., Li, J., Peng, P., Shi, J.: Flat superlens by using negative refraction in two-dimensional phononic crystals. Solid State Commun. 142, 177–180 (2007)

    Article  CAS  Google Scholar 

  32. Leonhardt, U.: Optical conformal mapping. Science 312, 1777 (2006)

    Article  CAS  Google Scholar 

  33. Li, J., Chan, C.T.: Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602(R) (2004)

    Google Scholar 

  34. Li, J., Fok, L., Yin, X., Bartal, G., Zhang, X.: Experimental demonstration of an acoustic magnifying hyperlens. Nat. Mater. 8, 931 (2009)

    Article  CAS  Google Scholar 

  35. Li, J., Pendry, J.B.: Hiding under the carpet: A new strategy for cloaking. Phys. Rev. Lett. 101, 203901 (2008)

    Article  Google Scholar 

  36. Liang, Z., Li, J.: Bandwidth and resolution of super-resolution imaging with perforated solids. AIP Adv. 1, 041503 (2011)

    Article  Google Scholar 

  37. Liu, Z., Durant, S., Lee, H., Pikus, Y., Fang, N., Xiong, Y., Sun, C., Zhang, X.: Far-field optical superlens. Nano Lett. 7, 403 (2007)

    Article  CAS  Google Scholar 

  38. Liu, Z., Lee, H., Xiong, Y., Sun, C., Zhang, X.: Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007)

    Article  CAS  Google Scholar 

  39. Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)

    Article  CAS  Google Scholar 

  40. Liu, R., Ji, C., Mock, J.J., Chin, J.Y., Cui, T.J., Smith, D.R.: Broadband ground-plane cloak. Science 323, 366 (2009)

    Article  CAS  Google Scholar 

  41. Lu, M., Liu, X., Feng, L., Li, J., Huang, C., Chen, Y., Zhu, Y., Zhu, S., Ming, N.: Extraordinary acoustic transmission through a 1D grating with very narrow apertures. Phys. Rev. Lett. 99, 174301 (2007)

    Article  Google Scholar 

  42. Luo, Y., Zhang, J., Chen, H., Ran, L., Wu, B.-I., Kong, J.A.: A rigorous analysis of plane-transformed invisibility cloaks. IEEE Trans. Antennas Propag. 57, 3926 (2009)

    Article  Google Scholar 

  43. Ma, H.F., Cui, T.J.: Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun. 1, 21 (2010)

    CAS  Google Scholar 

  44. Milton, G.W., Briane, M., Willis, J.R.: On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006)

    Article  Google Scholar 

  45. Norris, A.N.: Acoustic metafluids. J. Acoust. Soc. Am. 125, 839–849 (2009)

    Article  Google Scholar 

  46. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Article  CAS  Google Scholar 

  47. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075 (1999)

    Article  Google Scholar 

  48. Pendry, J.B., Li, J.: An acoustic metafluid: Realizing a broadband acoustic cloak. New J. Phys. 10, 115032 (2008)

    Article  Google Scholar 

  49. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780 (2006)

    Article  CAS  Google Scholar 

  50. Salandrino, A., Engheta, N.: Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys. Rev. B 74, 075103 (2006)

    Article  Google Scholar 

  51. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977 (2006)

    Article  CAS  Google Scholar 

  52. Shvets, G., Trendafilov, S., Pendry, J.B., Sarychev, A.: Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays. Phys. Rev. Lett. 99, 053903 (2007)

    Article  CAS  Google Scholar 

  53. Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788 (2004)

    Article  CAS  Google Scholar 

  54. Soukoulis, C.M., Linden, S., Wegener, M.: Negative refractive index at optical wavelengths. Science 315, 47 (2007)

    Article  CAS  Google Scholar 

  55. Sukhovich, A., Jing, L., Page, J.H.: Negative refraction and focusing of ultrasound in two-dimensional phononic crystals. Phys. Rev. B 77, 014301 (2008)

    Article  Google Scholar 

  56. Sukhovich, A., Merheb, B., Muralidharan, K., Vasseur, J.O., Pennec, Y., Deymier, P.A., Page, J.H.: Experimental and theoretical evidence for subwavelength imaging in phononic crystals. Phys. Rev. Lett. 102, 154301 (2009)

    Article  CAS  Google Scholar 

  57. Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G., Hillenbrand, R.: Near-field microscopy through a SiC superlens. Science 313, 1595 (2006)

    Article  CAS  Google Scholar 

  58. Torrent, D., Sanchez-Dehesa, J.: Acoustic cloaking in two dimensions: A feasible approach. New J. Phys. 10, 063015 (2008)

    Article  Google Scholar 

  59. Torrent, D., Sanchez-Dehesa, J.: Anisotropic mass density by two-dimensional acoustic metamaterials. New J. Phys. 10, 023004 (2008)

    Article  Google Scholar 

  60. Valentine, J., Li, J., Zentgraf, T., Bartal, G., Zhang, X.: An optical cloak made of dielectrics. Nat. Mater. 8, 568 (2009)

    Article  CAS  Google Scholar 

  61. Yang, S., Page, J.H., Liu, Z., Cowan, M.L., Chan, C.T., Sheng, P.: Focusing of sound in a 3D phononic crystal. Phys. Rev. Lett. 93, 024301 (2004)

    Article  Google Scholar 

  62. Yang, Z., Mei, J., Yang, M., Chan, N.H., Sheng, P.: Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008)

    Article  CAS  Google Scholar 

  63. Zhang, S., Yin, L., Fang, N.: Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102, 194301 (2009)

    Article  Google Scholar 

  64. Zhu, J., Christensen, J., Jung, J., Martin-Moreno, L., Yin, X., Fok, L., Zhang, X., Garcia-Vidal, F.J.: A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nat. Phys. 7, 52 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JL and ZL thank the support from the City University of Hong Kong (SRG grant number 7002598). JZ and XZ acknowledge support from the Office of Naval Research (grant number N00014-07-1-0626).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jensen Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, J., Liang, Z., Zhu, J., Zhang, X. (2013). Anisotropic Metamaterials for Transformation Acoustics and Imaging. In: Craster, R., Guenneau, S. (eds) Acoustic Metamaterials. Springer Series in Materials Science, vol 166. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4813-2_7

Download citation

Publish with us

Policies and ethics