Skip to main content

Band-Gap Properties of Prestressed Structures

  • Chapter
Acoustic Metamaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 166))

Abstract

The design of periodic and quasiperiodic structures possessing innovative filtering properties for elastic waves opens the way to the realization of elastic metamaterials. In these structures prestress has a strong influence, ‘shifting’ in frequency, but also ‘annihilating’ or ‘nucleating’ band gaps. The effects of prestress are demonstrated with examples involving flexural waves in periodic and quasiperiodic beams and periodic plates. Results highlight that prestress can be employed as a ‘tuning parameter’ for continuously changing vibrational properties of elastic metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In terms of generation sequence F i dimensionless buckling loads are , , , , , , .

References

  1. Aynaou, H., El Boudouti, E.H., Djafari-Rouhani, B., Akjouj, A., Velasco, V.R.: Propagation and localization of acoustic waves in Fibonacci phononic circuits. J. Phys. Condens. Matter 17, 4245–4262 (2005)

    Article  CAS  Google Scholar 

  2. Bacon, M.D., Dean, P., Martin, J.L.: Proc. Phys. Soc. 80, 174 (1962)

    Article  Google Scholar 

  3. Bigoni, D., Capuani, D., Bonetti, P., Colli, S.: A novel boundary element approach to time-harmonic dynamics of incremental non-linear elasticity: The role of pre-stress on structural vibrations and dynamic shear banding. Comput. Methods Appl. Mech. Eng. 196, 4222 (2007)

    Article  Google Scholar 

  4. Bigoni, D., Capuani, D.: Time-harmonic Green’s function and boundary integral formulation for incremental nonlinear elasticity: Dynamics of wave patterns and shear bands. J. Mech. Phys. Solids 53, 1163 (2005)

    Article  Google Scholar 

  5. Bigoni, D., Gei, M., Movchan, A.B.: Dynamics of a prestressed stiff layer on an elastic half space: filtering and band gap characteristics of periodic structural models derived from long-wave asymptotics. J. Mech. Phys. Solids 56, 2494–2520 (2008)

    Article  CAS  Google Scholar 

  6. Chen, A.L., Wang, Y.S.: Study on band gaps of elastic waves propagating in one-dimensional disordered phononic crystals. Physica B 392, 369–378 (2007)

    Article  CAS  Google Scholar 

  7. Cremer, L., Leilich, H.O.: Zur theorie der biegekettenleiter. Arch. Elektr. Übertrag. 7, 261 (1953)

    Google Scholar 

  8. Feynman, R.: The Feynman Lectures on Physics, vol. 2. Addison-Wesley, Reading (1965)

    Google Scholar 

  9. Gei, M.: Elastic waves guided by a material interface. Eur. J. Mech. A, Solids 27, 328–345 (2008)

    Article  Google Scholar 

  10. Gei, M.: Wave propagation in quasiperiodic structures: Stop/pass band distribution and prestress effects. Int. J. Solids Struct. 47, 3067–3075 (2010)

    Article  Google Scholar 

  11. Gei, M., Bigoni, D., Franceschini, G.: Thermoelastic small-amplitude wave propagation in nonlinear elastic multilayer. Math. Mech. Solids 9, 555–568 (2004)

    Article  Google Scholar 

  12. Gei, M., Movchan, A.B., Bigoni, D.: Band-gap shift and defect induced annihilation in prestressed elastic structures. J. Appl. Phys. 105, 063507 (2009)

    Article  Google Scholar 

  13. Gei, M., Ogden, R.W.: Vibration of a surface-coated elastic block subject to bending. Math. Mech. Solids 7, 607–629 (2002)

    Article  Google Scholar 

  14. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  Google Scholar 

  15. Hladky-Hennion, A.-C., Vasseur, J., Dubus, B., Djafari-Rouhani, B., Ekeom, D., Morvan, B.: J. Appl. Phys. 104, 094206 (2008)

    Article  Google Scholar 

  16. Hou, Z., Wu, F., Liu, Y.: Acoustic wave propagating in one-dimensional Fibonacci binary composite systems. Physica B 344, 391–397 (2004)

    Article  CAS  Google Scholar 

  17. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  CAS  Google Scholar 

  18. King, P.D.C., Cox, T.J.: Acoustic band gaps in periodically and quasiperiodically modulated waveguides. J. Appl. Phys. 102, 014908 (2007)

    Article  Google Scholar 

  19. Kohmoto, M., Kadanoff, L.P., Tang, C.: Localization problem in one dimension: Mapping and escape. Phys. Rev. Lett. 50, 1870–1872 (1983)

    Article  Google Scholar 

  20. Kohmoto, M., Oono, Y.: Cantor spectrum for an almost periodic Schroedinger equation and a dynamical map. Phys. Lett. A 102, 145–148 (1984)

    Article  Google Scholar 

  21. Kohmoto, M., Sutherland, B., Iguchi, K.: Localization in optics: Quasiperiodic media. Phys. Rev. Lett. 58, 2436–2438 (1987)

    Article  Google Scholar 

  22. Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993)

    Article  CAS  Google Scholar 

  23. Lin, Y.K.: Free vibrations of a continuous beam on elastic supports. Int. J. Mech. Sci. 4, 409–423 (1962)

    Article  Google Scholar 

  24. Liu, Z., Chan, C. T, Sheng, P.: Analytic model of phononic crystals with local resonances. Phys. Rev. B 71, 014103 (2005)

    Article  Google Scholar 

  25. Liu, Z., Zhang, W.: Bifurcation in band-gap structures and extended states of piezoelectric Thue-Morse superlattices. Phys. Rev. B 75, 064207 (2007)

    Article  Google Scholar 

  26. Mead, D.J.: Wave propagation in continuous periodic structures: Research contributions from Southampton. J. Sound Vib. 190, 495 (1996)

    Article  Google Scholar 

  27. Mead, D.J.: Wave propagation and natural modes in periodic systems. II. Multi-coupled systems, with and without damping. J. Sound Vib. 40, 19 (1975)

    Article  Google Scholar 

  28. Miles, J.W.: Vibrations of beams on many supports. J. Eng. Mech. 82, 1–9 (1956)

    Google Scholar 

  29. Milton, G.W., Willis, J.R.: On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. Lond. A 463, 855 (2007)

    Article  Google Scholar 

  30. Movchan, A.B., Slepyan, L.I.: Band gap Green’s functions and localized oscillations. Proc. R. Soc. Lond. A 463, 2709 (2007)

    Article  Google Scholar 

  31. Ogden, R.W., Steigmann, D.J.: Plane strain dynamics of elastic solids with intrinsic boundary elasticity, with application to surface wave propagation. J. Mech. Phys. Solids 50, 1869–1896 (2002)

    Article  Google Scholar 

  32. Page, J.H., Sukhovich, A., Yang, S., Cowan, M.L., Van Der Biest, F., Tourin, A., Fink, M., Liu, Z., Chan, C.T., Sheng, P.: Phys. Status Solidi B 241, 3454 (2004)

    Article  CAS  Google Scholar 

  33. Parnell, W.J.: Effective wave propagation in a prestressed nonlinear elastic composite bar. IMA J. Appl. Math. 72, 223–244 (2007)

    Article  Google Scholar 

  34. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Article  CAS  Google Scholar 

  35. Sheng, P., Zhang, X.X., Liu, Z., Chan, C.T.: Physica B 338, 201 (2003)

    Article  CAS  Google Scholar 

  36. Sigalas, M.M., Economou, E.N.: Elastic and acoustic-wave band-structure. J. Sound Vib. 158, 377–382 (1992)

    Article  Google Scholar 

  37. Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. Lond. A 453, 853–877 (1997)

    Article  Google Scholar 

  38. Timoshenko, S.P., Weaver, W., Young, D.H.: Vibration Problems in Engineering. Wiley, New York (1974)

    Google Scholar 

  39. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  CAS  Google Scholar 

  40. Yang, S., Page, J.H., Liu, Z., Cowan, M.L., Chan, C.T., Sheng, P.: Phys. Rev. Lett. 93, 024301 (2004)

    Article  Google Scholar 

  41. Zhang, X., Liu, Z.: Appl. Phys. Lett. 85, 341 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.G. and M.B. gratefully acknowledge the support of Italian Ministry of Education, University and Research (PRIN grant No. 2009XWLFKW); D.B. and A.B.M. gratefully acknowledge the support from the European Union FP7 under contract No. PIAP-GA-2011-286110-INTERCER2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gei, M., Bigoni, D., Movchan, A.B., Bacca, M. (2013). Band-Gap Properties of Prestressed Structures. In: Craster, R., Guenneau, S. (eds) Acoustic Metamaterials. Springer Series in Materials Science, vol 166. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4813-2_3

Download citation

Publish with us

Policies and ethics