Skip to main content

Locally Resonant Structures for Low Frequency Surface Acoustic Band Gap Applications

  • Chapter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 166))

Abstract

In this chapter we investigate the propagation of acoustic waves in a two-dimensional array of cylindrical pillars on the surface of a semi-infinite substrate. Through the computation of the acoustic band diagram and transmission spectra of periodic pillars arranged in different symmetries, we show that these structures possess acoustic metamaterial features for surface acoustic waves. The pillars on the top of the surface introduce new guided modes in the non-radiative region of the substrate outside the sound cone. The modal shape and polarization of these guided modes are more complex than those of classical surface waves propagating on a homogeneous surface. Significantly, an in-plane polarized wave and a transverse wave with sagittal polarization appear that are not supported by the free surface. In addition, the band diagram of the guided modes defines band gaps that appear at frequencies markedly lower than those expected from the Bragg mechanism. We identify them as originating from local resonances of the individual cylindrical pillar and we show their dependence on the geometrical parameters, in particular with the height of the pillars. The frequency positions of these band gaps are invariant with the symmetry, and thereby the period, of the lattices, which is unexpected in band gaps based on Bragg mechanism. However, the role of the period remains important for defining the non-radiative region limited by the slowest bulk modes and influencing the existence of new surface modes of the structures. The surface acoustic wave transmission across a finite array of pillars corroborates the signature of the locally resonant band gaps for surface modes and their link with the symmetry of the source and its polarization. Numerical simulations based on an efficient finite element method and considering Lithium Niobate pillars on a Lithium Niobate substrate are used to illustrate the theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Achaoui, Y., Khelif, A., Benchabane, S., Robert, L., Laude, V.: Experimental observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of pillars. Phys. Rev. B 83, 104201 (2011)

    Article  Google Scholar 

  2. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185 (1994)

    Article  Google Scholar 

  3. Dühring, M.B., Laude, V., Khelif, A.: Energy storage and dispersion of surface acoustic waves trapped in a periodic array of mechanical resonators. J. Appl. Phys. 105, 093504 (2009)

    Article  Google Scholar 

  4. Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., Zhang, X.: Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452 (2006)

    Article  CAS  Google Scholar 

  5. Goffaux, C., Sánchez-Dehesa, J., Levy Yeyati, A., Khelif, A., Lambin, P., Vasseur, J.O., Djafari-Rouhani, B.: Evidence of Fano-like interference phenomena in locally resonant materials. Phys. Rev. Lett. 88, 225502 (2002)

    Article  CAS  Google Scholar 

  6. Hsu, J.C., Wu, T.T.: Lamb waves in binary locally resonant phononic plates with two dimensional lattices. Appl. Phys. Lett. 90, 201904 (2007)

    Article  Google Scholar 

  7. Johnson, S.G., Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Kolodziejski, L.A.: Guided modes in photonic crystal slabs. Phys. Rev. B 60, 5751–5758 (1999)

    Article  CAS  Google Scholar 

  8. Khelif, A., Achaoui, Y., Benchabane, S., Laude, V., Aoubiza, B.: Locally resonant surface acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface. Phys. Rev. B 81, 214303 (2010)

    Article  Google Scholar 

  9. Khelif, A., Aoubiza, B., Mohammadi, S., Adibi, A., Laude, V.: Complete band gaps in two-dimensional phononic crystal slabs. Phys. Rev. E 74, 046610 (2006)

    Article  CAS  Google Scholar 

  10. Khelif, A., Choujaa, A., Benchabane, S., Djafari-Rouhani, B., Laude, V.: Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Appl. Phys. Lett. 84(22), 4400–4402 (2004)

    Article  CAS  Google Scholar 

  11. Khelif, A., Choujaa, A., Djafari-Rouhani, B., Wilm, M., Ballandras, S., Laude, V.: Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Phys. Rev. B 68, 214301 (2003)

    Article  Google Scholar 

  12. Khelif, A., Wilm, M., Laude, V., Ballandras, S., Djafari-Rouhani, B.: Guided elastic waves along a rod-defect of a two-dimensional phononic crystal. Phys. Rev. E 69, 067601 (2004). doi:10.1103/PhysRevE.69.067601

    Article  CAS  Google Scholar 

  13. Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71(13), 2022–2025 (1993). doi:10.1103/PhysRevLett.71.2022

    Article  CAS  Google Scholar 

  14. Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734 (2000)

    Article  CAS  Google Scholar 

  15. Martínez-Sala, R., Sancho, J., Sanchez, J.V., Gomez, V., Llinares, J., Meseguer, F.: Sound attenuation by sculpture. Nature 378, 241 (1995)

    Article  Google Scholar 

  16. Miroshnichenko, A.E., Flach, S., Kivshar, Y.S.: Fano resonances in nanoscale structures. Rev. Mod. Phys. 82(3), 2257 (2010). doi:10.1103/RevModPhys.82.2257

    Article  CAS  Google Scholar 

  17. Pennec, Y., Djafari-Rouhani, B., Vasseur, J.O., Larabi, H., Khelif, A., Choujaa, A., Benchabane, S., Laude, V.: Acoustic channel drop tunneling in a phononic crystal. Appl. Phys. Lett. 87(26), 261912 (2005). doi:10.1063/1.2158019

    Article  Google Scholar 

  18. Robillard, J.F., Devos, A., Roch-Jeune, I.: Time-resolved vibrations of two-dimensional hypersonic phononic crystals. Phys. Rev. B 76(9), 092301 (2007). doi:10.1103/PhysRevB.76.092301

    Article  Google Scholar 

  19. Sigalas, M.M., Economou, E.N.: Band structure of elastic waves in two dimensional systems. Solid State Commun. 86(3), 141–143 (1993)

    Article  CAS  Google Scholar 

  20. Vasseur, J.O., Deymier, P.A., Chenni, B., Djafari-Rouhani, B., Dobrzynski, L., Prevost, D.: Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Phys. Rev. Lett. 86(14), 3012–3015 (2001)

    Article  CAS  Google Scholar 

  21. Wang, G., Wen, X., Wen, J., Shao, L., Liu, Y.: Two dimensional locally resonant phononic crystals with binary structures. Phys. Rev. Lett. 93, 154302 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Vincent Laude and Dr. Sarah Benchabane for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkrim Khelif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Khelif, A., Achaoui, Y., Aoubiza, B. (2013). Locally Resonant Structures for Low Frequency Surface Acoustic Band Gap Applications. In: Craster, R., Guenneau, S. (eds) Acoustic Metamaterials. Springer Series in Materials Science, vol 166. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4813-2_2

Download citation

Publish with us

Policies and ethics