Skip to main content

Acoustic Cloaking with Plasmonic Shells

  • Chapter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 166))

Abstract

This chapter presents an overview of the scattering cancellation approach applied to acoustic waves, inspired by the use of plasmonic cloaks for electromagnetic waves. Using an analogous analytical approach, we show here that isotropic and homogeneous acoustic metamaterial covers may provide strong scattering reduction over moderately broad bandwidths of operation in a variety of acoustic scenarios of interest. This chapter outlines the basic physics of this approach, along with numerical examples for moderately sized elastic and fluid objects, thereby providing insights into the anomalous suppression of acoustic scattering produced by this cloaking technique.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1993)

    Google Scholar 

  2. Alù, A., Engheta, N.: Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 016623 (2005)

    Article  Google Scholar 

  3. Alù, A., Engheta, N.: Polarizabilities and effective parameters for collections of spherical nano-particles formed by pairs of concentric double-negative (dng), single negative (sng) and/or double-positive (dps) metamaterial layers. J. Appl. Phys. 97, 094310 (2005)

    Article  Google Scholar 

  4. Alù, A., Engheta, N.: Plasmonic materials in transparency and cloaking problems: Mechanism, robustness and physical insights. Opt. Express 15, 3318–3332 (2007)

    Article  Google Scholar 

  5. Alù, A., Engheta, N.: Effects of size and frequency dispersion in plasmonic cloaking. Phys. Rev. E 78, 045602 (2008)

    Article  Google Scholar 

  6. Alù, A., Engheta, N.: Cloaking a sensor. Phys. Rev. Lett. 102(23), 233901 (2009)

    Article  Google Scholar 

  7. Alù, A., Engheta, N.: Cloaked near-field scanning optical microscope tip for non-invasive near-field imaging. Phys. Rev. Lett. 105, 263906 (2010)

    Article  Google Scholar 

  8. Alù, A., Engheta, N.: Cloaking a receiving antenna or a sensor with plasmonic metamaterials. Metamaterials 4, 153–159 (2010)

    Article  Google Scholar 

  9. Baird, A.M., Kerr, F.H., Townend, D.J.: Wave propagation in a viscoelastic medium having fluid-filled microspheres. J. Acoust. Soc. Am. 105, 1527–1538 (1999)

    Article  Google Scholar 

  10. Berryman, J.G.: Long-wavelength propagation in composite elastic media I. Spherical inclusions. J. Acoust. Soc. Am. 68, 1809–1819 (1980)

    Article  Google Scholar 

  11. Cummer, S.A., Popa, B.I., Schurig, D., Smith, D.R., Pendry, J.B., Rahm, M., Starr, A.: Scattering theory derivation of a 3d acoustic cloaking shell. Phys. Rev. Lett. 74, 024301 (2008)

    Article  Google Scholar 

  12. Faran, J.J.: Sound scattering by solid cylinders and spheres. J. Acoust. Soc. Am. 23, 405–418 (1951)

    Article  Google Scholar 

  13. Gaunaurd, G.C.: Elastic and acoustic resonance wave scattering. Appl. Mech. Rev. 42, 143–192 (1989)

    Article  Google Scholar 

  14. Gray, C.G., Nickel, B.G.: Debye potential representation of vector fields. Am. J. Phys. 46, 735–736 (1978)

    Article  Google Scholar 

  15. Greenleaf, A., Lassas, M., Uhlmann, G.: On nonuniqueness for Calderon’s inverse problem. Math. Res. Lett. 10, 685–693 (2003)

    Google Scholar 

  16. Guild, M.D., Alù, A., Haberman, M.R.: Cancellation of the acoustic field scattered from an elastic sphere using periodic isotropic layers. J. Acoust. Soc. Am. 2374 (2010)

    Google Scholar 

  17. Guild, M.D., Alù, A., Haberman, M.R.: Cancellation of acoustic scattering from an elastic sphere. J. Acoust. Soc. Am. 129(3), 1355–1365 (2011)

    Article  Google Scholar 

  18. Guild, M.D., Haberman, M.R., Alù, A.: Plasmonic cloaking and scattering cancellation for electromagnetic and acoustic waves. Wave Motion 48, 468–482 (2011)

    Article  Google Scholar 

  19. Hickling, R.: Analysis of echos from a solid elastic sphere in water. J. Acoust. Soc. Am. 34, 1582–1592 (1962)

    Article  Google Scholar 

  20. Hickling, R.: Analysis of echos from a hollow metallic sphere in water. J. Acoust. Soc. Am. 34, 1124–1137 (1964)

    Article  Google Scholar 

  21. Kinsler, L.E., Frey, A.R., Coppens, A.B., Sanders, J.V.: Fundamentals of Acoustics, 4th edn. Wiley, New York (2000)

    Google Scholar 

  22. The Mathworks, Inc.: Optimization Toolbox (2009)

    Google Scholar 

  23. Milton, G.W., Briane, M., Willis, J.R.: On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8(248) (2006)

    Google Scholar 

  24. Norris, A.N.: Acoustic cloaking theory. Proc. R. Soc. A 464, 2411–2434 (2008)

    Article  CAS  Google Scholar 

  25. Norris, A.N., Nagy, A.J.: Acoustic metafluids made from three acoustic fluids. J. Acoust. Soc. Am. 128, 1606 (2010)

    Article  Google Scholar 

  26. Pendry, J.B., Li, J.: An acoustic metafluid: Realizing a broadband acoustic cloak. New J. Phys. 10, 115032 (2008)

    Article  Google Scholar 

  27. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312(5781), 1780–1782 (2006)

    Article  CAS  Google Scholar 

  28. Pierce, A.D.: Acoustics: An Introduction to Its Physical Principles and Applications. Acoustical Soc. of America (1989)

    Google Scholar 

  29. Scandrett, C.L., Boisvert, J.E., Howarth, T.R.: Acoustic cloaking using layered pentamode materials. J. Acoust. Soc. Am. 127, 2856 (2010)

    Article  Google Scholar 

  30. Torrent, D., Sánchez-Dehesa, J.: Acoustic cloaking in two dimensions: A feasible approach. New J. Phys. 10, 063015 (2008)

    Article  Google Scholar 

  31. Tricarico, S., Bilotti, F., Alù, A., Vegni, L.: Plasmonic cloaking for irregular objects with anisotropic scattering properties. Phys. Rev. E 81, 026602 (2010)

    Article  CAS  Google Scholar 

  32. Vasquez, F.G., Milton, G.W., Onofrei, D.: Active exterior cloaking. Appl. Math. Sci. 1–4 (2009)

    Google Scholar 

  33. Zhou, X., Hu, G., Lu, T.: Elastic wave transparency of a solid sphere coated with metamaterials. Phys. Rev. B 77, 024101 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by the Applied Research Laboratories, The University of Texas at Austin, through an Independent Research and Development grant. A. Alù was partially supported by the NSF CAREER award with grant No. ECCS-0953311.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Alù .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haberman, M.R., Guild, M.D., Alù, A. (2013). Acoustic Cloaking with Plasmonic Shells. In: Craster, R., Guenneau, S. (eds) Acoustic Metamaterials. Springer Series in Materials Science, vol 166. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4813-2_10

Download citation

Publish with us

Policies and ethics