Skip to main content

Regulation of Self-Renewal and Pluripotency of Embryonic Stem Cells: Role of Natriuretic Peptide Receptor A

  • Chapter
  • First Online:

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 8))

Abstract

Embryonic stem (ES) cells have two defining properties: self-renewal and pluripotency, and these make them a promising source for cell transplantation therapies. Oct4, Nanog, and Sox2 are the main transcription factors in regulating ES cell pluripotency. These key factors have also been identified that form an intrinsic core-regulatory circuit that maintains ES cells in the pluripotent state in vitro. The precise mechanism of how these processes are regulated remains largely unknown. Thus investigation of the molecular and cellular mechanisms of stem cell self-renewal and pluripotency provide the necessary tools to harness the regenerative potential of ES cells for therapeutic purposes. Recently, we have showed that natriuretic peptide receptor A (NPR-A), a specific receptor for atrial and brain natriuretic peptide (ANP and BNP), is expressed in preimplantation embryos and in ES cells, and is functional in ES cells. In this chapter, we will provide an overview on the importance of identifying the expression and function of NPR-A in maintaining ES cell characteristics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelalim EM, Tooyama I (2009) BNP signaling is crucial for embryonic stem cell proliferation. PLoS One 4:e35341

    Article  Google Scholar 

  • Abdelalim EM, Tooyama I (2011a) NPR-A regulates self-renewal and pluripotency of embryonic stem cells. Cell Death Dis 2:e127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Abdelalim EM, Tooyama I (2011b) BNP is a novel regulator of embryonic stem cell proliferation. In: Atwood C (ed) Embryonic stem cells: the hormonal regulation of pluripotency and embryogenesis. InTech, Vienna. ISBN: 978-953-307-196-1, Available from: http://www.intechopen.com/articles/show/title/bnp-is-a-novel-regulator-of-embryonic-stem-cell-proliferation

  • Abell TJ, Richards AM, Ikram H, Espiner EA, Yandle T (1989) Atrial natriuretic factor inhibits proliferation of vascular smooth muscle cells stimulated by platelet-derived growth factor. Biochem Biophys Res Commun 160:1392–1396

    Article  CAS  PubMed  Google Scholar 

  • Burdon T, Smith A, Savatier P (2002) Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol 12:432–438

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Gardner DG (1995) Natriuretic peptides inhibit DNA synthesis in cardiac fibroblasts. Hypertension 25:227–234

    Article  CAS  PubMed  Google Scholar 

  • Chambers I, Smith A (2004) Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23:7150–7160

    Article  CAS  PubMed  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluipotency sustaining factor in embryonic stem cells. Cell 113:643–655

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Yabuuchi A, Eminli S, Takeuchi A, Lu CW, Hochedlinger K, Daley GQ (2009) Cross-regulation of the Nanog and Cdx2 promoters. Cell Res 19:1052–1061

    Article  PubMed  Google Scholar 

  • Chusho H, Ogawa Y, Tamura N, Suda M, Yasoda A, Miyazawa T, Kishimoto I, Komatsu Y, Itoh H, Tanaka K, Saito Y, Garbers DL, Nakao K (2000) Genetic models reveal that brain natriuretic peptide can signal through different tissue- specific receptor-mediated pathways. Endocrinology 141:3807–3813

    Article  CAS  PubMed  Google Scholar 

  • Ellermers LJ, Knowles JW, Kim HS, Smithies O, Maeda N, Cameron VA (2002) Ventricular expression of natriuretic peptide in Npr(-) mice with cardiac hypertrophy and fibrosis. Am J Physiol Heart Circ Physiol 283:H707–H714

    Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotent potential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  • Goy MF, Oliver PM, Purdy KE, Knowles JW, Fox JE, Mohler PJ, Qian X, Smithies O, Maeda N (2001) Evidence for a novel natriuretic peptide receptor that prefers brain natriuretic peptide over atrial natriuretic peptide. Biochem J 358:379–387

    Article  CAS  PubMed  Google Scholar 

  • Harper JW, Adami GR, Wei H, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Clip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    Article  CAS  PubMed  Google Scholar 

  • Jirmanova L, Afanassieff M, Gobert-Gosse S, Markossian S, Savatier P (2002) Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells. Oncogene 21:5515–5528

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Muraski J, Chen Y, Tsujita Y, Wall J, Glembotski CC, Schaefer E, Beckerle M, Sussman MA (2005) Atrial natriuretic peptide promotes cardiomyocyte survival by cGMP-dependent nuclear accumulation of zyxin and Akt. J Clin Invest 115:2716–2730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kong X, Wang X, Xu W, Behera S, Hellermann G, Kumar A, Lockey RF, Mohapatra S, Mohapatra SS (2008) Natriuretic peptide receptor a as a novel anticancer target. Cancer Res 68:249–256

    Article  CAS  PubMed  Google Scholar 

  • Kook H, Itoh H, Choi BS, Sawada N, Doi K, Hwang TJ, Kim KK, Arai H, Baik YH, Nakao K (2003) Phsyiological concentration of atrial natriuretic peptide induces endothelial regeneration in vitro. Am J Physiol Heart Circ Physiol 284:H1388–H1397

    CAS  PubMed  Google Scholar 

  • Kuhn M, Holtwick R, Baba HA, Perriard JC, Schmitz W, Ehler E (2002) Progressive cardiac hypertrophy and dysfunction in atrial natriuretic peptide receptor (GC-A) deficient mice. Heart 87:368–374

    Article  CAS  PubMed  Google Scholar 

  • Lange C, Calegari F (2010) Cdks and cyclins link G1 length and differentiation of embryonic, neural and hematopoietic stem cells. Cell Cycle 9:1893–1900

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Go Y, Kang I, Han YM, Kim J (2010) Oct-4 controls cell cycle progression of embryonic stem cells. Biochem J 426:171–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levin ER, Gardner DG, Samson WK (1998) Natriuretic peptides. N Engl J Med 339:321–328

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Lu M, Tian X, Han Z (2007) Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells. J Cell Physiol 211:279–286

    Article  CAS  PubMed  Google Scholar 

  • Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei CL, Ruan Y, Lim B, Ng HH (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38:431–440

    Article  CAS  PubMed  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    Article  CAS  PubMed  Google Scholar 

  • Morishita R, Gibbons GH, Pratt RE, Tomita N, Kaneda Y, Ogihara T, Dzau VJ (1994) Autocrine and paracrine effects of atrial natriuretic peptide gene transfer on vascular smooth muscle and endothelial cellular growth. J Clin Invest 94:824–829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith H (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391

    Article  CAS  PubMed  Google Scholar 

  • Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376

    Article  CAS  PubMed  Google Scholar 

  • Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, Rossant J (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123:917–929

    Article  CAS  PubMed  Google Scholar 

  • Ogawa K, Matsui H, Ohtsuka S, Niwa H (2004) A novel mechanism for regulating clonal propagation of mouse ES cells. Genes Cells 9:471–477

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  CAS  PubMed  Google Scholar 

  • Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Nalt Acad Sci USA 94:14730–14735

    Article  CAS  Google Scholar 

  • Paling NR, Wheadon H, Bone HK, Welham MJ (2004) Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signalling. J Biol Chem 279:48063–48070

    Article  CAS  PubMed  Google Scholar 

  • Pandey KN (2005) Biology of natriuretic peptides and their receptors. Peptides 26:901–932

    Article  CAS  PubMed  Google Scholar 

  • Scott NJA, Ellmers LJ, Lainchbury JG, Maeda N, Smithies O, Richards AM, Cameron VA (2009) Influence of natriuretic peptide receptor-1 on survival and cardiac hypertrophy during development. Biochim Biophys Acta 1792:1175–1184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silberbach M, Roberts CT Jr (2001) Natriuretic peptide signaling: molecular and cellular pathways to growth regulation. Cell Signal 13:221–231

    Article  CAS  PubMed  Google Scholar 

  • Storm MP, Bone HK, Beck CG, Bourillot PY, Schreiber V, Damiano T, Nelson A, Savatier P, Welham MJ (2007) Regulation of Nanog expression by phosphoinsitide 3-kinase-dependent signaling in murine embryonic stem cells. J Biol Chem 282:6265–6273

    Article  CAS  PubMed  Google Scholar 

  • Wu CF, Bishopric NH, Pratt RE (1997) Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes. J Biol Chem 272:14860–14866

    Article  CAS  PubMed  Google Scholar 

  • Yasoda A, Ogawa Y, Suda M, Tamura N, Mori K, Sakuma Y, Chusho H, Shiota K, Tanaka K, Nakao K (1998) Natriuretic peptide regulation of endochondral ossification. Evidence for possible roles of the C-type natriuretic peptide/guanylyl cyclase-B pathway. J Biol Chem 273:11695–11700

    Article  CAS  PubMed  Google Scholar 

  • You H, Laychock SG (2009) Atrial natriuretic peptide promotes pancreatic islet β-cell growth and Akt/Foxo1a/cyclin D2 signaling. Endocrinology 150:5455–5465

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam M. Abdelalim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Abdelalim, E.M., Tooyama, I. (2012). Regulation of Self-Renewal and Pluripotency of Embryonic Stem Cells: Role of Natriuretic Peptide Receptor A. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 8. Stem Cells and Cancer Stem Cells, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4798-2_12

Download citation

Publish with us

Policies and ethics