Skip to main content

From Spiking Neurons to Neural Fields: Bridging the Gap to Achieve Faster Simulations of Neural Systems

  • Conference paper
  • First Online:
Advances in Cognitive Neurodynamics (III)
  • 702 Accesses

Abstract

Representing the neural activity in terms of spikes or rates are complementary approaches to computing neuronal dynamics. Likewise, communication between neurons via individual pairwise links or via smoothed fields are complementary approaches to modeling information transfer. Here it is shown that many intermediate and hybrid approaches exist, which enable different aspects of the dynamics to be probed and permit faster computation in many circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerstner, W., and Kistler, W. (2002). Spiking Neuron Models (Cambridge, Cambridge).

    Book  Google Scholar 

  2. Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M., and Friston, K. (2008). PLoS – Comp. Biol. 4, e1000092, 1–35.

    Google Scholar 

  3. Robinson, P. A., Wu, H., and Kim, J. W. (2008). J. Theor. Biol. 250, 663–672.

    Article  CAS  PubMed  Google Scholar 

  4. Wu, H., Robinson, P. A., and Kim, J. W. (2011). J. Comp. Neurosci. 31, 61–71.

    Article  Google Scholar 

  5. Izhikevich, E. M. (2004). IEEE Trans. Neural Networks, 15, 1063–1070.

    Article  PubMed  Google Scholar 

  6. Markram, H. (2006). Nat. Rev. Neurosci. 7, 153–160.

    Article  CAS  PubMed  Google Scholar 

  7. Robinson, P. A., and Kim, J. W. (2011). J. Neurosci. Meth., to be submitted.

    Google Scholar 

  8. Robinson, P. A., Rennie, C. J., and Wright, J. J. (1997). Phys. Rev. E, 56, 826–840.

    Article  CAS  Google Scholar 

  9. Koch, C. (1999). Biophysics of Computation (Oxford, Oxford).

    Google Scholar 

  10. Henke, H., Robinson, P. A., Drysdale, P. M., and Loxley, P. N. (2009). Biol. Cybern. 101, 3–18.

    Article  CAS  PubMed  Google Scholar 

  11. Wilson, H. R., and Cowan, J. D. (1973). Kybernetik, 15, 55–80.

    Article  Google Scholar 

  12. Dawson, J. M. (1983). Rev. Mod. Phys. 55, 403–447.

    Article  Google Scholar 

  13. Gray, R. T., and Robinson, P. A. (2007). Neurocomput. 70, 1000–1012.

    Article  Google Scholar 

  14. Freeman, W. J. (1975). Mass Action in the Nervous System (Academic, New York).

    Google Scholar 

Download references

Acknowledgements

The Australian Research Council and the Westmead Millennium Institute supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Robinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Robinson, P.A., Kim, J.W. (2013). From Spiking Neurons to Neural Fields: Bridging the Gap to Achieve Faster Simulations of Neural Systems. In: Yamaguchi, Y. (eds) Advances in Cognitive Neurodynamics (III). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4792-0_12

Download citation

Publish with us

Policies and ethics