Skip to main content

GPCR and Voltage-Gated Calcium Channels (VGCC) Signaling Complexes

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 63))

Abstract

Voltage-gated ion channels are transmembrane proteins that control nerve impulses and cell homeostasis. Signaling molecules that regulate ion channel activity and density at the plasma membrane must be specifically and efficiently coupled to these channels in order to control critical physiological functions such as action potential propagation. Although their regulation by G-protein receptor activation has been extensively explored, the assembly of ion channels into signaling complexes of GPCRs plays a fundamental role, engaging specific downstream ­signaling pathways that trigger precise downstream effectors. Recent work has confirmed that GPCRs can intimately interact with ion channels and serve as ­chaperone proteins that finely control their gating and trafficking in subcellular microdomains. This chapter aims to describe examples of GPCR-ion channel co-assembly, focusing mainly on signaling complexes between GPCRs and voltage-gated calcium channels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramow-Newerly M, Roy AA, Nunn C, Chidiac P (2006) RGS proteins have a signalling complex: interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins. Cell Signal 18(5):579–591

    Article  PubMed  CAS  Google Scholar 

  • Agler HL, Evans J, Tay LH, Anderson MJ, Colecraft HM, Yue DT (2005) G protein-gated inhibitory module of N-type (ca(v)2.2) ca2+ channels. Neuron 46(6):891–904

    Article  PubMed  CAS  Google Scholar 

  • Ahmadi S, Liebel JT, Zeilhofer HU (2001) The role of the ORL1 receptor in the modulation of spinal neurotransmission by nociceptin/orphanin FQ and nocistatin. Eur J Pharmacol 412(1):39–44

    Article  PubMed  CAS  Google Scholar 

  • Altier C, Zamponi GW (2011) Analysis of GPCR/ion channel interactions. Methods 756:215–225

    Google Scholar 

  • Altier C, Zamponi GW (2004) Targeting Ca2+ channels to treat pain: T-type versus N-type. Trends Pharmacol Sci 25(9):465–470

    Article  PubMed  CAS  Google Scholar 

  • Altier C, Khosravani H, Evans RM, Hameed S, Peloquin JB, Vartian BA, Chen L, Beedle AM, Ferguson SS, Mezghrani A, Dubel SJ, Bourinet E, McRory JE, Zamponi GW (2006) ORL1 receptor-mediated internalization of N-type calcium channels. Nat Neurosci 9(1):31–40

    Article  PubMed  CAS  Google Scholar 

  • Altier C, Dale CS, Kisilevsky AE, Chapman K, Castiglioni AJ, Matthews EA, Evans RM, Dickenson AH, Lipscombe D, Vergnolle N, Zamponi GW (2007) Differential role of N-type calcium channel splice isoforms in pain. J Neurosci 27(24):6363–6373

    Article  PubMed  CAS  Google Scholar 

  • Altier C, Garcia-Caballero A, Simms B, You H, Chen L, Walcher J, Tedford HW, Hermosilla T, Zamponi GW (2011) The Cavbeta subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nature 14(2):173–180

    CAS  Google Scholar 

  • Ango F, Prezeau L, Muller T, Tu JC, Xiao B, Worley PF, Pin JP, Bockaert J, Fagni L (2001) Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature 411(6840):962–965

    Article  PubMed  CAS  Google Scholar 

  • Arikkath J, Campbell KP (2003) Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr Opin Neurobiol 13(3):298–307

    Article  PubMed  CAS  Google Scholar 

  • Bader PL, Faizi M, Kim LH, Owen SF, Tadross MR, Alfa RW, Bett GC, Tsien RW, Rasmusson RL, Shamloo M (2011) Mouse model of Timothy syndrome recapitulates triad of autistic traits. Proc Natl Acad Sci USA 108(37):15432–15437

    Article  PubMed  CAS  Google Scholar 

  • Bauman AL, Soughayer J, Nguyen BT, Willoughby D, Carnegie GK, Wong W, Hoshi N, Langeberg LK, Cooper DM, Dessauer CW, Scott JD (2006) Dynamic regulation of cAMP synthesis through anchored PKA-adenylyl cyclase V/VI complexes. Mol Cell 23(6):925–931

    Article  PubMed  CAS  Google Scholar 

  • Bean BP (1985) Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology. J Gen Physiol 86(1):1–30

    Article  PubMed  CAS  Google Scholar 

  • Bean BP (1989) Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 340(6229):153–156

    Article  PubMed  CAS  Google Scholar 

  • Beedle AM, McRory JE, Poirot O, Doering CJ, Altier C, Barrere C, Hamid J, Nargeot J, Bourinet E, Zamponi GW (2004) Agonist-independent modulation of N-type calcium channels by ORL1 receptors. Nat Neurosci 7(2):118–125

    Article  PubMed  CAS  Google Scholar 

  • Bernheim L, Mathie A, Hille B (1992) Characterization of muscarinic receptor subtypes inhibiting Ca2+ current and M current in rat sympathetic neurons. Proc Natl Acad Sci USA 89(20):9544–9548

    Article  PubMed  CAS  Google Scholar 

  • Bernstein LS, Ramineni S, Hague C, Cladman W, Chidiac P, Levey AI, Hepler JR (2004) RGS2 binds directly and selectively to the M1 muscarinic acetylcholine receptor third intracellular loop to modulate Gq/11alpha signaling. J Biol Chem 279(20):21248–21256

    Article  PubMed  CAS  Google Scholar 

  • Bichet D, Cornet V, Geib S, Carlier E, Volsen S, Hoshi T, Mori Y, De Waard M (2000) The I-II loop of the Ca2+ channel alpha1 subunit contains an endoplasmic reticulum retention signal antagonized by the beta subunit. Neuron 25(1):177–190

    Article  PubMed  CAS  Google Scholar 

  • Bodi I, Mikala G, Koch SE, Akhter SA, Schwartz A (2005) The L-type calcium channel in the heart: the beat goes on. J Clin Invest 115(12):3306–3317

    Article  PubMed  CAS  Google Scholar 

  • Bourinet E, Soong TW, Stea A, Snutch TP (1996) Determinants of the G protein-dependent opioid modulation of neuronal calcium channels. Proc Natl Acad Sci USA 93(4):1486–1491

    Article  PubMed  CAS  Google Scholar 

  • Bourinet E, Alloui A, Monteil A, Barrere C, Couette B, Poirot O, Pages A, McRory J, Snutch TP, Eschalier A, Nargeot J (2005) Silencing of the Ca(v)3.2T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 26(2):315–324

    Google Scholar 

  • Brodde OE, Michel MC (1999) Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 51(4):651–690

    PubMed  CAS  Google Scholar 

  • Brody DL, Yue DT (2000) Relief of G-protein inhibition of calcium channels and short-term synaptic facilitation in cultured hippocampal neurons. J Neurosci 20(3):889–898

    PubMed  CAS  Google Scholar 

  • Canti C, Page KM, Stephens GJ, Dolphin AC (1999) Identification of residues in the N terminus of alpha1B critical for inhibition of the voltage-dependent calcium channel by Gbeta gamma. J Neurosci 19(16):6855–6864

    PubMed  CAS  Google Scholar 

  • Cao YQ, Piedras-Renteria ES, Smith GB, Chen G, Harata NC, Tsien RW (2004) Presynaptic Ca2+ channels compete for channel type-preferring slots in altered neurotransmission arising from Ca2+ channelopathy. Neuron 43(3):387–400

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3(8):a003947

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59(6):882–901

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57(4):411–425

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Dib-Hajj S, Meisler MH, Pietrobon D (2008) Inherited neuronal ion channelopathies: new windows on complex neurological diseases. J Neurosci 28(46):11768–11777

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE, Neer EJ (1997) G protein beta gamma subunits. Annu Rev Pharmacol Toxicol 37:167–203

    Article  PubMed  CAS  Google Scholar 

  • Cohen NA, Brenman JE, Snyder SH, Bredt DS (1996) Binding of the inward rectifier K+channel Kir 2.3 to PSD-95 is regulated by protein kinase A phosphorylation. Neuron 17(4):759–767

    Article  PubMed  CAS  Google Scholar 

  • Colecraft HM, Patil PG, Yue DT (2000) Differential occurrence of reluctant openings in G-protein-inhibited N- and P/Q-type calcium channels. J Gen Physiol 115(2):175–192

    Article  PubMed  CAS  Google Scholar 

  • Collins S, Bouvier M, Lohse MJ, Benovic JL, Caron MG, Lefkowitz RJ (1990) Mechanisms involved in adrenergic receptor desensitization. Biochem Soc Trans 18(4):541–544

    PubMed  CAS  Google Scholar 

  • Comunanza V, Marcantoni A, Vandael DH, Mahapatra S, Gavello D, Carabelli V, Carbone E (2010) CaV1.3 as pacemaker channels in adrenal chromaffin cells: specific role on exo- and endocytosis? Channels 4(6):440–446

    Article  PubMed  CAS  Google Scholar 

  • Cooper CB, Arnot MI, Feng ZP, Jarvis SE, Hamid J, Zamponi GW (2000) Cross-talk between G-protein and protein kinase C modulation of N-type calcium channels is dependent on the G-protein beta subunit isoform. J Biol Chem 275(52):40777–40781

    Article  PubMed  CAS  Google Scholar 

  • Cooper PJ, Soeller C, Cannell MB (2010) Excitation-contraction coupling in human heart failure examined by action potential clamp in rat cardiac myocytes. J Mol Cell Cardiol 49(6):911–917

    Article  PubMed  CAS  Google Scholar 

  • Currie KP (2010) G protein modulation of CaV2 voltage-gated calcium channels. Channels 4(6):497–509

    Article  PubMed  CAS  Google Scholar 

  • Dai S, Hall DD, Hell JW (2009) Supramolecular assemblies and localized regulation of voltage-gated ion channels. Physiol Rev 89(2):411–452

    Article  PubMed  CAS  Google Scholar 

  • Davare MA, Avdonin V, Hall DD, Peden EM, Burette A, Weinberg RJ, Horne MC, Hoshi T, Hell JW (2001) A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science 293(5527):98–101

    Article  PubMed  CAS  Google Scholar 

  • De Waard M, Liu H, Walker D, Scott VE, Gurnett CA, Campbell KP (1997) Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. Nature 385(6615):446–450

    Article  PubMed  Google Scholar 

  • Delmas P, Abogadie FC, Dayrell M, Haley JE, Milligan G, Caulfield MP, Brown DA, Buckley NJ (1998a) G-proteins and G-protein subunits mediating cholinergic inhibition of N-type calcium currents in sympathetic neurons. Eur J Neurosci 10(5):1654–1666

    Article  PubMed  CAS  Google Scholar 

  • Delmas P, Brown DA, Dayrell M, Abogadie FC, Caulfield MP, Buckley NJ (1998b) On the role of endogenous G-protein beta gamma subunits in N-type Ca2+ current inhibition by neurotransmitters in rat sympathetic neurones. J Physiol 506(Pt 2):319–329

    Article  PubMed  CAS  Google Scholar 

  • Diverse-Pierluissi M, Inglese J, Stoffel RH, Lefkowitz RJ, Dunlap K (1996) G protein-coupled receptor kinase mediates desensitization of norepinephrine-induced Ca2+ channel inhibition. Neuron 16(3):579–585

    Article  PubMed  CAS  Google Scholar 

  • Doering CJ, Zamponi GW (2005) Molecular pharmacology of non-L-type calcium channels. Curr Pharm Des 11(15):1887–1898

    Article  PubMed  CAS  Google Scholar 

  • Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME (2001) Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294(5541):333–339

    Article  PubMed  CAS  Google Scholar 

  • Dolphin AC (2003a) Beta subunits of voltage-gated calcium channels. J Bioenerg Biomembr 35(6):599–620

    Article  PubMed  CAS  Google Scholar 

  • Dolphin AC (2003b) G protein modulation of voltage-gated calcium channels. Pharmacol Rev 55(4):607–627

    Article  PubMed  CAS  Google Scholar 

  • Doupnik CA (2008) GPCR-Kir channel signaling complexes: defining rules of engagement. J Recept Signal Transduct Res 28(1–2):83–91

    PubMed  CAS  Google Scholar 

  • Dunlap K, Fischbach GD (1978) Neurotransmitters decrease the calcium component of sensory neurone action potentials. Nature 276(5690):837–839

    Article  PubMed  CAS  Google Scholar 

  • Dunlap K, Fischbach GD (1981) Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J Physiol 317:519–535

    PubMed  CAS  Google Scholar 

  • Elmslie KS, Jones SW (1994) Concentration dependence of neurotransmitter effects on calcium current kinetics in frog sympathetic neurones. J Physiol 481(Pt 1):35–46

    PubMed  CAS  Google Scholar 

  • Fan G, Shumay E, Wang H, Malbon CC (2001) The scaffold protein gravin (cAMP-dependent protein kinase-anchoring protein 250) binds the beta 2-adrenergic receptor via the receptor cytoplasmic Arg-329 to Leu-413 domain and provides a mobile scaffold during desensitization. J Biol Chem 276(26):24005–24014

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53(1):1–24

    PubMed  CAS  Google Scholar 

  • Forscher P, Oxford GS, Schulz D (1986) Noradrenaline modulates calcium channels in avian dorsal root ganglion cells through tight receptor-channel coupling. J Physiol 379:131–144

    PubMed  CAS  Google Scholar 

  • Fowler CE, Aryal P, Suen KF, Slesinger PA (2007) Evidence for association of GABA(B) receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins. J Physiol 580(Pt 1):51–65

    Article  PubMed  CAS  Google Scholar 

  • Fraser ID, Tavalin SJ, Lester LB, Langeberg LK, Westphal AM, Dean RA, Marrion NV, Scott JD (1998) A novel lipid-anchored A-kinase Anchoring Protein facilitates cAMP-responsive membrane events. EMBO J 17(8):2261–2272

    Article  PubMed  CAS  Google Scholar 

  • Fraser ID, Cong M, Kim J, Rollins EN, Daaka Y, Lefkowitz RJ, Scott JD (2000) Assembly of an A kinase-anchoring protein-beta(2)-adrenergic receptor complex facilitates receptor phosphorylation and signaling. Curr Biol 10(7):409–412

    Article  PubMed  CAS  Google Scholar 

  • Fuller MD, Emrick MA, Sadilek M, Scheuer T, Catterall WA (2010) Molecular mechanism of calcium channel regulation in the fight-or-flight response. Sci Signal 3(141):ra70

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144

    Article  PubMed  CAS  Google Scholar 

  • Gales C, Rebois RV, Hogue M, Trieu P, Breit A, Hebert TE, Bouvier M (2005) Real-time monitoring of receptor and G-protein interactions in living cells. Nat Methods 2(3):177–184

    Article  PubMed  CAS  Google Scholar 

  • Gao T, Yatani A, Dell’Acqua ML, Sako H, Green SA, Dascal N, Scott JD, Hosey MM (1997) cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 19(1):185–196

    Article  PubMed  CAS  Google Scholar 

  • Gardoni F (2008) MAGUK proteins: new targets for pharmacological intervention in the glutamatergic synapse. Eur J Pharmacol 585(1):147–152

    Article  PubMed  CAS  Google Scholar 

  • Georgoussi Z, Leontiadis L, Mazarakou G, Merkouris M, Hyde K, Hamm H (2006) Selective interactions between G protein subunits and RGS4 with the C-terminal domains of the mu- and delta-opioid receptors regulate opioid receptor signaling. Cell Signal 18(6):771–782

    Article  PubMed  CAS  Google Scholar 

  • Golard A, Siegelbaum SA (1993) Kinetic basis for the voltage-dependent inhibition of N-type calcium current by somatostatin and norepinephrine in chick sympathetic neurons. J Neurosci 13(9):3884–3894

    PubMed  CAS  Google Scholar 

  • Gray PC, Tibbs VC, Catterall WA, Murphy BJ (1997) Identification of a 15-kDa cAMP-dependent protein kinase-anchoring protein associated with skeletal muscle L-type calcium channels. J Biol Chem 272(10):6297–6302

    Article  PubMed  CAS  Google Scholar 

  • Guerineau NC, Bossu JL, Gahwiler BH, Gerber U (1995) Activation of a nonselective cationic conductance by metabotropic glutamatergic and muscarinic agonists in CA3 pyramidal neurons of the rat hippocampus. J Neurosci 15(6):4395–4407

    PubMed  CAS  Google Scholar 

  • Hall DD, Davare MA, Shi M, Allen ML, Weisenhaus M, McKnight GS, Hell JW (2007) Critical role of cAMP-dependent protein kinase anchoring to the L-type calcium channel Cav1.2 via A-kinase anchor protein 150 in neurons. Biochemistry 46(6):1635–1646

    Article  PubMed  CAS  Google Scholar 

  • Hamid J, Nelson D, Spaetgens R, Dubel SJ, Snutch TP, Zamponi GW (1999) Identification of an integration center for cross-talk between protein kinase C and G protein modulation of N-type calcium channels. J Biol Chem 274(10):6195–6202

    Article  PubMed  CAS  Google Scholar 

  • Han J, Mark MD, Li X, Xie M, Waka S, Rettig J, Herlitze S (2006) RGS2 determines short-term synaptic plasticity in hippocampal neurons by regulating Gi/o-mediated inhibition of presynaptic Ca2+ channels. Neuron 51(5):575–586

    Article  PubMed  CAS  Google Scholar 

  • Hansen JL, Theilade J, Aplin M, Sheikh SP (2006) Role of G-protein-coupled receptor kinase 2 in the heart–do regulatory mechanisms open novel therapeutic perspectives? Trends Cardiovasc Med 16(5):169–177

    Article  PubMed  CAS  Google Scholar 

  • Hell JW (2010) Beta-adrenergic regulation of the L-type Ca2+ channel Ca(V)1.2 by PKA rekindles excitement. Sci Signal 3(141):pe33

    Article  PubMed  CAS  Google Scholar 

  • Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA (1996) Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature 380(6571):258–262

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1994) Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci 17(12):531–536

    Article  PubMed  CAS  Google Scholar 

  • Hulme JT, Lin TW, Westenbroek RE, Scheuer T, Catterall WA (2003) Beta-adrenergic regulation requires direct anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15. Proc Natl Acad Sci USA 100(22):13093–13098

    Article  PubMed  CAS  Google Scholar 

  • Ikeda SR, Dunlap K (1999) Voltage-dependent modulation of N-type calcium channels: role of G protein subunits. Adv Second Messenger Phosphoprotein Res 33:131–151

    Article  PubMed  CAS  Google Scholar 

  • Ikeda SR, Schofield GG (1989) Somatostatin blocks a calcium current in rat sympathetic ganglion neurones. J Physiol 409:221–240

    PubMed  CAS  Google Scholar 

  • Jaen C, Doupnik CA (2006) RGS3 and RGS4 differentially associate with G protein-coupled receptor-Kir3 channel signaling complexes revealing two modes of RGS modulation. Precoupling and collision coupling. J Biol Chem 281(45):34549–34560

    Article  PubMed  CAS  Google Scholar 

  • Johnston CA, Siderovski DP (2007) Receptor-mediated activation of heterotrimeric G-proteins: current structural insights. Mol Pharmacol 72(2):219–230

    Article  PubMed  CAS  Google Scholar 

  • Jones SW, Elmslie KS (1997) Transmitter modulation of neuronal calcium channels. J Membr Biol 155(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Kammermeier PJ, Ruiz-Velasco V, Ikeda SR (2000) A voltage-independent calcium current inhibitory pathway activated by muscarinic agonists in rat sympathetic neurons requires both Galpha q/11 and Gbeta gamma. J Neurosci 20(15):5623–5629

    PubMed  CAS  Google Scholar 

  • Kisilevsky AE, Zamponi GW (2008) D2 dopamine receptors interact directly with N-type calcium channels and regulate channel surface expression levels. Channels (Austin) 2(4):269–277

    Article  Google Scholar 

  • Kisilevsky AE, Mulligan SJ, Altier C, Iftinca MC, Varela D, Tai C, Chen L, Hameed S, Hamid J, Macvicar BA, Zamponi GW (2008) D1 receptors physically interact with N-type calcium channels to regulate channel distribution and dendritic calcium entry. Neuron 58(4):557–570

    Article  PubMed  CAS  Google Scholar 

  • Kitano J, Nishida M, Itsukaichi Y, Minami I, Ogawa M, Hirano T, Mori Y, Nakanishi S (2003) Direct interaction and functional coupling between metabotropic glutamate receptor subtype 1 and voltage-sensitive Cav2.1 Ca2+ channel. J Biol Chem 278(27):25101–25108

    Article  PubMed  CAS  Google Scholar 

  • Kume H, Graziano MP, Kotlikoff MI (1992) Stimulatory and inhibitory regulation of calcium-activated potassium channels by guanine nucleotide-binding proteins. Proc Natl Acad Sci USA 89(22):11051–11055

    Article  PubMed  CAS  Google Scholar 

  • Lavine N, Ethier N, Oak JN, Pei L, Liu F, Trieu P, Rebois RV, Bouvier M, Hebert TE, Van Tol HH (2002) G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J Biol Chem 277(48):46010–46019

    Article  PubMed  CAS  Google Scholar 

  • Lee HK, Elmslie KS (2000) Reluctant gating of single N-type calcium channels during neurotransmitter-induced inhibition in bullfrog sympathetic neurons. J Neurosci 20(9):3115–3128

    PubMed  CAS  Google Scholar 

  • Leonoudakis D, Mailliard W, Wingerd K, Clegg D, Vandenberg C (2001) Inward rectifier potassium channel Kir2.2 is associated with synapse-associated protein SAP97. J Cell Sci 114(Pt 5):987–998

    PubMed  CAS  Google Scholar 

  • Leonoudakis D, Conti LR, Radeke CM, McGuire LM, Vandenberg CA (2004) A multiprotein trafficking complex composed of SAP97, CASK, Veli, and Mint1 is associated with inward rectifier Kir2 potassium channels. J Biol Chem 279(18):19051–19063

    Article  PubMed  CAS  Google Scholar 

  • Li M, Tanaka Y, Alioua A, Wu Y, Lu R, Kundu P, Sanchez-Pastor E, Marijic J, Stefani E, Toro L (2010) Thromboxane A2 receptor and MaxiK-channel intimate interaction supports channel trans-inhibition independent of G-protein activation. Proc Natl Acad Sci USA 107(44):19096–19101

    Article  PubMed  CAS  Google Scholar 

  • Lipscombe D, Kongsamut S, Tsien RW (1989) Alpha-adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium-channel gating. Nature 340(6235):639–642

    Article  PubMed  CAS  Google Scholar 

  • Lohse MJ, Bunemann M, Hoffmann C, Vilardaga JP, Nikolaev VO (2007) Monitoring receptor signaling by intramolecular FRET. Curr Opin Pharmacol 7(5):547–553

    Article  PubMed  CAS  Google Scholar 

  • Luebke JI, Dunlap K (1994) Sensory neuron N-type calcium currents are inhibited by both voltage-dependent and -independent mechanisms. Pflugers Arch 428(5–6):499–507

    Article  PubMed  CAS  Google Scholar 

  • Malbon CC (2007) A-kinase anchoring proteins: trafficking in G-protein-coupled receptors and the proteins that regulate receptor biology. Curr Opin Drug Discov Devel 10(5):573–579

    PubMed  CAS  Google Scholar 

  • Malbon CC, Tao J, Wang HY (2004) AKAPs (A-kinase anchoring proteins) and molecules that compose their G-protein-coupled receptor signalling complexes. Biochem J 379(Pt 1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Mangoni ME, Nargeot J (2008) Genesis and regulation of the heart automaticity. Physiol Rev 88(3):919–982

    Article  PubMed  CAS  Google Scholar 

  • Mangoni ME, Traboulsie A, Leoni AL, Couette B, Marger L, Le Quang K, Kupfer E, Cohen-Solal A, Vilar J, Shin HS, Escande D, Charpentier F, Nargeot J, Lory P (2006) Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circ Res 98(11):1422–1430

    Article  PubMed  CAS  Google Scholar 

  • Mark MD, Wittemann S, Herlitze S (2000) G protein modulation of recombinant P/Q-type calcium channels by regulators of G protein signalling proteins. J Physiol 528(Pt 1):65–77

    Article  PubMed  CAS  Google Scholar 

  • Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101(4):365–376

    Article  PubMed  CAS  Google Scholar 

  • Mintz IM, Bean BP (1993) GABAB receptor inhibition of P-type Ca2+ channels in central neurons. Neuron 10(5):889–898

    Article  PubMed  CAS  Google Scholar 

  • Nikolov EN, Ivanova-Nikolova TT (2004) Coordination of membrane excitability through a GIRK1 signaling complex in the atria. J Biol Chem 279(22):23630–23636

    Article  PubMed  CAS  Google Scholar 

  • Noebels JL (2003) The biology of epilepsy genes. Annu Rev Neurosci 26:599–625

    Article  PubMed  CAS  Google Scholar 

  • Oldham WM, Hamm HE (2006) Structural basis of function in heterotrimeric G proteins. Q Rev Biophys 39(2):117–166

    Article  PubMed  CAS  Google Scholar 

  • Oliveria SF, Dell’Acqua ML, Sather WA (2007) AKAP79/150 anchoring of calcineurin controls neuronal L-type Ca2+ channel activity and nuclear signaling. Neuron 55(2):261–275

    Article  PubMed  CAS  Google Scholar 

  • Ophoff RA, Terwindt GM, Vergouwe MN, Frants RR, Ferrari MD (1997) Familial hemiplegic migraine: involvement of a calcium neuronal channel. Neurologia 12(Suppl 5):31–37

    PubMed  Google Scholar 

  • Page KM, Canti C, Stephens GJ, Berrow NS, Dolphin AC (1998) Identification of the amino terminus of neuronal Ca2+ channel alpha1 subunits alpha1B and alpha1E as an essential determinant of G-protein modulation. J Neurosci 18(13):4815–4824

    PubMed  CAS  Google Scholar 

  • Patil PG, de Leon M, Reed RR, Dubel S, Snutch TP, Yue DT (1996) Elementary events underlying voltage-dependent G-protein inhibition of N-type calcium channels. Biophys J 71(5):2509–2521

    Article  PubMed  CAS  Google Scholar 

  • Perez DM, Karnik SS (2005) Multiple signaling states of G-protein-coupled receptors. Pharmacol Rev 57(2):147–161

    Article  PubMed  CAS  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83(1):117–161

    PubMed  CAS  Google Scholar 

  • Pfleger KD, Eidne KA (2005) Monitoring the formation of dynamic G-protein-coupled receptor-protein complexes in living cells. Biochem J 385(Pt 3):625–637

    PubMed  CAS  Google Scholar 

  • Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67:653–692

    Article  PubMed  CAS  Google Scholar 

  • Pragnell M, De Waard M, Mori Y, Tanabe T, Snutch TP, Campbell KP (1994) Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1-subunit [see comments]. Nature 368(6466):67–70

    Article  PubMed  CAS  Google Scholar 

  • Rebois RV, Robitaille M, Gales C, Dupre DJ, Baragli A, Trieu P, Ethier N, Bouvier M, Hebert TE (2006) Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells. J Cell Sci 119(Pt 13):2807–2818

    Article  PubMed  CAS  Google Scholar 

  • Reid CA, Dixon DB, Takahashi M, Bliss TV, Fine A (2004) Optical quantal analysis indicates that long-term potentiation at single hippocampal mossy fiber synapses is expressed through increased release probability, recruitment of new release sites, and activation of silent synapses. J Neurosci 24(14):3618–3626

    Article  PubMed  CAS  Google Scholar 

  • Rolland JF, Henquin JC, Gilon P (2002) G protein-independent activation of an inward Na(+) current by muscarinic receptors in mouse pancreatic beta-cells. J Biol Chem 277(41):38373–38380

    Article  PubMed  CAS  Google Scholar 

  • Saegusa H, Kurihara T, Zong S, Kazuno A, Matsuda Y, Nonaka T, Han W, Toriyama H, Tanabe T (2001) Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. EMBO J 20(10):2349–2356

    Article  PubMed  CAS  Google Scholar 

  • Sandoz G, Lopez-Gonzalez I, Grunwald D, Bichet D, Altafaj X, Weiss N, Ronjat M, Dupuis A, De Waard M (2004) Cavbeta-subunit displacement is a key step to induce the reluctant state of P/Q calcium channels by direct G protein regulation. Proc Natl Acad Sci USA 101(16):6267–6272

    Article  PubMed  CAS  Google Scholar 

  • Schiff ML, Siderovski DP, Jordan JD, Brothers G, Snow B, De Vries L, Ortiz DF, Diverse-Pierluissi M (2000) Tyrosine-kinase-dependent recruitment of RGS12 to the N-type calcium channel. Nature 408(6813):723–727

    Article  PubMed  CAS  Google Scholar 

  • Scornik FS, Codina J, Birnbaumer L, Toro L (1993) Modulation of coronary smooth muscle KCa channels by Gs alpha independent of phosphorylation by protein kinase A. Am J Physiol 265(4 Pt 2):H1460–H1465

    PubMed  CAS  Google Scholar 

  • Shapiro MS, Loose MD, Hamilton SE, Nathanson NM, Gomeza J, Wess J, Hille B (1999) Assignment of muscarinic receptor subtypes mediating G-protein modulation of Ca(2+) channels by using knockout mice. Proc Natl Acad Sci USA 96(19):10899–10904

    Article  PubMed  CAS  Google Scholar 

  • Shirayama T, Matsumoto K, Pappano AJ (1993) Carbachol-induced sodium current in guinea pig ventricular myocytes is not regulated by guanine nucleotides. J Pharmacol Exp Ther 265(2):641–648

    PubMed  CAS  Google Scholar 

  • Sibley DR, Lefkowitz RJ (1985) Molecular mechanisms of receptor desensitization using the beta-adrenergic receptor-coupled adenylate cyclase system as a model. Nature 317(6033):124–129

    Article  PubMed  CAS  Google Scholar 

  • Skeberdis VA, Jurevicius J, Fischmeister R (1997) Beta-2 adrenergic activation of L-type Ca++ current in cardiac myocytes. J Pharmacol Exp Ther 283(2):452–461

    PubMed  CAS  Google Scholar 

  • Snutch TP, Monteil A (2007) The sodium “leak” has finally been plugged. Neuron 54(4):505–507

    Article  PubMed  CAS  Google Scholar 

  • Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119(1):19–31

    Article  PubMed  CAS  Google Scholar 

  • Swayne LA, Mezghrani A, Varrault A, Chemin J, Bertrand G, Dalle S, Bourinet E, Lory P, Miller RJ, Nargeot J, Monteil A (2009) The NALCN ion channel is activated by M3 muscarinic receptors in a pancreatic beta-cell line. EMBO Rep 10(8):873–880

    Article  PubMed  CAS  Google Scholar 

  • Tedford HW, Zamponi GW (2006) Direct G protein modulation of Cav2 calcium channels. Pharmacol Rev 58(4):837–862

    Article  PubMed  CAS  Google Scholar 

  • Tilakaratne N, Sexton PM (2005) G-Protein-coupled receptor-protein interactions: basis for new concepts on receptor structure and function. Clin Exp Pharmacol Physiol 32(11):979–987

    Article  PubMed  CAS  Google Scholar 

  • Tottene A, Conti R, Fabbro A, Vecchia D, Shapovalova M, Santello M, van den Maagdenberg AM, Ferrari MD, Pietrobon D (2009) Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Ca(v)2.1 knockin migraine mice. Neuron 61(5):762–773

    Article  PubMed  CAS  Google Scholar 

  • Tsien RW, Lipscombe D, Madison DV, Bley KR, Fox AP (1988) Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11(10):431–438

    Article  PubMed  CAS  Google Scholar 

  • Tsien RW, Ellinor PT, Horne WA (1991) Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol Sci 12(9):349–354

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Nozaki-Taguchi N, Kimura S (1997) Effects of intrathecally administered nociceptin, an opioid receptor-like1 (ORL1) receptor agonist, on the thermal hyperalgesia induced by unilateral constriction injury to the sciatic nerve in the rat. Neurosci Lett 224(2):107–110

    Article  PubMed  CAS  Google Scholar 

  • Yasuda T, Chen L, Barr W, McRory JE, Lewis RJ, Adams DJ, Zamponi GW (2004) Auxiliary subunit regulation of high-voltage activated calcium channels expressed in mammalian cells. Eur J Neurosci 20(1):1–13

    Article  PubMed  Google Scholar 

  • Zamponi GW, Snutch TP (1998) Modulation of voltage-dependent calcium channels by G proteins. Curr Opin Neurobiol 8(3):351–356

    Article  PubMed  CAS  Google Scholar 

  • Zamponi GW, Bourinet E, Nelson D, Nargeot J, Snutch TP (1997) Crosstalk between G proteins and protein kinase C mediated by the calcium channel alpha1 subunit. Nature 385(6615):F442–446

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge Dr. Robyn Flynn for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Altier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Altier, C. (2012). GPCR and Voltage-Gated Calcium Channels (VGCC) Signaling Complexes. In: Dupré, D., Hébert, T., Jockers, R. (eds) GPCR Signalling Complexes – Synthesis, Assembly, Trafficking and Specificity. Subcellular Biochemistry, vol 63. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4765-4_13

Download citation

Publish with us

Policies and ethics