Skip to main content

Differential Assembly of GPCR Signaling Complexes Determines Signaling Specificity

  • Chapter
  • First Online:
GPCR Signalling Complexes – Synthesis, Assembly, Trafficking and Specificity

Part of the book series: Subcellular Biochemistry ((SCBI,volume 63))

Abstract

Recent proteomic and biochemical evidence indicates that cellular ­signaling is organized in protein modules. G protein-coupled receptors (GPCRs) are privileged entry points for extracellular signals that are transmitted through the plasma membrane into the cell. The adequate cellular response and signaling specificity is regulated by GPCR-associated protein modules. The composition of these modules is dynamic and might depend on receptor stimulation, the proteome of a given cellular context, the subcellular localization of receptor-associated modules, the formation of GPCR oligomers and the variation of expression levels of components of these modules under physiological, for example circadian rhythm, or pathological conditions. The current article will highlight the importance of GPCR-associated protein modules as a biochemical basis for signaling specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adan RA, Kas MJ (2003) Inverse agonism gains weight. Trends Pharmacol Sci 24(6):315–321

    Article  PubMed  CAS  Google Scholar 

  • Altier C, Khosravani H, Evans RM, Hameed S, Peloquin JB, Vartian BA, Chen L, Beedle AM, Ferguson SS, Mezghrani A, Dubel SJ, Bourinet E, McRory JE, Zamponi GW (2006) ORL1 receptor-mediated internalization of N-type calcium channels. Nat Neurosci 9(1):31–40. doi:10.1038/nn1605, pii:nn1605

    Article  PubMed  CAS  Google Scholar 

  • Becamel C, Alonso G, Geleotti N, Demey E, Jouin P, Ullmer C, Dumuis A, Bockaert J, Marin P (2002) Synaptic multiprotein complexes associated with 5-HT2C receptors: a proteomic approach. EMBO J 21(10):2332–2342

    Article  PubMed  CAS  Google Scholar 

  • Beedle AM, McRory JE, Poirot O, Doering CJ, Altier C, Barrere C, Hamid J, Nargeot J, Bourinet E, Zamponi GW (2004) Agonist-independent modulation of N-type calcium channels by ORL1 receptors. Nat Neurosci 7(2):118–125

    Article  PubMed  CAS  Google Scholar 

  • Berbari NF, Johnson AD, Lewis JS, Askwith CC, Mykytyn K (2008) Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol Biol Cell 19(4):1540–1547. doi:10.1091/mbc.E07-09-0942, pii:E07-09-0942

    Article  PubMed  CAS  Google Scholar 

  • Berbari NF, O’Connor AK, Haycraft CJ, Yoder BK (2009) The primary cilium as a complex signaling center. Curr Biol 19(13):R526–R535. doi:10.1016/j.cub.2009.05.025, pii:S0960-9822(09)01126-9

    Article  PubMed  CAS  Google Scholar 

  • Bertaso F, Zhang C, Scheschonka A, de Bock F, Fontanaud P, Marin P, Huganir RL, Betz H, Bockaert J, Fagni L, Lerner-Natoli M (2008) PICK1 uncoupling from mGluR7a causes absence-like seizures. Nat Neurosci 11(8):940–948. doi:10.1038/nn.2142, pii:nn.2142

    Article  PubMed  CAS  Google Scholar 

  • Bertaso F, Roussignol G, Worley P, Bockaert J, Fagni L, Ango F (2010) Homer1a-dependent crosstalk between NMDA and metabotropic glutamate receptors in mouse neurons. PLoS One 5(3):e9755. doi:10.1371/journal.pone.0009755

    Article  PubMed  Google Scholar 

  • Boivin B, Vaniotis G, Allen BG, Hebert TE (2008) G protein-coupled receptors in and on the cell nucleus: a new signaling paradigm? J Recept Signal Transduct Res 28(1–2):15–28. doi:10.1080/10799890801941889, pii:792548935

    PubMed  CAS  Google Scholar 

  • Calebiro D, Nikolaev VO, Persani L, Lohse MJ (2010) Signaling by internalized G-protein-coupled receptors. Trends Pharmacol Sci 31(5):221–228. doi:10.1016/j.tips.2010.02.002, pii:S0165-6147(10)00014-3

    Article  PubMed  CAS  Google Scholar 

  • Ciruela F, Fernandez-Duenas V, Sahlholm K, Fernandez-Alacid L, Nicolau JC, Watanabe M, Lujan R (2010) Evidence for oligomerization between GABAB receptors and GIRK channels containing the GIRK1 and GIRK3 subunits. Eur J Neurosci 32(8):1265–1277. doi:10.1111/j.1460-9568.2010.07356.x

    Article  PubMed  Google Scholar 

  • Cowan CW, Fariss RN, Sokal I, Palczewski K, Wensel TG (1998) High expression levels in cones of RGS9, the predominant GTPase accelerating protein of rods. Proc Natl Acad Sci USA 95(9):5351–5356

    Article  PubMed  CAS  Google Scholar 

  • David M, Richer M, Mamarbachi AM, Villeneuve LR, Dupre DJ, Hebert TE (2006) Interactions between GABA-B1 receptors and Kir 3 inwardly rectifying potassium channels. Cell Signal 18(12):2172–2181. doi:10.1016/j.cellsig.2006.05.014, pii:S0898-6568(06)00102-1

    Article  PubMed  CAS  Google Scholar 

  • Dobkin-Bekman M, Naidich M, Rahamim L, Przedecki F, Almog T, Lim S, Melamed P, Liu P, Wohland T, Yao Z, Seger R, Naor Z (2009) A preformed signaling complex mediates GnRH-activated ERK phosphorylation of paxillin and FAK at focal adhesions in L beta T2 gonadotrope cells. Mol Endocrinol 23(11):1850–1864. doi:10.1210/me.2008-0260, pii:me.2008-0260

    Article  PubMed  CAS  Google Scholar 

  • Doi M, Ishida A, Miyake A, Sato M, Komatsu R, Yamazaki F, Kimura I, Tsuchiya S, Kori H, Seo K, Yamaguchi Y, Matsuo M, Fustin JM, Tanaka R, Santo Y, Yamada H, Takahashi Y, Araki M, Nakao K, Aizawa S, Kobayashi M, Obrietan K, Tsujimoto G, Okamura H (2011) Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus. Nat Commun 2:327. doi:10.1038/ncomms1316, pii:ncomms1316

    Article  PubMed  Google Scholar 

  • Ferrandon S, Feinstein TN, Castro M, Wang B, Bouley R, Potts JT, Gardella TJ, Vilardaga JP (2009) Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat Chem Biol 5(10):734–742. doi:10.1038/nchembio.206, pii:nchembio.206

    Article  PubMed  CAS  Google Scholar 

  • Fowler CE, Aryal P, Suen KF, Slesinger PA (2007) Evidence for association of GABA(B) receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins. J Physiol 580(Pt 1):51–65. doi:10.1113/jphysiol.2006.123216, pii:jphysiol.2006.123216

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson R, Schioth HB (2005) The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol 67(5):1414–1425

    Article  PubMed  CAS  Google Scholar 

  • George SR, Fan T, Xie ZD, Tse R, Tam V, Varghese G, O’Dowd BF (2000) Oligomerization of mu- and delta-opioid receptors – generation of novel functional properties. J Biol Chem 275(34):26128–26135

    Article  PubMed  CAS  Google Scholar 

  • Goetz SC, Anderson KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11(5):331–344. doi:10.1038/nrg2774, pii:nrg2774

    Article  PubMed  CAS  Google Scholar 

  • Gold SJ, Ni YG, Dohlman HG, Nestler EJ (1997) Regulators of G-protein signaling (RGS) proteins: region-specific expression of nine subtypes in rat brain. J Neurosci 17(20):8024–8037

    PubMed  CAS  Google Scholar 

  • Han Y, Moreira IS, Urizar E, Weinstein H, Javitch JA (2009) Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat Chem Biol 5(9):688–695

    Article  PubMed  CAS  Google Scholar 

  • He W, Cowan CW, Wensel TG (1998) RGS9, a GTPase accelerator for phototransduction. Neuron 20(1):95–102, pii:S0896-6273(00)80437-7

    Article  PubMed  Google Scholar 

  • He SQ, Zhang ZN, Guan JS, Liu HR, Zhao B, Wang HB, Li Q, Yang H, Luo J, Li ZY, Wang Q, Lu YJ, Bao L, Zhang X (2011) Facilitation of mu-opioid receptor activity by preventing delta-opioid receptor-mediated codegradation. Neuron 69(1):120–131. doi:10.1016/j.neuron.2010.12.001, pii:S0896-6273(10)00986-4

    Article  PubMed  CAS  Google Scholar 

  • Heydorn A, Sondergaard BP, Ersboll B, Holst B, Nielsen FC, Haft CR, Whistler J, Schwartz TW (2004) A library of 7TM receptor C-terminal tails. Interactions with the proposed post-endocytic sorting proteins ERM-binding phosphoprotein 50 (EBP50), N-ethylmaleimide-sensitive factor (NSF), sorting nexin 1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP). J Biol Chem 279(52):54291–54303

    Article  PubMed  CAS  Google Scholar 

  • Homayoun H, Moghaddam B (2010) Group 5 metabotropic glutamate receptors: role in modulating cortical activity and relevance to cognition. Eur J Pharmacol 639(1–3):33–39. doi:10.1016/j.ejphar.2009.12.042, pii:S0014-2999(10)00254-2

    Article  PubMed  CAS  Google Scholar 

  • Hurst JH, Hooks SB (2009) Regulator of G-protein signaling (RGS) proteins in cancer biology. Biochem Pharmacol 78(10):1289–1297. doi:10.1016/j.bcp.2009.06.028, pii:S0006-2952(09)00497-3

    Article  PubMed  CAS  Google Scholar 

  • Insel PA, Head BP, Ostrom RS, Patel HH, Swaney JS, Tang CM, Roth DM (2005) Caveolae and lipid rafts: G protein-coupled receptor signaling microdomains in cardiac myocytes. Ann N Y Acad Sci 1047:166–172. doi:10.1196/annals.1341.015, pii:1047/1/166

    Article  PubMed  CAS  Google Scholar 

  • Jaen C, Doupnik CA (2006) RGS3 and RGS4 differentially associate with G protein-coupled receptor-Kir3 channel signaling complexes revealing two modes of RGS modulation. Precoupling and collision coupling. J Biol Chem 281(45):34549–34560. doi:10.1074/jbc.M603177200, pii:M603177200

    Article  PubMed  CAS  Google Scholar 

  • Ji SP, Zhang Y, Van Cleemput J, Jiang W, Liao M, Li L, Wan Q, Backstrom JR, Zhang X (2006) Disruption of PTEN coupling with 5-HT2C receptors suppresses behavioral responses induced by drugs of abuse. Nat Med 12(3):324–329. doi:10.1038/nm1349, pii:nm1349

    Article  PubMed  CAS  Google Scholar 

  • Kamal M, Maurice P, Jockers R (2011) Expanding the concept of G protein-coupled receptor (GPCR) dimer asymmetry towards GPCR-interacting proteins. Pharmaceuticals 4:273–284

    Article  CAS  Google Scholar 

  • Lavine N, Ethier N, Oak JN, Pei L, Liu F, Trieu P, Rebois RV, Bouvier M, Hebert TE, Van Tol HH (2002) G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J Biol Chem 277(48):46010–46019. doi:10.1074/jbc.M205035200, pii:M205035200

    Article  PubMed  CAS  Google Scholar 

  • Lee FJ, Xue S, Pei L, Vukusic B, Chery N, Wang Y, Wang YT, Niznik HB, Yu XM, Liu F (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 111(2):219–230, pii:S0092867402009625

    Article  PubMed  CAS  Google Scholar 

  • Lee FJ, Pei L, Moszczynska A, Vukusic B, Fletcher PJ, Liu F (2007) Dopamine transporter cell surface localization facilitated by a direct interaction with the dopamine D2 receptor. EMBO J 26(8):2127–2136. doi:10.1038/sj.emboj.7601656, pii:7601656

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Wan Q, Pristupa ZB, Yu XM, Wang YT, Niznik HB (2000) Direct protein-protein coupling enables cross-talk between dopamine D5 and gamma-aminobutyric acid A receptors. Nature 403(6767):274–280. doi:10.1038/35002014

    Article  PubMed  CAS  Google Scholar 

  • Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5:407–441. doi:10.1146/annurev.genom.5.061903.175925

    Article  PubMed  CAS  Google Scholar 

  • Lu TL, Kuo FT, Lu TJ, Hsu CY, Fu HW (2006) Negative regulation of protease-activated receptor 1-induced Src kinase activity by the association of phosphocaveolin-1 with Csk. Cell Signal 18(11):1977–1987. doi:10.1016/j.cellsig.2006.03.002, pii:S0898-6568(06)00068-4

    Article  PubMed  CAS  Google Scholar 

  • Mancuso JJ, Qian Y, Long C, Wu GY, Wensel TG (2010) Distribution of RGS9-2 in neurons ofthe mouse striatum. J Neurochem 112(3):651–661. doi:10.1111/j.1471-4159.2009.06488.x, pii:JNC6488

    Article  PubMed  CAS  Google Scholar 

  • Marazziti D, Mandillo S, Di Pietro C, Golini E, Matteoni R, Tocchini-Valentini GP (2007) GPR37 associates with the dopamine transporter to modulate dopamine uptake and behavioral responses to dopaminergic drugs. Proc Natl Acad Sci USA 104(23):9846–9851

    Article  PubMed  CAS  Google Scholar 

  • Maurice P, Daulat AM, Turecek R, Ivankova-Susankova K, Zamponi F, Kamal M, Clement N, Guillaume JL, Bettler B, Gales C, Delagrange P, Jockers R (2010) Molecular organization and dynamics of the melatonin MT receptor/RGS20/G(i) protein complex reveal asymmetry of receptor dimers for RGS and G(i) coupling. EMBO J 29(21):3646–3659. doi:10.1038/emboj.2010.236, pii:emboj2010236

    Article  PubMed  CAS  Google Scholar 

  • Maurice P, Kamal M, Jockers R (2011) Asymmetry of GPCR oligomers supports their functional relevance. Trends Pharmacol Sci 32(9):514–520. doi:10.1016/j.tips.2011.05.006, pii:S0165-6147(11)00095-2

    Article  PubMed  CAS  Google Scholar 

  • Michaelides M, Li Z, Rana NA, Richardson EC, Hykin PG, Moore AT, Holder GE, Webster AR (2010) Novel mutations and electrophysiologic findings in RGS9- and R9AP-associated retinal dysfunction (Bradyopsia). Ophthalmology 117(1):120–127. e1. doi:10.1016/j.ophtha.2009.06.011, pii:S0161-6420(09)00613-7

    Article  PubMed  Google Scholar 

  • Milligan G (2009) G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br J Pharmacol 158(1):5–14

    Article  PubMed  CAS  Google Scholar 

  • Nishiguchi KM, Sandberg MA, Kooijman AC, Martemyanov KA, Pott JW, Hagstrom SA, Arshavsky VY, Berson EL, Dryja TP (2004) Defects in RGS9 or its anchor protein R9AP in patients with slow photoreceptor deactivation. Nature 427(6969):75–78. doi:10.1038/nature02170

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, LeTrong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480):739–745

    Article  PubMed  CAS  Google Scholar 

  • Pei L, Li S, Wang M, Diwan M, Anisman H, Fletcher PJ, Nobrega JN, Liu F (2010) Uncoupling the dopamine D1-D2 receptor complex exerts antidepressant-like effects. Nat Med 16(12):1393–1395. doi:10.1038/nm.2263, pii:nm.2263

    Article  PubMed  CAS  Google Scholar 

  • Perroy J, Raynaud F, Homburger V, Rousset MC, Telley L, Bockaert J, Fagni L (2008) Direct interaction enables cross-talk between ionotropic and group I metabotropic glutamate receptors. J Biol Chem 283(11):6799–6805. doi:10.1074/jbc.M705661200, pii:M705661200

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer M, Koch T, Schroder H, Laugsch M, Hollt V, Schulz S (2002) Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. J Biol Chem 277(22):19762–19772

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer M, Kirscht S, Stumm R, Koch T, Wu D, Laugsch M, Schroder H, Hollt V, Schulz S (2003) Heterodimerization of substance P and mu-opioid receptors regulates receptor trafficking and resensitization. J Biol Chem 278(51):51630–51637. doi:10.1074/jbc.M307095200, pii:M307095200

    Article  PubMed  CAS  Google Scholar 

  • Pichon X, Wattiez AS, Becamel C, Ehrlich I, Bockaert J, Eschalier A, Marin P, Courteix C (2010) Disrupting 5-HT(2A) receptor/PDZ protein interactions reduces hyperalgesia and enhances SSRI efficacy in neuropathic pain. Mol Ther 18(8):1462–1470. doi:10.1038/mt.2010.101, pii:mt2010101

    Article  PubMed  CAS  Google Scholar 

  • Rashid AJ, So CH, Kong MM, Furtak T, El-Ghundi M, Cheng R, O’Dowd BF, George SR (2007) D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci USA 104(2):654–659

    Article  PubMed  CAS  Google Scholar 

  • Reiner S, Ambrosio M, Hoffmann C, Lohse MJ (2010) Differential signaling of the endogenous agonists at the beta2-adrenergic receptor. J Biol Chem 285(46):36188–36198. doi:10.1074/jbc.M110.175604, pii:M110.175604

    Article  PubMed  CAS  Google Scholar 

  • Reiter E, Lefkowitz RJ (2006) GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab 17(4):159–165

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941

    Article  PubMed  CAS  Google Scholar 

  • Shen HC, Ding FX, Raghavan S, Deng Q, Luell S, Forrest MJ, Carballo-Jane E, Wilsie LC, Krsmanovic ML, Taggart AK, Wu KK, Wu TJ, Cheng K, Ren N, Cai TQ, Chen Q, Wang J, Wolff MS, Tong X, Holt TG, Waters MG, Hammond ML, Tata JR, Colletti SL (2010) Discovery of a biaryl cyclohexene carboxylic acid (MK-6892): a potent and selective high affinity niacin receptor full agonist with reduced flushing profiles in animals as a preclinical candidate. J Med Chem 53(6):2666–2670. doi:10.1021/jm100022r

    Article  PubMed  CAS  Google Scholar 

  • Shi GW, Chen J, Concepcion F, Motamedchaboki K, Marjoram P, Langen R (2005) Light causes phosphorylation of nonactivated visual pigments in intact mouse rod photoreceptor cells. J Biol Chem 280(50):41184–41191. doi:10.1074/jbc.M506935200, pii:M506935200

    Article  PubMed  CAS  Google Scholar 

  • Sjogren B (2011) Regulator of G protein signaling proteins as drug targets: current state and future possibilities. Adv Pharmacol 62:315–347. doi:10.1016/B978-0-12-385952-5.00002-6, pii:B978-0-12-385952-5.00002-6

    Article  PubMed  CAS  Google Scholar 

  • Sujino M, Masumoto KH, Yamaguchi S, van der Horst GT, Okamura H, Inouye ST (2003) Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr Biol 13(8):664–668, pii:S0960982203002227

    Article  PubMed  CAS  Google Scholar 

  • Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, Brown A, Rodriguez SS, Weller JR, Wright AC, Bergmann JE, Gaitanaris GA (2003) The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci USA 100(8):4903–4908

    Article  PubMed  CAS  Google Scholar 

  • Walters RW, Shukla AK, Kovacs JJ, Violin JD, DeWire SM, Lam CM, Chen JR, Muehlbauer MJ, Whalen EJ, Lefkowitz RJ (2009) Beta-Arrestin1 mediates nicotinic acid-induced flushing, but not its antilipolytic effect, in mice. J Clin Invest 119(5):1312–1321. doi:10.1172/JCI36806, pii:36806

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330(6007):1066–1071. doi:10.1126/science.1194396, pii:science.1194396

    Article  PubMed  CAS  Google Scholar 

  • Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T, Nusinow DA, Sun X, Landais S, Kodama Y, Brenner DA, Montminy M, Kay SA (2010) Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16(10):1152–1156. doi:10.1038/nm.2214, pii:nm.2214

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jean-Luc Guillaume (Institut Cochin, Paris) for critical reading of the manuscript. This work was supported by grants from the Fondation pour la Recherche Médicale (“Equipe FRM”, to RJ), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Servier and a research fellowship from the Ile-de-France region (ABC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Jockers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maurice, P., Benleulmi-Chaachoua, A., Jockers, R. (2012). Differential Assembly of GPCR Signaling Complexes Determines Signaling Specificity. In: Dupré, D., Hébert, T., Jockers, R. (eds) GPCR Signalling Complexes – Synthesis, Assembly, Trafficking and Specificity. Subcellular Biochemistry, vol 63. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4765-4_12

Download citation

Publish with us

Policies and ethics