Skip to main content

A Transcriptional Roadmap for Seed Development in Maize

  • Chapter
  • First Online:

Abstract

Maize (Zea mays L.) is an important source for food, feed, and fuel with rapidly increasing global demand. According to the Food and Agriculture Organization, it is amongst the top three crops in terms of its production and consumption throughout the world. To date, several studies have unraveled many aspects of the physiological, biochemical, transcriptomics, and proteomics properties of maize seed development. Those studies have helped in better understanding the underlying genetic control of this important event in maize, and cereal seeds in general. In this chapter, we discuss the transcriptomic behavior of maize plants during seed developmental phase and highlight the regulatory roadmap for the synthesis of starch, fatty acids, and storage proteins in seeds. Genes associated with seed development will not only provide information for understanding the transcriptional network during seed development, but also will provide a blueprint for future modification of seed quality and seed vigor through genetic engineering in maize, and other important cereal crops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albani D, Hammond-Kosack MC, Smith C, Conlan S, Colot V, Holdsworth M, Bevan MW (1997) The wheat transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. Plant Cell 9:171–184

    PubMed  CAS  Google Scholar 

  • Alexandrov NN, Brover VV, Freidin S, Troukhan ME, Tatarinova TV, Zhang H, Swaller TJ, Lu YP, Bouck J, Flavell RB, Feldmann KA (2009) Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol Biol 69:179–194

    Article  PubMed  CAS  Google Scholar 

  • Baud S, Mendoza MS, To A, Harscoet E, Lepiniec L, Dubreucq B (2007) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50:825–838

    Article  PubMed  CAS  Google Scholar 

  • Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L (2008) Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. The Arabidopsis Book, 1–24

    Google Scholar 

  • Berger F (1999) Endosperm development. Curr Opin Plant Biol 2:28–32

    Article  PubMed  CAS  Google Scholar 

  • Canas RA, Quillere I, Christ A, Hirel B (2009) Nitrogen metabolism in the developing ear of maize (Zea mays): analysis of two lines contrasting in their mode of nitrogen management. New Phytol 184:340–352

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC, McCann MC (2008) Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci 13:415–420

    Article  PubMed  CAS  Google Scholar 

  • Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury AM, Craig S, Dennis E, Peacock W (1998) Ovule and embryo development, apomixis and fertilization. Curr Opin Plant Biol 1:26–31

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury AM, Koltunow A, Payne T, Luo M, Tucker MR, Dennis ES, Peacock WJ (2001) Control of early seed development. Annu Rev Cell Dev Biol 17:677–699

    Article  PubMed  CAS  Google Scholar 

  • Conlan RS, Hammond-Kosack M, Bevan M (1999) Transcription activation mediated by the bZIP factor SPA on the endosperm box is modulated by ESBF-1 in vitro. Plant J 19:173–181

    Article  PubMed  CAS  Google Scholar 

  • Curtis PE, Leng ER, Hageman RH (1968) Developmental changes in oil and fatty acid content of maize strains varying in oil content. Crop Sci 8:689–693

    Article  CAS  Google Scholar 

  • Diaz I, Vicente-Carbajosa J, Abraham Z, Martínez M, Isabel-La MI, Carbonero P (2002) The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. Plant J 29:453–464

    Article  PubMed  CAS  Google Scholar 

  • Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149:7–13

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff NV (2010) The past, present and future of crop genetic modification. Nat Biotechnol 27:461–465

    CAS  Google Scholar 

  • Feng L, Zhu J, Wang G, Tang Y, Chen H, Jin W, Wang F, Mei B, Xu Z, Song R (2009) Expressional profiling study revealed unique expressional patterns and dramatic expressional divergence of maize alpha-zein super gene family. Plant Mol Biol 69:649–659

    Article  PubMed  CAS  Google Scholar 

  • Fontanet P, Vicient CM (2008) Maize embryogenesis. Methods Mol Biol 427:17–29

    Article  PubMed  CAS  Google Scholar 

  • Forde BG, Heyworth A, Pywell J, Kreis M (1985) Nucleotide sequence of a B1 hordein gene and the identification of possible upstream regulatory elements in endosperm storage protein genes from barley, wheat, and maize. Nucl Acids Res 13:7327–7339

    Article  PubMed  CAS  Google Scholar 

  • Fu FF, Xue HW (2010) Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol 154:927–938

    Article  PubMed  CAS  Google Scholar 

  • Glawischnig E, Gierl A, Tomas A, Bacher A, Eisenreich W (2002) Starch biosynthesis and intermediary metabolism in maize kernels. Quantitative analysis of metabolite flux by nuclear magnetic resonance. Plant Physiol 130:1717–1727

    Article  PubMed  CAS  Google Scholar 

  • Goldberg RB, Barker SJ, Perez-Grau L (1989) Regulation of gene expression during plant embryogenesis. Cell 56:149–160

    Article  PubMed  CAS  Google Scholar 

  • Grimanelli D, Perotti E, Ramirez J, Leblanc O (2005) Timing of the maternal-to-zygotic transition during early seed development in maize. Plant Cell 17:1061–1072

    Article  PubMed  CAS  Google Scholar 

  • Guo M, Rupe MA, Danilevskaya ON, Yang X, Hu Z (2003) Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. Plant J 36:30–44

    Article  PubMed  CAS  Google Scholar 

  • Heidecker G, Messing J (1986) Structural analysis of plant genes. Annu Rev Plant Physiol 37:439–446

    Article  CAS  Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    Article  PubMed  CAS  Google Scholar 

  • Kawakatsu T, Takaiwa F (2010) Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains. Plant Biotechnol J 8:939–953

    Article  PubMed  CAS  Google Scholar 

  • Kiesselbach TA (1998) The structure and reproduction of corn. 50th anniversary edition. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Lai J, Dey N, Kim CS, Bharti AK, Rudd S, Mayer KF, Larkins BA, Becraft P, Messing J (2004) Characterization of the maize endosperm transcriptome and its comparison to the rice genome. Genome Res 14:1932–1937

    Article  PubMed  Google Scholar 

  • Lee JM, Williams ME, Tingey SV, Rafalski JA (2002) DNA array profiling of gene expression changes during maize embryo development. Funct Integr Genomics 2:13–27

    Article  PubMed  CAS  Google Scholar 

  • Lei XH, Shen X, Xu XQ, Bernstein HS (2000) Human Cdc5, a regulator of mitotic entry, can act as a site-specific DNA binding protein. J Cell Sci 113:4523–4531

    PubMed  CAS  Google Scholar 

  • Liu X, Fu J, Gu D, Liu W, Liu T, Peng Y, Wang J, Wang G (2008) Genome-wide analysis of gene expression profiles during the kernel development of maize (Zea mays L.). Genomics 91:378–387

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Liu J, Lee RD, Guo BZ (2008) Characterization of gene expression profiles in developing kernels of maize (Zea mays) inbred Tex6. Plant Breeding 127:569–578

    Article  CAS  Google Scholar 

  • Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K (2009) An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60:476–487

    Article  PubMed  CAS  Google Scholar 

  • Marioni JC, Mason CE, Mane SM, AStephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  PubMed  CAS  Google Scholar 

  • Méchin V, Balliau T, Château-Joubert S, Davanture M, Langella O, Négroni L, Prioul JL, Thévenot C, Zivy M, Damerval C (2004) A two-dimensional proteome map of maize endosperm. Phytochemistry 65:1609–1618

    Article  PubMed  Google Scholar 

  • Méchin V, Thévenot C, Le Guilloux M, Prioul JL, Damerval C (2007) Developmental analysis of maize endosperm proteome suggests a pivotal role for pyruvate orthophosphate dikinase. Plant Physiol 143:1203–1219

    Article  PubMed  Google Scholar 

  • Mena M, Vicente-Carbajosa J, Schmidt RJ, Carbonero P (1998) An endosperm-specific DOF protein from barley, highly conserved in wheat, binds to and activates transcription from prolamin-box of a native B-hordein promoter in barley endosperm. Plant J 16:53–62

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Risueno MA, Gonzalez N, Diaz I, Parcy F, Carbonero P, Vicente-Carbajosa J (2008) FUSCA3 from barley unveils a common transcriptional regulation of seed-specific genes between cereals and Arabidopsis. Plant J 53:882–894

    Article  PubMed  CAS  Google Scholar 

  • Mu J, Tan H, Zheng Q, Fu F, Liang Y, Zhang J, Yang X, Wang T, Chong K, Wang XJ, Zuo J (2008) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148:1042–1054

    Article  PubMed  CAS  Google Scholar 

  • Mutisya J, Sun C, Palmqvist S, Baguma Y, Odhiambo B, Jansson C (2006) Transcriptional regulation of the sbeIIb genes in sorghum (Sorghum bicolor) and barley (Hordeum vulgare): Importance of the barley sbeIIb second intron. J Plant Physiol 163:770–780

    Article  PubMed  CAS  Google Scholar 

  • Neuffer MG, Sheridan WF (1980) Defective kernel mutants of maize. I. Genetic and lethality studies. Genetics 95:929–944

    Google Scholar 

  • Olsen OA (2001) Endosperm development: cellularization and cell fate specification. Annu Rev Plant Physiol Plant Mol Biol 52:233–267

    Article  PubMed  CAS  Google Scholar 

  • Onodera Y, Suzuki A, Wu CY, Washida H, Takaiwa F (2001) A rice functional transcriptional activator, RISBZ1, responsible for endosperm-specific expression of storage protein genes through GCN4 motif. J Biol Chem 276:14139–14152

    Google Scholar 

  • Oñate L, Vicente-Carbajosa J, Lara P, Díaz I, Carbonero P (1999) Barley BLZ2, a seed-specific bZIP protein that interacts with BLZ1 in vivo and activates transcription from the GCN4-like motif of B-hordein promoters in barley endosperm. J Biol Chem 274:9175–9182

    Article  PubMed  Google Scholar 

  • Prioul JL, Méchin V, Lessard P, Thévenot C, Grimmer M, Chateau-Joubert S, Coates S, Hartings H, Kloiber-Maitz M, Murigneux A, Sarda X, Damerval C, Edwards KJ (2008) A joint transcriptomic, proteomic and metabolic analysis of maize endosperm development and starch filling. Plant Biotechnol J 6:855–869

    Article  PubMed  CAS  Google Scholar 

  • Sabelli PA, Larkins BA (2009) The contribution of cell cycle regulation to endosperm development. Sex Plant Reprod 22:207–219

    Article  PubMed  Google Scholar 

  • Schmidt RJ, Ketudat M, Aukerman MJ, Hoschek G (1992) Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. Plant Cell 4:689–700

    PubMed  CAS  Google Scholar 

  • Seebauer JR, Moose SP, Fabbri BJ, Crossland LD, Below FE (2004) Amino acid metabolism in maize earshoots. Implications for assimilate preconditioning and nitrogen signaling. Plant Physiol 136:4326–4334

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Allen WB, Zheng P, Li C, Glassman K, Ranch J, Nubel D, Tarczynski MC (2010) Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol 153:980–987

    Article  PubMed  CAS  Google Scholar 

  • Soderlund C, Descour A, Kudrna D, Bomhoff M, Boyd L, Currie J, Angelova A, Collura K, Wissotski M, Ashley E, Morrow D, Fernandes J, Walbot V, Yu Y (2009) Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs. PLoS Genet 5:e1000740

    Google Scholar 

  • Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15:2076–2092

    Article  PubMed  CAS  Google Scholar 

  • Takaiwa F, Yamanouchi U, Yoshihara T, Washida H, Tanabe F, Kato A, Yamada K (1996) Characterization of common cis-regulatory elements responsible for the endosperm-specific expression of members of the rice glutelin multigene family. Plant Mol Biol 30:1207–1221

    Article  PubMed  CAS  Google Scholar 

  • Verza NC, E Silva TR, Neto GC, Nogueira FT, Fisch PH, de Rosa VE Jr, Rebello MM, Vettore AL, da Silva FR, Arruda P (2005) Endosperm-preferred expression of maize genes as revealed by transcriptome-wide analysis of expressed sequence tags. Plant Mol Biol 59:363–374

    Article  PubMed  CAS  Google Scholar 

  • Vicente-Carbajosa J, Moose SP, Parsons RL, Schmidt RJ (1997) A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci U S A 94:7685–7690

    Google Scholar 

  • Vodermaier HC (2004) APC/C and SCF: controlling each other and the cell cycle. Curr Biol 14:R787–R796

    Article  PubMed  CAS  Google Scholar 

  • Wang GF, Wang H, Zhu J, Zhang J, Zhang XW, Wang F, Tang YP, Mei B, Xu ZK, Song RT (2010) An expression analysis of 57 transcription factors derived from ESTs of developing seeds in maize (Zea mays). Plant Cell Rep 29:545–559

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  • Wobus U, Weber H (1999) Sugars as signal molecules in plant seed development. Biol Chem 380:937–944

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto MP, Onodera Y, Touno SM, Takaiwa F (2006) Synergism between RPBF Dof and RISBZ1 bZIP activators in the regulation of rice seed expression genes. Plant Physiol 141:1694–1707

    Article  PubMed  CAS  Google Scholar 

  • Yan HB, Pan XX, Jiang HW, Wu GJ (2009) Comparison of the starch synthesis genes between maize and rice: copies, chromosome location and expression divergence. Theor Appl Genet 119:815–825

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors acknowledge and thank the National Natural Sciences Foundation of China (31000747, 30671303, 30700472, and 30900900) for supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rentao Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wang, G., Wang, G., Wang, F., Song, R. (2012). A Transcriptional Roadmap for Seed Development in Maize. In: Agrawal, G., Rakwal, R. (eds) Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4749-4_5

Download citation

Publish with us

Policies and ethics