Skip to main content

Metabolic Specialization of Maternal and Filial Tissues

  • Chapter
  • First Online:
  • 2229 Accesses

Abstract

The seed consists of three principal components of maternal (seed coats) or zygotic (embryo and endosperm) origin with distinct functions, but that interplay throughout their development to ensure the accumulation of storage compounds for successful germination and early seedling growth. The reserves stored in mature seeds represent major human and livestock food sources. Therefore, much research and breeding efforts are concentrated on optimizing seed quality and yield. The principal filial storage organ differs between species. For example, it is the endosperm for cereal grains accumulating high amount of starch, and the embryo for protein-rich legume seeds. These organs are surrounded by tissues of maternal and/or zygotic origin, depending on the species, which represent a protective barrier and play a role in furnishing the filial organ with nutrients and oxygen. Seed tissues and cell types have been individually studied by the omics approaches with a view to dissecting the molecular processes underlying reserve accumulation. The most comprehensive analyses have been performed at the transcriptome and/or proteome levels in various species, including Medicago, soybean, Arabidopsis, sugar beet, barley, wheat, maize, rice, and tomato. Here, we report the division of metabolic activities between seed tissues, based on the identification and ontological classification of gene products differentially accumulated between seed tissues. The work allowed metabolic networks to be proposed in specific tissue-types and regulatory factors to be identified, two fundamental tasks in systems biology, with an ultimate goal to undertake a computational reconstruction of tissue-specific metabolic models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Almagro A, Hua SL, Tsay YF (2008) Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. Plant Cell 20:3289–3299

    Article  PubMed  CAS  Google Scholar 

  • Awazuhara M, Fujiwara T, Hayashi H, Watanabe-Takahashi A, Takahashi H, Saito K (2005) The function of SULTR2;1 sulfate transporter during seed development in Arabidopsis thaliana. Physiol Plant 125:95–105

    Article  CAS  Google Scholar 

  • Balmer Y, Vensel WH, DuPont FM, Buchanan BB, Hurkman WJ (2006) Proteome of amyloplasts isolated from developing wheat endosperm presents evidence of broad metabolic capability. J Exp Bot 57:1591–1602

    Article  PubMed  CAS  Google Scholar 

  • Baud S, Wuilleme S, Lemoine R, Kronenberger J, Caboche M, Lepiniec L, Rochat C (2005) The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. Plant J 43:824–836

    Google Scholar 

  • Berger F, Grini PE, Schnittger A (2006) Endosperm: an integrator of seed growth and development. Curr Opin Plant Biol 9:664–670

    Article  PubMed  CAS  Google Scholar 

  • Buitink J, Leger JJ, Guisle I, Vu BL, Wuillème S, Lamirault G, Bars A L, Meur NL, Becker A, Küster H, and Leprince O (2006) Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds. Plant J 47:735–750

    CAS  Google Scholar 

  • Casson S, Spencer M, Walker K, Lindsey K (2005) Laser-capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J 42:111–123

    Article  PubMed  CAS  Google Scholar 

  • Catusse J, Strub JM, Job C, Van Dorsselaer JM, Job D (2008) Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression. Proc Natl Acad Sci USA 105:10262–10267

    Google Scholar 

  • Day RC, Herridge RP, Ambrose BA, Macknight RC (2008) Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation. Plant Physiol 148:1964–1984

    Article  PubMed  CAS  Google Scholar 

  • Day RC, Müller S, Macknight RC (2009) Identification of cytoskeleton-associated genes expressed during Arabidopsis syncytial endosperm development. Plant Signal Behav 4:883–886

    Article  PubMed  CAS  Google Scholar 

  • De Folter S, Immink RGH, Kieffer M, Parenicova L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC (2005) Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17:1424–1433

    Article  PubMed  Google Scholar 

  • Debeaujon I, Peeters AJM, Léon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–872

    PubMed  CAS  Google Scholar 

  • Diaz I, Vicente-Carbajosa J, Abraham Z, Martínez M, Isabel-La MI, Carbonero P (2002) The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm‐specific genes during seed development. Plant J 29:453–464

    Article  PubMed  CAS  Google Scholar 

  • Drea S, Leader DJ, Arnold BC, Shaw P, Dolan L, Doonan JH (2005) Systematic spatial analysis of gene expression during wheat caryopsis development. Plant Cell 17:2172–2185

    Article  PubMed  CAS  Google Scholar 

  • Finnie C, Svensson B (2003) Feasibility study of a tissue-specific approach to barley proteome analysis: aleurone layer, endosperm, embryo and single seeds. J Cereal Sci 38:217–227

    Article  CAS  Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2002) Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Physiol Plant 116:238–247

    Article  PubMed  CAS  Google Scholar 

  • Gallardo K, Kurt C, Thompson R, Ochatt S (2006) In vitro culture of immature M. truncatula grains under conditions permitting embryo development comparable to that observed in vivo. Plant Sci 170:1052–1058

    Article  CAS  Google Scholar 

  • Gallardo K, Firnhaber C, Zuber H, Hericher D, Belghazi M, Henry C, Kuster H, Thompson RD (2007) A combined proteome and transcriptome analysis of developing Medicago truncatula seeds. Mol Cell Proteomics 6:2165–2179

    Article  CAS  Google Scholar 

  • Goldberg RB, de Paiva G, Yadegari R (1994) Plant embryogenesis-zygote to seed. Science 266:605–614

    Article  PubMed  CAS  Google Scholar 

  • Grafahrend-Belau E, Schreiber F, Koschützki D, Junker BH (2009) Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism. Plant Physiol 149:585–598

    Article  PubMed  CAS  Google Scholar 

  • Hajduch M, Ganapathy A, Stein JW, Thelen JJ (2005) A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol 137:1397–1419

    Article  PubMed  CAS  Google Scholar 

  • Hirner B, Fischer WN, Rentsch D, Kwart M, Frommer WB (1998) Developmental control of H + /amino acid permease gene expression during seed development of Arabidopsis. Plant J 14:535–544

    Article  PubMed  CAS  Google Scholar 

  • Jerby L, Shlomi T, Ruppin E (2010) Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol Syst Biol 6:401

    Article  PubMed  Google Scholar 

  • Kawashima T, Goldberg RB (2010) The suspensor: not just suspending the embryo. Trends Plant Sci 15:23–30

    Article  PubMed  CAS  Google Scholar 

  • Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:1295–1298

    Article  CAS  Google Scholar 

  • Lai J, Dey N, Kim CS, Bharti AK, Rudd S, Mayer KF, Larkins BA, Becraft P, Messing J (2004) Characterization of the maize endosperm transcriptome and its comparison to the rice genome. Genome Res 14:1932–1937

    Article  PubMed  Google Scholar 

  • Le BH, Wagmaister JA, Kawashima T, Bui AQ, Harada JJ, Goldberg RB (2007) Using genomics to study legume seed development. Plant Physiol 144:562–574

    Article  PubMed  CAS  Google Scholar 

  • Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, Drews GN, Fischer RL, Okamuro JK, Harada JJ, Goldberg RB (2010) Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci U S A 107:8063–8070

    Article  PubMed  CAS  Google Scholar 

  • Li CY, Li WH, Li C, Gaudet DA, Laroche A, Cao LP, Lu ZX (2010) Starch synthesis and programmed cell death during endosperm development in triticale (×Triticosecale Wittmack). J Integr Plant Biol 52:602–615

    PubMed  CAS  Google Scholar 

  • Lopes MA, Larkins BA (1993) Endosperm origin, development, and function. Plant Cell 5:1383–1399

    PubMed  CAS  Google Scholar 

  • Méchin V, Balliau T, Château-Joubert S, Davanture M, Langella O, Négroni L, Prioul JL, Thévenot C, Zivy M, Damerval C (2004) A two-dimensional proteome map of maize endosperm. Phytochemistry 65:1609–1618

    Article  PubMed  Google Scholar 

  • Méchin V, Thévenot C, Le Guilloux M, Prioul JL, Damerval C (2007) Developmental analysis of maize endosperm proteome suggests a pivotal role for pyruvate orthophosphate dikinase. Plant Physiol 143:1203–1219

    Article  PubMed  Google Scholar 

  • Meinke DW, Franzmann LH, Nickle TC, Yeung EC (1994) Leafy cotyledon mutants of Arabidopsis. Plant Cell 6:1049–1064

    PubMed  CAS  Google Scholar 

  • Mena M, Vicente-Carbajosa J, Schmidt RJ, Carbonero P (1998) An endosperm-specific DOF protein from barley, highly conserved in wheat, binds to and activates transcription from prolamin-box of a native B-hordein promoter in barley endosperm. Plant J 16:53–62

    Article  PubMed  CAS  Google Scholar 

  • Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJV (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc Natl Acad Sci U S A 94:8393–8398

    Article  PubMed  CAS  Google Scholar 

  • Olsen OA (2004) Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16:S214-S227

    Article  PubMed  CAS  Google Scholar 

  • Opsahl-Ferstad HG, Le Deunff E, Dumas C, Rogowsky PM (1997) ZmEsr, a novel endosperm-specific gene expressed in a restricted region around the maize embryo. Plant J 12:235–246

    Article  PubMed  CAS  Google Scholar 

  • Penfield S, Josse EM, Kannangara R, Gilday AD, Halliday KJ, Graham IA (2005) Cold and light control seed germination through the bHLH transcription factor SPATULA. Curr Biol 15:1998–2006

    Article  PubMed  CAS  Google Scholar 

  • Prioul JL, Méchin V, Lessard P, Thévenot C, Grimmer M, Chateau-Joubert S, Coates S, Hartings H, Kloiber-Maitz M, Murigneux A, Sarda X, Damerval C, Edwards KJ (2008a) A joint transcriptomic, proteomic and metabolic analysis of maize endosperm development and starch filling. Plant Biotechnol J 6:855–869

    Article  CAS  Google Scholar 

  • Prioul JL, Méchin V, Damerval C (2008b) Molecular and biochemical mechanisms in maize endosperm development: the role of pyruvate-Pi-dikinase and Opaque-2 in the control of C/N ratio. C R Biol 331:772–779

    Article  CAS  Google Scholar 

  • Punshon T, Guerinot ML, Lanzirotti A (2009) Using synchrotron X-ray fluorescence microprobes in the study of metal homeostasis in plants. Ann Bot 103:665–672

    Article  PubMed  CAS  Google Scholar 

  • Radchuk VV, Borisjuk L, Sreenivasulu N, Merx K, Mock HP, Rolletschek H, Wobus U, Weschke W (2009) Spatiotemporal profiling of starch biosynthesis and degradation in the developing barley grain. Plant Physiol 150:190–204

    Article  PubMed  CAS  Google Scholar 

  • Rolletschek H, Radchuk R, Klukas C, Schreiber F, Wobus U, and Borisjuk L (2005) Evidence of a key role for photosynthetic oxygen release in oil storage in developing soybean seeds. New Phytol 167:777–786

    Article  PubMed  CAS  Google Scholar 

  • Rolletschek H, Weschke W, Weber H, Wobus U, Borisjuk L (2004) Energy state and its control on seed development: starch accumulation is associated with high ATP and steep oxygen gradients within barley grains. J Exp Bot 55:1351–1359

    Article  PubMed  CAS  Google Scholar 

  • Roschzttardtz H, Conéjéro G, Curie C, Mari S (2009) Identification of the endodermal vacuole as the iron storage compartment in the Arabidopsis embryo. Plant Physiol 151:1329–1338

    Article  PubMed  CAS  Google Scholar 

  • Saleem M, Lamkemeyer T, Schützenmeister A, Fladerer C, Piepho HP, Nordheim A, Hochholdinger F (2009) Tissue specific control of the maize (Zea mays L.) embryo, cortical parenchyma, and stele proteomes by RUM1 which regulates seminal and lateral root initiation. J Proteome Res 8:2285–2297

    Article  PubMed  CAS  Google Scholar 

  • Sheoran IS, Olson DJ, Ross AR, Sawhney VK (2005) Proteome analysis of embryo and endosperm from germinating tomato seeds. Proteomics 5:3752–3764

    Article  PubMed  CAS  Google Scholar 

  • Spencer MWB, Casson SA, Lindsey K (2007) Transcriptional profiling of the Arabidopsis embryo. Plant Physiol 143:924–940 (Erratum in: Plant Physiol 143 (2007) 1982)

    Article  PubMed  CAS  Google Scholar 

  • Sreenivasulu N, Altschmied L, Panitz R, Hähnel U, Michalek W, Weschke W, Wobus U (2002) Identification of genes specifically expressed in maternal and filial tissues of barley caryopses: a cDNA array analysis. Mol Genet Genomics 266:758–767

    Article  PubMed  CAS  Google Scholar 

  • Sreenivasulu N, Altschmied L, Radchuk V, Gubatz S, Wobus U, Weschke W (2004) Transcript profiles and deduced changes of metabolic pathways in maternal and filial tissues of developing barley grains. Plant J 37:539–553

    Article  PubMed  CAS  Google Scholar 

  • Sreenivasulu N, Radchuk V, Strickert M, Miersch O, Weschke W, Wobus U (2006) Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA-regulated maturation in developing barley seeds. Plant J 47:310–327 (Erratum in: Plant J 47 (2006) 987)

    Article  PubMed  CAS  Google Scholar 

  • Stacey MG, Koh S, Becker J, Stacey G (2002) AtOPT3, a member of the oligopeptide transporter family, is essential for embryo development in Arabidopsis. Plant Cell 14:2799–2811

    Google Scholar 

  • Stacey MG, Patel A, McClain WE, Mathieu M, Remley M, Rogers EE, Gassmann W, Blevins DG, Stacey G (2008) The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiol 146:589–601

    Google Scholar 

  • Tabe LM, Droux M (2002) Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein. Plant Physiol 128:1137–1148

    Article  PubMed  CAS  Google Scholar 

  • Tauris B, Borg S, Gregersen PL, Holm PB (2009) A roadmap for zinc trafficking in the developing barley grain based on laser capture microdissection and gene expression profiling. J Exp Bot 60:1333–1347

    Article  PubMed  CAS  Google Scholar 

  • Thompson RD, Hueros G, Becker H, Maitz M (2001) Development and functions of seed transfer cells. Plant Sci 160:775–783

    Article  PubMed  CAS  Google Scholar 

  • Toufighi K, Brady SM, Austin R, Ly E, Provart NJ (2005) The botany array resource: e-northerns, expression angling, and promoter analyses. Plant J 43:153–163

    Article  PubMed  CAS  Google Scholar 

  • Tozawa Y, Hasegawa H, Terakawa T, Wakasa K (2001) Characterization of rice anthranilate synthase alpha-subunit genes OASA1 and OASA2. Tryptophan accumulation in transgenic rice expressing a feedback-insensitive mutant of OASA1. Plant Physiol 126:1493–1506

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya Y, Nambara E, Naito S, McCourt P (2004) The FUS3 transcription factor functions through the epidermal regulator TTG1 during embryogenesis in Arabidopsis. Plant J 37:73–81

    Article  PubMed  CAS  Google Scholar 

  • Tu Q, Dong H, Yao H, Fang Y, Dai Ce, Luo H, Yao J, Zhao D, Li D (2008) Global identification of significantly expressed genes in developing endosperm of rice by expression sequence tags and cDNA array approaches. J Integr Plant Biol 50:1078–1088

    Google Scholar 

  • Ufaz S, Galili G (2008) Improving the content of essential amino acids in crop plants: goals and opportunities. Plant Physiol 147:954–961

    Article  PubMed  CAS  Google Scholar 

  • Vensel WH, Tanaka CK, Cai N, Wong JH, Buchanan BB, Hurkman WJ (2005) Developmental changes in the metabolic protein profiles of wheat endosperm. Proteomics 5:1594–1611

    Article  PubMed  CAS  Google Scholar 

  • Verdier J, Kakar K, Gallardo K, Le Signor C, Aubert G, Schlereth A, Town CD, Udvardi MK, Thompson RD (2008) Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling. Plant Mol Biol 67:567–580

    Article  PubMed  CAS  Google Scholar 

  • Verza NC, E Silva TR, Neto GC, Nogueira FT, Fisch PH, de Rosa VE Jr, Rebello MM, Vettore AL, da Silva FR, Arruda P (2005) Endosperm-preferred expression of maize genes as revealed by transcriptome-wide analysis of expressed sequence tags. Plant Mol Biol 59:363–374

    Article  PubMed  CAS  Google Scholar 

  • Wan YF, Poole RL, Huttly AK, Toscano-Underwood C, Feeney K, Welham S, Gooding MJ, Mills C, Edwards KJ, Shewry PR, Mitchell RAC (2008) Transcriptome analysis of grain development in hexaploid wheat. BMC Genomics 9:121

    Google Scholar 

  • Wang K, Han XF, Dong K, Gao LY, Li HY, Ma WJ, Yan YM, Ye XG (2010d) Characterization of seed proteome in Brachypodium distachyon. J Cereal Sci 52:177–186

    Google Scholar 

  • Weber H, Borisjuk L, Heim U, Buchner P, Wobus U (1995) Seed coat-associated invertases of fava-bean control both unloading and storage functions—cloning of cDNAs and cell-type-specific expression. Plant Cell 7:1835–1846

    PubMed  CAS  Google Scholar 

  • Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279

    Google Scholar 

  • Xu SB, Yu HT, Yan LF, Wang T (2010) Integrated proteomic and cytological study of rice endosperms at the storage phase. J Proteome Res 9:4906–4918

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Sreenivasulu N, Weschke W, Stein N, Rudd S, Radchuk V, Potokina E, Scholz U, Schweizer P, Zierold U, Langridge P, Varshney RK, Wobus U, Graner A (2004) Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J 40:276–290

    Article  PubMed  Google Scholar 

  • Zhang WH, Zhou Y, Dibley KE, Tyerman SD, Furbank RT, Patrick JW (2007b) Nutrient loading of developing seeds. Func Plant Biol 34:314–331

    Article  CAS  Google Scholar 

  • Zuber H, Aubert G, Davidian J-C, Thompson R, Gallardo K (2009) Sulphur metabolism and transport in developing seeds. In: Sirko A, De Kok LJ, Haneklaus S, Hawkesford MJ, Rennenber H, Saito K, Schnug E, Stulen I (eds) Sulphur metabolism in plants regulatory aspects significance of sulfur in the food chain, agriculture and the environment. Backhuys Publishers, Leiden, pp 113–117

    Google Scholar 

  • Zuber H, Davidian JC, Aubert G, Aimé D, Belghazi M, Lugan R, Heintz D, Wirtz M, Hell R, Thompson R, Gallardo K (2010a) The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds. Plant Physiol 154:913–926

    Article  CAS  Google Scholar 

  • Zuber H, Davidian JC, Wirtz M, Hell R, Belghazi M, Thompson R, Gallardo K (2010b) Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulfate content and modified proteome suggesting metabolic adaptations to altered sulfate compartmentalization. BMC Plant Biol 10:78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karine Gallardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zuber, H., Noguero, M., Le Signor, C., Thompson, R., Gallardo, K. (2012). Metabolic Specialization of Maternal and Filial Tissues. In: Agrawal, G., Rakwal, R. (eds) Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4749-4_20

Download citation

Publish with us

Policies and ethics