Skip to main content

High Intensity Focused Ultrasound (HIFU) Ablation

  • Chapter
  • First Online:

Part of the book series: The Tumor Microenvironment ((TTME,volume 5))

Abstract

The ideal cancer therapy not only induces the death of all localized tumor cells without damage to surrounding normal tissue, but also activates a systemic antitumor immunity. High intensity focused ultrasound (HIFU) has the potential to be such a treatment, as it can non-invasively ablate a targeted tumor below the skin surface, and may subsequently augment host antitumor immunity. This chapter is to introduce the history and principles of HIFU tumor ablation, and its biological effects on the tumor microenvironment. It will review increasing pre-clinical and clinical evidence suggesting that HIFU ablation may enhance host antitumor immunity, and discuss its potential mechanisms and roles in terms of local recurrence and metastasis control after HIFU treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Timmerman RD, Bizekis CS, Pass HI, Fong Y, Dupuy DE, Dawson LA, Lu D (2009) Local surgical, ablative, and radiation treatment of metastases. CA Cancer J Clin 59:145–170

    Article  PubMed  Google Scholar 

  2. Liapi E, Geschwind JF (2007) Transcatheter and ablative therapeutic approaches for solid malignancies. J Clin Oncol 25:978–986

    Article  PubMed  Google Scholar 

  3. Hong K, Georgiades CS, Geschwind JF (2006) Technology insight: image-guided therapies for hepatocellular carcinoma-intra-arterial and ablative techniques. Nat Clin Pract Oncol 3:315–324

    Article  PubMed  Google Scholar 

  4. Hafron J, Kaouk JH (2007) Ablative techniques for the management of kidney cancer. Nat Clin Pract Urol 4:261–269

    Article  PubMed  Google Scholar 

  5. Lynn JG, Zwemer RL, Chick AJ, Miller AG (1942) A new method for the generation and use of focused US in experimental biology. J Gen Physiol 26:179–193

    Article  PubMed  CAS  Google Scholar 

  6. Fry WJ, Mosberg WH, Barnard JW, Fry FJ (1954) Production of focal destructive lesions in the central nervous system with ultrasound. J Neurosurg 11:471–478

    Article  PubMed  CAS  Google Scholar 

  7. Fry WJ, Barnard JW, Fry FJ, Krumins RF, Brennan JF (1955) Ultrasonic lesions in the mammalian central nervous system. Science 122:517–518

    Article  PubMed  CAS  Google Scholar 

  8. Fry FJ (1958) Precision high intensity focusing ultrasonic machines for surgery. Am J Phys Med 37:152–156

    PubMed  CAS  Google Scholar 

  9. Lizzi FL (1993) High-precision thermotherapy for small lesions. Eur Urol 23(Suppl 1):23–28

    PubMed  Google Scholar 

  10. Coleman DJ, Silverman RH, Iwamoto T, Lizzi FL, Rondeau MJ, Driller J, Rosado A, Abramson DH, Ellsworth RM (1986) Treatment of glaucoma with high-intensity focused ultrasound. Ophthalmology 93:831–833

    PubMed  Google Scholar 

  11. Rosecan LR, Iwamoto T, Rosado A, Lizzi FL, Coleman DJ (1985) Therapeutic ultrasound in the treatment of retinal detachment: clinical observations and light and electron microscopy. Retina 5:115–122

    Article  PubMed  CAS  Google Scholar 

  12. Coleman DJ, Lizzi FL, Burgess SE, Silverman RH, Smith ME, Driller J, Rosado A, Ellsworth R M, Haik BG, Abramson DH (1986) Ultrasonic hyperthermia and radiation in the management of intraocular malignant melanoma. Am J Ophthalmol 101:635–642

    PubMed  CAS  Google Scholar 

  13. Vallancien G, Chartier-Kastler E, Harouni M, Chopin D, Bougaran J (1993) Focused extracorporeal pyrotherapy: experimental study and feasibility in man. Semin Urol 11:7–9

    PubMed  CAS  Google Scholar 

  14. Vallancien G, Harouni M, Guillonneau B, Veillon B, Bougaran J (1996) Ablation of superficial bladder tumors with focused extracorporeal pyrotherapy. Urology 47:204–207

    Article  PubMed  CAS  Google Scholar 

  15. Vallancien G, Chartier-Kastler E, Bataille N, Chopin D, Harouni M, Bougaran J (1993) Focused extracorporeal pyrotherapy. Eur Urol 23(Suppl 1):48–52

    PubMed  Google Scholar 

  16. ter Haar GR, Clarke RL, Vaughan MG, Hill CR (1991) Trackless surgery using focussed ultrasound: technique and case report. Min Inv Ther 1:13–19

    Article  Google Scholar 

  17. Visioli AG, Rivens IH, ter Haar GR, Horwich A, Huddart RA, Moskovic E, Padhani A, Glees J (1999) Preliminary results of a phase I dose escalation clinical trial using focused ultrasound in the treatment of localised tumours. Eur J Ultrasound 9:11–18

    Article  PubMed  CAS  Google Scholar 

  18. Wu F, Wang ZB, Chen WZ, Wang W, Gui Y, Zhang M, Zheng G, Zhou Y, Xu G, Li M, Zhang C, Ye H, Feng R (2004) Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: an overview. Ultrasound Sonochem 11:149–154

    Article  CAS  Google Scholar 

  19. Illing RO, Kennedy JE, Wu F, ter Haar GR, Protheroe AS, Friend PJ, Gleeson FV, Cranston DW, Phillips RR, Middleton MR (2005) The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a western population. Br J Cancer 93:890–895

    Article  PubMed  CAS  Google Scholar 

  20. Illing R, Chapman A (2007) The clinical applications of high intensity focused ultrasound in the prostate. Int J Hyperthermia 23:183–191

    Article  PubMed  Google Scholar 

  21. Rebillard X, Soulié M, Chartier-Kastler E, Davin JL, Mignard JP, Moreau JL, Coulange C, Association Francaise d’Urologie (2008) High-intensity focused ultrasound in prostate cancer; a systematic literature review of the French Association of Urology. BJU Int 101:1205–1213

    Article  PubMed  Google Scholar 

  22. Jolesz FA, Hynynen K, McDannold N, Tempany C (2005) MR imaging-controlled focused ultrasound ablation: a noninvasive image-guided surgery. Magn Reson Imaging Clin N Am 13:545–560

    Article  PubMed  Google Scholar 

  23. Gianfelice D, Khiat A, Amara M, Belblidia A, Boulanger Y (2003) MR imaging-guided focused US ablation of breast cancer: histopathologic assessment of effectiveness—initial experience. Radiology 227:849–55

    Article  PubMed  Google Scholar 

  24. Tempany CM, Stewart EA, McDannold N, Quade BJ, Jolesz FA, Hynynen K (2003) MR imaging-guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiology 226:897–905

    Article  PubMed  Google Scholar 

  25. Kennedy JE, ter Haar GR, Cranston D (2003) High intensity focused ultrasound: surgery of the future? Br J Radiol 76:590–599

    Article  PubMed  CAS  Google Scholar 

  26. Hill CR, ter Haar GR (1995) Review article: high intensity focused ultrasound-potential for cancer treatment. Br J Radiol 68:1296–1303

    Article  PubMed  CAS  Google Scholar 

  27. Balibar S, Maris HJ (2000) Negative pressures and cavitation in liquid helium. Physics Today 53:29–34

    Google Scholar 

  28. Coussios CC, Farny CH, Haar GT, Roy RA (2007) Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU). Int J Hyperthermia 23:105–120

    Article  PubMed  CAS  Google Scholar 

  29. Hill CR, Rivens I, Vaughan MG, ter Haar GR (1994) Lesion development in focused ultrasound surgery: a general model. Ultrasound Med Biol 20:259–269

    Article  PubMed  CAS  Google Scholar 

  30. Stride EP, Coussios CC (2010) Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy. Proc Inst Mech Eng H 224:171–191

    PubMed  CAS  Google Scholar 

  31. Clement GT (2004) Perspectives in clinical uses of high-intensity focused ultrasound. Ultrasonics 42:1087–1093

    Article  PubMed  CAS  Google Scholar 

  32. Overgaard J (1989) The current and potential role of hyperthermia in radiotherapy. Int J Radiat Oncol Biol Phys 16:535–534

    Article  PubMed  CAS  Google Scholar 

  33. Nikfarjam M, Malcontenti-Wilson C, Christophi C (2005) Focal hyperthermia produces progressive tumor necrosis independent of the initial thermal effects. J Gastrointest Surg 9:410–417

    Article  PubMed  Google Scholar 

  34. Nikfarjam M, Muralidharan V, Christophi C (2005) Mechanisms of focal heat destruction of liver tumors. J Surg Res 127:208–223

    Article  PubMed  Google Scholar 

  35. Wheatley DN, Kerr C, Gregory DW (1989) Heat-induced damage to HeLa-S3 cells: correlation of viability, permeability, osmosensitivity, phase-contrast light-, scanning electron- and transmission electron-microscopical findings. Int J Hyperthermia 5:145–162

    Article  PubMed  CAS  Google Scholar 

  36. Heisterkamp J, van Hillegersberg R, Sinofsky E, IJzermans JN (1997) Heat-resistant cylindrical diffuser for interstitial laser coagulation: comparison with the bare-tip fiber in a porcine liver model. Lasers Surg Med 20:304–309

    Article  PubMed  CAS  Google Scholar 

  37. Germer CT, Roggan A, Ritz JP, Isbert C, Albrecht D, Müller G, Buhr HJ (1998) Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range. Lasers Surg Med 23:194–203

    Article  PubMed  CAS  Google Scholar 

  38. Emami B, Song CW (1984) Physiological mechanisms in hyperthermia: a review. Int J Radiat Oncol Biol Phys 10:289–295

    Article  PubMed  CAS  Google Scholar 

  39. Tranberg KG (2004) Percutaneous ablation of liver tumours. Best Pract Res Clin Gastroenterol 18:125–145

    Article  PubMed  Google Scholar 

  40. Muralidharan V, Nikfarjam M, Malcontenti-Wilson C, Christophi C (2004) Effect of interstitial laser hyperthermia in a murine model of colorectal liver metastases: scanning electron microscopic study. World J Surg 28:33–37

    Article  PubMed  Google Scholar 

  41. Matsumoto R, Selig AM, Colucci VM, Jolesz FA (1992) Interstitial Nd:YAG laser ablation in normal rabbit liver: trial to maximize the size of laser-induced lesions. Lasers Surg Med 12:650–658

    Article  PubMed  CAS  Google Scholar 

  42. Wiersinga WJ, Jansen MC, Straatsburg IH, Davids PH, Klaase JM, Gouma DJ, van Gulik TM (2003) Lesion progression with time and the effect of vascular occlusion following radiofrequency ablation of the liver. Br J Surg 90:306–312

    Article  PubMed  CAS  Google Scholar 

  43. Benndorf R, Bielka H (1997) Cellular stress response: stress proteins–physiology and implications for cancer. Recent Results Cancer Res 143:129–144

    Article  PubMed  CAS  Google Scholar 

  44. Barry MA, Behnke CA, Eastman A (1990) Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem Pharmacol 40:2353–2362

    Article  PubMed  CAS  Google Scholar 

  45. Hori K, Mihich E, Ehrke MJ (1989) Role of tumor necrosis factor and interleukin 1 in gamma-interferon-promoted activation of mouse tumoricidal macrophages. Cancer Res 49:2606–2614

    PubMed  CAS  Google Scholar 

  46. Decker T, Lohmann-Matthes ML, Karck U, Peters T, Decker K (1989) Comparative study of cytotoxicity, tumor necrosis factor, and prostaglandin release after stimulation of rat Kupffer cells, murine Kupffer cells, and murine inflammatory liver macrophages. J Leukoc Biol 45:139–146

    PubMed  CAS  Google Scholar 

  47. Adams DO, Hamilton TA (1984) The cell biology of macrophage activation. Annu Rev Immunol 2:283–318

    Article  PubMed  CAS  Google Scholar 

  48. Kirn A, Bingen A, Steffan AM, Wild MT, Keller F, Cinqualbre J (1982) Endocytic capacities of Kupffer cells isolated from the human adult liver. Hepatology 2:216–222

    Article  PubMed  CAS  Google Scholar 

  49. Napoletano C, Taurino F, Biffoni M, De Majo A, Coscarella G, Bellati F, Rahimi H, Pauselli S, Pellicciotta I, Burchell JM, Gaspari LA, Ercoli L, Rossi P, Rughetti A (2008) RFA strongly modulates the immune system and anti-tumor immune responses in metastatic liver patients. Int J Oncol 32:481–490

    PubMed  Google Scholar 

  50. Evrard S, Menetrier-Caux C, Biota C, Neaud V, Mathoulin-Pélissier S, Blay JY, Rosenbaum J (2007) Cytokines pattern after surgical radiofrequency ablation of liver colorectal metastases. Gastroenterol Clin Biol 31:141–145

    Article  PubMed  CAS  Google Scholar 

  51. Ali MY, Grimm CF, Ritter M, Mohr L, Allgaier HP, Weth R, Bocher WO, Endrulat K, Blum HE, Geissler M (2005) Activation of dendritic cells by local ablation of hepatocellular carcinoma. J Hepatol 43:817–822

    Article  PubMed  CAS  Google Scholar 

  52. Watanabe N, Niitsu Y, Umeno H, Kuriyama H, Neda H, Yamauchi N, Maeda M, Urushizaki I (1988) Toxic effect of tumor necrosis factor on tumor vasculature in mice. Cancer Res 48:2179–2183

    PubMed  CAS  Google Scholar 

  53. Isbert C, Ritz JP, Roggan A, Schuppan D, Rühl M, Buhr HJ, Germer CT (2004) Enhancement of the immune response to residual intrahepatic tumor tissue by laser-induced thermotherapy (LITT) compared to hepatic resection. Lasers Surg Med 35:284–292

    Article  PubMed  Google Scholar 

  54. Schell SR, Wessels FJ, Abouhamze A, Moldawer LL, Copeland EM 3rd (2002) Pro- and antiinflammatory cytokine production after radiofrequency ablation of unresectable hepatic tumors. J Am Coll Surg 195:774–781

    Article  PubMed  Google Scholar 

  55. Wu F, Zhou L, Chen WR (2007) Host antitumour immune responses to HIFU ablation. Int J Hyperthermia 23:165–71

    Article  PubMed  CAS  Google Scholar 

  56. Gravante G, Sconocchia G, Ong SL, Dennison AR, Lloyd DM (2009) Immunoregulatory effects of liver ablation therapies for the treatment of primary and metastatic liver malignancies. Liver Int 29:18–24

    Article  PubMed  CAS  Google Scholar 

  57. Fagnoni FF, Zerbini A, Pelosi G, Missale G (2008) Combination of radiofrequency ablation and immunotherapy. Front Biosci 13:369–81

    Article  PubMed  CAS  Google Scholar 

  58. Sabel MS (2009) Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses. Cryobiology 58:1–11

    Article  PubMed  CAS  Google Scholar 

  59. Yang R, Reilly CR, Rescorla FJ, Sanghvi NT, Fry FJ, Franklin TD Jr, Grosfeld JL (1992) Effects of high-intensity focused ultrasound in the treatment of experimental neuroblastoma. J Pediatr Surg 27:246–250

    Article  PubMed  CAS  Google Scholar 

  60. Hu Z, Yang XY, Liu Y, Sankin GN, Pua EC, Morse MA, Lyerly HK, Clay TM, Zhong P (2007) Investigation of HIFU-induced anti-tumor immunity in a murine tumor model. J Transl Med 5:34

    Article  PubMed  Google Scholar 

  61. Zhang Y, Deng J, Feng J, Wu F (2010) Enhancement of antitumor vaccine in ablated hepatocellular carcinoma by high-intensity focused ultrasound: A preliminary report. World J Gastroenterol 16:3584–3591

    Article  PubMed  CAS  Google Scholar 

  62. Deng J, Zhang Y, Feng J, Wu F (2010) Dendritic cells loaded with ultrasound-ablated tumour induce in vivo specific antitumour immune responses. Ultrasound Med Biol 36:441–448

    Article  PubMed  Google Scholar 

  63. Hu Z, Yang XY, Liu Y, Morse MA, Lyerly HK, Clay TM, Zhong P (2005) Release of endogenous danger signals from HIFU-treated tumor cells and their stimulatory effects on APCs. Biochem Biophys Res Commun 335:124–131

    Article  PubMed  CAS  Google Scholar 

  64. Kruse DE, Mackanos MA, O’Connell-Rodwell CE, Contag CH, Ferrara KW (2008) Short-duration-focused ultrasound stimulation of Hsp70 expression in vivo. Phys Med Biol 53:3641–3660

    Article  PubMed  CAS  Google Scholar 

  65. Hundt W, O’Connell-Rodwell CE, Bednarski MD, Steinbach S, Guccione S (2007) In vitro effect of focused ultrasound or thermal stress on HSP70 expression and cell viability in three tumor cell lines. Acad Radiol 14:859–870

    Article  PubMed  Google Scholar 

  66. Liu F, Hu Z, Qiu L, Hui C, Li C, Zhong P, Zhang J (2010) Boosting high-intensity focused ultrasound-induced anti-tumor immunity using a sparse-scan strategy that can more effectively promote dendritic cell maturation. J Transl Med 8:7

    Article  PubMed  Google Scholar 

  67. Zhou P, Fu M, Bai J, Wang Z, Wu F (2007) Immune response after high-intensity focused ultrasound ablation for H22 tumor. J Clin Oncol 25(S18):21169

    Google Scholar 

  68. Rosberger DF, Coleman DJ, Silverman R, Woods S, Rondeau M, Cunningham-Rundles S (1994) Immunomodulation in choroidal melanoma: Reversal of inverted CD4/CD8 ratios following treatment with ultrasonic hyperthermia. Biotechnol Ther 5:59–68

    PubMed  CAS  Google Scholar 

  69. Wang X, Sun J (2002) High-intensity focused ultrasound in patients with late-stage pancreatic carcinoma. Chin Med J (Engl) 115:1332–1335

    Google Scholar 

  70. Wu F, Wang ZB, Lu P, Xu ZL, Chen WZ, Zhu H, Jin CB (2004) Activated anti-tumor immunity in cancer patients after high intensity focused ultrasound ablation. Ultrasound Med Biol 30:1217–1222

    Article  PubMed  Google Scholar 

  71. Zhou Q, Zhu XQ, Zhang J, Xu ZL, Lu P, Wu F (2008) Changes in circulating immunosuppressive cytokine levels of cancer patients after high intensity focused ultrasound treatment. Ultrasound Med Bio 34:81–88

    Article  CAS  Google Scholar 

  72. Kramer G, Steiner GE, Grobl M, Hrachowitz K, Reithmayr F, Paucz L, Newman M, Madersbacher S, Gruber D, Susani M, Marberger M (2004) Response to sublethal heat treatment of prostatic tumor cells and of prostatic tumor infiltrating T-cells. Prostate 58:109–120

    Article  PubMed  CAS  Google Scholar 

  73. Wu F, Wang ZB, Cao YD, Zhou Q, Zhang J, Xu ZL, Zhu XQ (2007) Expression of tumor antigens and heat-shock protein 70 in breast cancer cells after high-intensity focused ultrasound ablation. Ann Surg Oncol 14:1237–1242

    Article  PubMed  Google Scholar 

  74. Xu ZL, Zhu XQ, Lu P, Zhou Q, Zhang J, Wu F (2009) Activation of tumor-infiltrating antigen presenting cells by high intensity focused ultrasound ablation of human breast cancer. Ultrasound Med Biol 35:50–57

    Article  PubMed  CAS  Google Scholar 

  75. Lu P, Zhu XQ, Xu ZL, Zhou Q, Zhang J, Wu F (2009) Increased infiltration of activated tumor-infiltrating lymphocytes after high intensity focused ultrasound ablation of human breast cancer. Surgery 145:286–293

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wu MD Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wu, F. (2013). High Intensity Focused Ultrasound (HIFU) Ablation. In: Keisari, Y. (eds) Tumor Ablation. The Tumor Microenvironment, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4694-7_4

Download citation

Publish with us

Policies and ethics