Skip to main content

The “Italian” Barley Genetic Mutant Collection: Conservation, Development of New Mutants and Use

  • Conference paper
  • First Online:
Advance in Barley Sciences

Abstract

During the last 30 years, a collection of morphological barley mutants has been developed in Fiorenzuola d’Arda, Italy, as part of the international effort directed to the conservation of genetic stocks, to ensure the global availability and the correct maintenance of these genetic materials. The collection is comprehensive of stem, leaf, ear, flower, awn and grain mutants. Near isogenic lines (NILs) useful for genetic analysis and to study the effect of mutation on agronomic performance have been developed. New different hooded mutants have been obtained in rare outcrosses of the flower in the hood. The development of double and triple mutants obtained by intercrossing simple mutants has been done and will continue. The collection is continuously implemented by including new mutants through a collaborative work with the other germplasm banks and represents a unique source of alleles for better understanding the role of genes involved in plant architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azhaguvel, P., Vidya-Saraswathi, D., & Komatsuda, T. (2006). High-resolution linkage mapping for the non-brittle rachis locus btr1 in cultivated X wild barley (Hordeum vulgare). Plant Science, 170, 1087–1094.

    Article  CAS  Google Scholar 

  • Castiglioni, P., Pozzi, C., Heun, M., Terzi, V., Müller, K. J., Rohde, W., & Salamini, F. (1998). An AFLP-based procedure for the efficient mapping of mutants and DNA probes in barley. Genetics, 149, 2039–2056.

    PubMed  CAS  Google Scholar 

  • Chandler, P. M., Marion-Poll, A., Ellis, M., & Gubler, F. (2002). Mutants at the Slender1 locus of barley cv Himalaya: molecular and physiological characterization. Plant Physiology, 129, 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Chono, M., Honda, I., Zeniya, H., Yoneyama, K., Saisho, D., Takeda, K., Takatsuto, S., Hoshino, T., & Watanabe, Y. (2003). A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiology, 133, 1209–1219.

    Article  PubMed  CAS  Google Scholar 

  • Dabbert, T., Okagaki, R. J., Cho, S., Heinen, S., Boddu, J., & Muehlbauer, G. J. (2010). The genetics of barley low-tillering mutants: low number of tillers-1 (lnt1). Theoretical and Applied Genetics, 121, 70–715.

    Article  Google Scholar 

  • Druka, A., Franckowiak, J., Lundqvist, U., Bonar, N., Alexander, J., Houston, K., et al. (2011). Genetic dissection of barley morphology and development. Plant Physiology, 155, 617–627.

    Article  PubMed  CAS  Google Scholar 

  • Franckowiak, J. D., Foster, A. E., Pederson, V. D., & Pyler, R. E. (1985). Registration of ‘Bowman’ barley. Crop Science, 25, 883.

    Article  Google Scholar 

  • Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagiri, A., et al. (2007). Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proceedings of the National Academy of Sciences of the United States of America, 104, 1424–1429.

    Article  PubMed  CAS  Google Scholar 

  • Lundqvist, U., & Franckowiak, J. D. (2003). Diversity of barley mutants. In R. von Bothmer et al. (Eds.), Diversity in barley (Hordeum vulgare) (pp. 77–96). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Müller, K. J., Romano, N., Gerstner, O., Garcia-Maroto, F., Pozzi, C., Salamini, F., & Rohde, W. (1995). The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature, 374, 727–730.

    Article  PubMed  Google Scholar 

  • Pozzi, C., Faccioli, P., Terzi, V., Stanca, A. M., Cerioli, S., Castiglioni, Fink R., Capone, R., Müller, K. J., Bossinger, G., Rohde, W., & Salamini, F. (2000). Genetics of mutations affecting the development of a barley floral bract. Genetics, 154(3), 1335–1346.

    PubMed  CAS  Google Scholar 

  • Rizza, F., Pagani, D., Stanca, A. M., & Cattivelli, L. (2001). Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breeding, 120, 389–396.

    Article  Google Scholar 

  • Roig, C., Pozzi, C., Santi, L., Müller, J., Wang, Y., Stile, M. R., Rossini, L., Stanca, A. M., & Salamini, F. (2004). Genetics of barley hooded suppression. Genetics, 167, 439–448.

    Article  PubMed  CAS  Google Scholar 

  • Saisho, D., & Takeda, K. (2011). Barley: emergence as a new research material of crop science. Plant & Cell Physiology, 52, 724–727.

    Article  CAS  Google Scholar 

  • Sakuma, S., Salomon, B., & Komatsuda, T. (2011). The domestication syndrome genes responsible for the major changes in plant form in the triticeae crops. Plant & Cell Physiology, 52, 738–749.

    Article  CAS  Google Scholar 

  • Shahinnia, F., Druka, A., Franckowiak, J., Morgante, M., Waugh, R., & Stein, N. (2012). High resolution mapping of Dense spike-ar (dsp.ar) to the genetic centromere of barley chromosome 7H. Theoretical and Applied Genetics, 124, 373–384.

    Article  PubMed  Google Scholar 

  • Stanca, A. M., Romagosa, I., Takeda, K., Lundborg, T., Sato, K., Terzi, V., & Cattivelli, L. (2004). Diversity in abiotic stresses. In R. von Bothmer, T. van Hintum, H. Knupffer, & K. Sato (Eds.), Diversity in barley (Hordeum vulgare) (pp. 179–199). Amsterdam/Boston: Elsevier.

    Google Scholar 

  • Taketa, S., Amano, S., Tsujino, Y., Sato, T., Saisho, D., Kakeda, K., Nomura, M., Suzuki, T., Matsumoto, T., Sato, K., et al. (2008). Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proceedings of the National Academy of Sciences of the United States of America, 105, 4062–4067.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by “Agronanotech” and “FAO-RGV” MiPAAF projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Michele Stanca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press and Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Stanca, A.M. et al. (2013). The “Italian” Barley Genetic Mutant Collection: Conservation, Development of New Mutants and Use. In: Zhang, G., Li, C., Liu, X. (eds) Advance in Barley Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4682-4_4

Download citation

Publish with us

Policies and ethics