Skip to main content

Biophysical Implications

  • Chapter
  • First Online:

Abstract

The properties of water and of ions and their mutual effects in bulk solutions and at interfaces described in the previous chapters lead to a discussion of the biophysical implications that ions in water have. The terms chaotropic (structure-breaking) and kosmotropic (structure-making) applied to aqueous ions relate to homogeneous solutions and should not be called on when dealing with bio-molecules that present surfaces in the solution. For such cases the empirical Hofmeister series of anions and of cations are appropriately descriptive, but should not be applied to situations that do not involve surfaces. When appropriately applied, the Hofmeister series of ions still elude understanding, since many different effects that depend not only on the ions but also on the substrates affected by them play a role. Some comments on items involving aqueous ions and biomolecules are added, such as the behaviour of guanidinium ions, the hydration of proteins, and the specificity of sodium and potassium channels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abezgauz L, Kuperkar K, Hassan PA, Ramon O, Bahadur P, Danino D (2010) Effect of Hofmeister anions on micellization and micellar growth of the surfactant cetylpyridinium chloride. J Coll Interf Sci 342:83–92

    CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1984) Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding. Biochemistry 23:5912–5923

    CAS  Google Scholar 

  • Armstrong BD, Choi J, Lopez C, Wesener DA, Hubbell W, Cavagnero S, Han S (2011) Site-specific hydration dynamics in the nonpolar core of a molten globule by dynamic nuclear polarization of water. J Am Chem Soc 133:5987–5995

    CAS  Google Scholar 

  • Arnaud-Neu F, Delgado R, Chaves S (2003) Critical evaluation of stability constants and thermodynamic functions of metal complexes of crown ethers. Pure Appl Chem 75:71–102

    CAS  Google Scholar 

  • Baldwin RL (1996) How Hofmeister ion interactions affect protein stability. Biophys J 71:2056–2063

    CAS  Google Scholar 

  • Batchelor JD, Olteanu A, Tripathy A, Pielak GJ (2004) Impact of protein denaturants and stabilizers on water structure. J Am Chem Soc 126:1958–1961

    CAS  Google Scholar 

  • Bauduin P, Renoncourt A, Touraud D, Kunz W, Ninham BW (2004a) Hofmeister effect on enzymatic catalysis and colloidal structures. Curr Opin Coll Interf Sci 9:43–47

    CAS  Google Scholar 

  • Bauduin P, Wattebled L, Touraud D, Kunz W (2004b) Hofmeister ion effects on the phase diagrams of water-propylene glycol propyl ethers. Z Phys Chem 218:631–641

    CAS  Google Scholar 

  • Bauduin P, Nohmie F, Touraud D, Neuder R, Kunz W, Ninham BW (2006) Hofmeister specific-ion effects on enzyme activity and buffer pH: horseradish peroxidase in citrate buffer. J Mol Liq 123:14–19

    CAS  Google Scholar 

  • Boström M, Williams DRM, Ninham BW (2001a) Specific ion effects. Why DLVO theory fails for biology and colloid systems. Phys Rev Lett 87:168103–1/4

    Google Scholar 

  • Boström M, Williams DRM, Ninham BW (2001b) Surface tension of electrolytes: specific ion effects explained by dispersion forces. Langmuir 17:4475–4478

    Google Scholar 

  • Boström M, Williams DRM, Ninham BW (2003a) Specific ion effects: why the properties of lysozyme in salt solutions follow a Hofmeister series. Biophys J 85:686–694

    Google Scholar 

  • Boström M, Craig VSJ, Albion R, Williams DRM, Ninham BW (2003b) Hofmeister effects in pH measurements: role of added salt and co-ions. J Phys Chem B 107:2875–2878

    Google Scholar 

  • Boström M, Deniz V, Ninham BW (2006a) Ion specific surface forces between membrane surfaces. J Phys Chem B 110:9645–9649

    Google Scholar 

  • Boström M, Lonetti B, Fratini E, Baglioni P, Ninham BW (2006b) Why pH titration in protein solutions follows a Hofmeister series. J Phys Chem B 110:7563–7566

    Google Scholar 

  • Büchner BH, Voet A, Bruins EM (1932) Lyotrope zahlen und ioneneigen-schaften. Proc Kong Neder Akad Veten 35:563–569

    Google Scholar 

  • Cacace MG, Landau EM, Ramsden JJ (1997) The Hofmeister series: salt and solvent effects on interfacial phenomena. Quart Rev Biophys 30:241–277

    CAS  Google Scholar 

  • Cappa CD, Smith JD, Messer BM, Cohen RC, Saykally RJ (2006) Effects of cations on the hydrogen bond network of liquid water: new results from x-ray absorption spectroscopy of liquid microjets. J Phys Chem B 110:5301–5309

    CAS  Google Scholar 

  • Carpenter DC, Lovelace FE (1935) The influence of neutral salts on the optical rotation of gelatine. III. Effect of the halides of lithium, sodium, rubidium, and cesium. J Am Chem Soc 57:2337–2342

    CAS  Google Scholar 

  • Collins KD (1995) Sticky ions in biological systems. Proc Natl Acad Sci U S A 92:5553–5557

    CAS  Google Scholar 

  • Collins KD (1997) Charge density-dependent strength of hydration and biological structure. Biophys J 72:65–76

    CAS  Google Scholar 

  • Collins KD, Washabaugh MW (1985) The Hofmeister effect and the behaviour of water at interfaces. Quart Rev Biophys 18:323–401

    CAS  Google Scholar 

  • Collins KD, Neilson GW, Enderby JE (2007) Ions in water: characterizing the forces that control chemical processes and biological structure. Biophys Chem 128:95–104

    CAS  Google Scholar 

  • Danielewicz-Ferchmin I, Ferchmin AR, Szlaferek A (1998) On the inter-relations between charge and mass densities within a double layer. Chem Phys Lett 288:197–202

    CAS  Google Scholar 

  • Danielewicz-Ferchmin I, Banachowicz E, Ferchmin AR (2003) Protein hydration and the huge electrostriction. Biophys Chem 106:147–153

    CAS  Google Scholar 

  • Danielewicz-Ferchmin I, Banachowicz E, Ferchmin AR (2006) Properties of hydration shells of protein molecules at their pressure—and temperature-induced native-denatured transition. ChemPhysChem 7:2126–2133

    CAS  Google Scholar 

  • Duca KA, Jordan PC (1997) Ion-water and water-water interactions in a gramicidinlike channel: effects due to group polarizability and backbone flexibility. Biophys Chem 65:123–141

    Google Scholar 

  • Dudev T, Lim C (2009) Determination of K+ vs Na+ selectivity in potassium channels. J Am Chem Soc 131:8092–8101

    CAS  Google Scholar 

  • Dudev T, Lim C (2010) Factors governing the Na+ vs. K+ selectivity in sodium channels. J Am Chem Soc 132:2321–2332

    CAS  Google Scholar 

  • Ebbinghaus S, Kim SJ, Heyden M, Yu X, Heugen U, Gruebele M, Leitner DM, Hevenith M (2007) An extended dynamical hydration shell around proteins. Proc Natl Acad Sci U S A 104:20749–20752

    CAS  Google Scholar 

  • Ebel C, Faou P, Kernel B, Zaccai G (1999) Relative role of anions and cationsin the stabilization of halophilic malate dehydrogenase. Biochemistry 38:9039–9047

    CAS  Google Scholar 

  • Favre I, Moczydlowski E, Schild L (1996) On the structural basis for ion selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel. Biophys J 71:3110–3125

    CAS  Google Scholar 

  • Fenton DE (1977) Across the living barrier. Chem Soc Rev 6:325–343

    CAS  Google Scholar 

  • Fischer MH, Moore G (1907) On the swelling of fibrin. Am J Physiol 20:330–342

    Google Scholar 

  • Frensdorff HK (1971) Stability constants of cyclic polyether complexes with univalent cations. J Am Chem Soc 93:600–606

    CAS  Google Scholar 

  • Fülscher MP, Mehler EL (1991) Self-consistent, nonorthogonal group function approximation. III. Approaches for modeling intermolecular interactions. J Comput Chem 12:811–828

    Google Scholar 

  • Gerstein M, Chothia C (1996) Packing at the protein-water interface. Proc Natl Acad Sci U S A 93:10167–172

    CAS  Google Scholar 

  • Gurau MC, Lim S-M, Castellana ET, Albertorio F, Kataoka S, Cremer PS (2004) On the mechanism of the Hofmeister effect. J Am Chem Soc 126:10522–10523

    CAS  Google Scholar 

  • Hall DL, Drake PL (1995) Activation of the herpes simplex virus type 1 protease. J Biol Chem 270:22697–22700

    CAS  Google Scholar 

  • Hamaguchi K, Geiduschek EP (1962) Effect of electrolytes on the stability of the deoxyribonucleate helix. J Am Chem Soc 84:1329–1338

    CAS  Google Scholar 

  • Hess B, Van Der Vegt NFA (2009) Cation specific binding with protein surface charges. Proc Natl Acad Sci U S A 106:13296–13300

    CAS  Google Scholar 

  • Hochachka PW, Somero GN (1984) Biochemical Adaptation. Princeton Univ. press, Princeton

    Google Scholar 

  • Hofmeister F (1888) About regularities in the protein precipitation effects of salts and the relation of these effects with the physiological behaviour of salts. Arch Exp Pathol Pharmakol 24:247–260

    Google Scholar 

  • Hribar B, Southall NT, Vlachy V, Dill KA (2002) How ions affect the structure of water. J Am Chem Soc 124:12302–12311

    CAS  Google Scholar 

  • Hunger J, Niedermayer S, Buchner R, Hefter G (2010) Are nanoscale ion aggregates present in aqueous solutions of guanidinium salts? J Phys Chem B 114:13617–13627

    CAS  Google Scholar 

  • Joshi RM (1982) Bond energy scheme for estimating heats of formation of monomers and polymers. VII. Nitrogen compounds. J Macromol Sci-Chem A18:861–911 (p. 886)

    CAS  Google Scholar 

  • Kahlo H (1921) Ueber die beeinflussung der hitzekoagulation des pflanzen-protoplasmas duch neutralsalze. Biochem Z 117:87–95

    Google Scholar 

  • Karla A, Tukgu N, Cramer SM, Garde S (2001) Salting-in sna salting-out of hydrophobic solutes in aqueous salt solutions. J Phys Chem B 105:6380–6386

    Google Scholar 

  • Kirpichev EP, Titov LV, Rubtsov YuI, Gavrilova LA (1968) Determination of the heat of formation of guanidine. Russ J Phys Chem 42:269–270

    Google Scholar 

  • Koelsch P, Viswanath P, Motschmann H, Shapovalov VL, Brezesinski G, Möhwald H, Horinek D, Netz RR, Giewekemeyer K, Salditt T, Schollmeyer H, von Klitzing R, Daillant J, Guenoun P (2007) Specific ion effects in physicochemical and biological systems: simulations, theory and experiments. Coll Surf Sci A Physicochem Eng Aspects 303:110–136

    CAS  Google Scholar 

  • Koga Y, Westh P, Davies JV, Miki K, Nishikawa K, Katayanagi H (2004a) Toward understanding the Hofmeister series. I. Effects of sodium salts of some anions on the molecular organization of H2O. J Phys Chem A 108:8533–8541

    CAS  Google Scholar 

  • Koga Y, Westh P, Nishikawa K (2004b) Effects of Na2SO4 and NaClO4 on the molecular organization of H2O. J Phys Chem A 108:1635–1637

    CAS  Google Scholar 

  • Kon’kova TS, Matyushin YuN, Miroshnichenko EA, Vorob’ev AB (2009) Thermochemical properties of dinitramidic acid salts. Russ Chem Bull Intl Ed 58:2020–2027

    Google Scholar 

  • Kumar A (2001a) Aqueous guanidinium salts Part II. Isopiestic osmotic coefficients of guanidinium sulphate and viscosity and surface tension of guanidinium chloride, bromide, acetate, perchlorate and sulphate solutions at 298.15 K. Fluid Phase Equil 180:195–204

    CAS  Google Scholar 

  • Kumar A (2001b) Aqueous guanidinium salts: part I. Densities, ultrasonic velocities, and apparent molar properties. J Solution Chem 30:281–290

    CAS  Google Scholar 

  • Kunz W (2010a) Specific ion effects in colloidal and biological systems. Curr Opin Coll Interf Sci 15:34–39

    CAS  Google Scholar 

  • Kunz W (2010b) Specific Ion Effects. World Scientific, Singapore

    Google Scholar 

  • Kunz W, Lo Nostro P, Ninham BW (2004) The present state of affairs with Hofmeister effects. Curr Opin Coll Interf Sci 9:1–18

    CAS  Google Scholar 

  • Leontidis E, Aroti A (2009) Liquid expanded monolayers of lipids as model systems to understand the anionic Hofmeister series: 2. Ion partitioning is mostly a matter of size. J Phys Chem B 113:1460–1467

    CAS  Google Scholar 

  • Leontidis E, Aroti A, Belloni L (2009) Liquid expanded monolayers of lipids as model systems to understand the anionic Hofmeister series: 1. A tale of model. J Phys Chem B 113:1447–1459

    CAS  Google Scholar 

  • Levitsky VY, Panova AA, Mozhaev VV (1994) Correlation of high-temperature stability of α-chymotrypsin with ‘salting-in’ properties of solution. Eur J Biochem 219:231–236

    CAS  Google Scholar 

  • Lipkind GM, Fozzard HA (2008) Voltage-gated Na channel selectivity: the role of the conserved domain III lysine residue. J Gen Physiol 131:523–529

    CAS  Google Scholar 

  • Lo Nostro P, Fratoni L, Ninham BW, Baglioni P (2002) Water absorbency by wool fibers: Hofmeister effect. Biomacromolecules 3:1217–1224

    Google Scholar 

  • Lopez-Leon T, Santander-Ortega MJ, Ortega-Vinuesa JL, Bastos-Gonzalez D (2008) Hofmeister effects in colloidal systems: influence of the surface nature. J Phys Chem C 112:16060–16069

    CAS  Google Scholar 

  • Lyklema J (2009) Simple Hofmeister series. Chem Phys Lett 467:217–222

    CAS  Google Scholar 

  • Maiti K, Mitra D, Guha S, Moulik AP (2009) Salt effect on self-aggregation of sodium dodecylsulfate (SDS) and tetradecyltrimethylammonium bromide (TTAB): physicochemical correlations and assessment in the light of Hofmeister (lyotropic) effect. J Mol Liq 146:44–51

    CAS  Google Scholar 

  • Marcus Y (1997) Ion properties. Dekker, New York

    Google Scholar 

  • Marcus Y (2004) Metal ion complexation by cryptand 222. A thermodynamic approach. Rev Anal Chem 23:269–302

    CAS  Google Scholar 

  • Marcus Y (2009) The effects of ions on the structure of water: structure breaking and—making. Chem Rev 109:1346–1370

    CAS  Google Scholar 

  • Marcus Y (2012a) The guanidinium ion. J Chem Thermodyn 48:70–74

    CAS  Google Scholar 

  • Marcus Y (2012b) The viscosity B-coeffricient of the thiocyanate anion. J Chem Eng Data 57:617–619

    CAS  Google Scholar 

  • Mason PE, Neilson GW, Enderby JE, Saboungi M-L, Dempsey CE, MacKerell AD Jr, Brady JW (2004) The structure of aqueous guanidinium chloride solutions. J Am Chem Soc 126:11462–11470

    CAS  Google Scholar 

  • McFarlane JC, Berry WL (1974) Cation penetration through isolated leaf cuticles. Plant Phys 53:723–727

    CAS  Google Scholar 

  • Merzel F, Smith JC (2002) Is the first hydration shell of lysozyme of higher density than bulk water? Proc Natl Acad Sci U S A 99:5378–5383

    CAS  Google Scholar 

  • Miki K, Westh P, Koga Y (2008) Interactions of Na-salts and 1-propanol in 1-propanol-Na-salt-H2O systems: toward an understanding of the Hofmeister series (IV). J Phys Chem B 112:4680–4686

    CAS  Google Scholar 

  • Modig K, Liepinsh E, Otting G, Halle B (2004) Dynamics of protein and peptide hydration. J Am Chem Soc 126:102–114

    CAS  Google Scholar 

  • Moreira L, Firoozaqbadi A (2010) Molecular thermodynamics modelling of specific ion effects on micellization of ionic surfactants. Langmuir 26:15177–15191

    CAS  Google Scholar 

  • Nandi PK, Robinson DR (1972a) The effects of salts on the free energy of the peptide group. J Am Chem Soc 94:1299–1308

    CAS  Google Scholar 

  • Nandi PK, Robinson DR (1972b) The effects of salts on the free energy of nonpolar groups in model peptides. J Am Chem Soc 94:1308–1315

    CAS  Google Scholar 

  • Nucci NV, Prometun MS, Wand AJ (2011) Stie-resolved measurement of water-protein interactions by solution NMR. Nat Struct Mol Biol 18:245–249

    CAS  Google Scholar 

  • Pegram LM, Record MT Jr (2007) Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air-water interface. J Phys Chem B 111:5411–5417

    CAS  Google Scholar 

  • Pegram LM, Record MT Jr (2008) Thermodynamic origin of Hofmeister ion effects. J Phys Chem B 112:9428–9436

    CAS  Google Scholar 

  • Perkins SJ (2001) X-ray and neutron scattering analyses of hydration shells: a molecular interpretation based on sequence predictions and modelling fits. Biophys Chem 93:129–138

    CAS  Google Scholar 

  • Peula-Garcia JM, Ortega-Vinuesa JL, Bastos-Gonzalez D (2010) Inversion of Hofmeister series by changing the surface of colloidal particles from hydrophobic to hydrophilic. J Phys Chem C 114:11133–11139

    CAS  Google Scholar 

  • Pinna MC, Salis A, Monduzzi M, Ninham BW (2005) Hofmeister series: the hydrolytic activity of Aspergillus niger lipase depends on specific anion effects. J Phys Chem B 109:5406–5408

    CAS  Google Scholar 

  • Poillon WN, Bertles JF (1979) Deoxygenated sickle hemoglobin. Effects of lyotropic salts on its solubility. J Bio Chem 254:3462–3467

    CAS  Google Scholar 

  • Priya MH, Shah JK, Asthagiri D, Paulaitis ME (2008) Distinguishing thermodynamic and kinetic views of the preferential hydration of protein surfaces. Biophys J 95:2219–2225

    CAS  Google Scholar 

  • Renoncourt A, Vlachy N, Bauduin P, Drechsler M, Touraud D, Verbavatz J-M, Dubois M, Kunz W, Ninham BW (2007) Specific alkali cation effects in the transition from micelles to vesicles through salt addition. Langmuir 23:2376–2381

    CAS  Google Scholar 

  • Richter-Quittner M (1921) Die Bedeutung der Quellung und Entquellung fuer einige Fragen der Biochemie. Biochem Z 121:273–292

    CAS  Google Scholar 

  • Rose MC, Henkens RW (1974) Stability of sodium and potassium complexes of valinomycin. Biophys Acta 372:426–435

    CAS  Google Scholar 

  • Rydall JR, Macdonald PM (1992) Investigation of anion binding to neutral lipid mem branes using deuterium NMR. Biochemistry 31:1092–1099

    CAS  Google Scholar 

  • Sachs JN, Woolf TB (2003) Understanding the Hofmeister effect between chaotropic anions and lipid bilayers: molecular dynamics simulations. J Am Chem Soc 125:8742–8743

    CAS  Google Scholar 

  • Saito H, Matubayashi N, Nishikawa K, Nagao H (2010) Hydration propertiy of globular proteins: an analysis of solvation free energy by energy representation method. Chem Phys Lett 497:218–222

    CAS  Google Scholar 

  • Salomäki M, Tervasmäki P, Areva S, Kankare J (2004) The Hofmeister anion effect and the growth of polyelectrolyte multilayers. Langmuir 20:3679–3683

    Google Scholar 

  • Sancho M, Partenskii MB, Dorman V, Jordan PC (1995) Extended dipolar chain Model for ion channels: electrostriction effects and the translational energy barrier. Biophys. J 68:427–433

    Google Scholar 

  • Sanner MF, Olson AJ, Spehner J-C (1996) Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38:305–320

    CAS  Google Scholar 

  • Schott H (1984) Lyotropic numbers of anions from cloud point changes of non-ionic surfactants. Coll Surf 11:51–54

    CAS  Google Scholar 

  • Schwierz N, Horineck D, Netz RR (2010) Reversed anionic Hofmeister series: the interplay of surface charge and surface polarity. Langmuir 26:7370–7379

    CAS  Google Scholar 

  • Shchori E, Nae N, Jagur-Grodzinski J (1975) Stability constants of metal cations with dibenzo-18-crown-6 in aqueous solutions. J Chem Soc Dalton Trans 1975:2381–2386

    Google Scholar 

  • Smith PE (1999) Computer simulation of cosolvent effects on hydrophobic hydration. J Phys Chem B 103:525–534

    CAS  Google Scholar 

  • Svergun DI, Richard S, Koch MHJ, Sayers Z, Kuprin S, Zaccai G (1998) Protein hydration in solution: experimental observation by x-ray and neutron scattering. Proc Natl Acad Sci U S A 95:2267–2272

    CAS  Google Scholar 

  • Thomas AS, Elcock AH (2007) Molecular dynamics simulations of hydrophobic associations in aqueous salt solutions indicates a connection between water hydrogen bonding and the Hofmeister effect. J Am Chem Soc 129:14887–14898

    CAS  Google Scholar 

  • Tobias DJ, Hemminger JC (2008) Getting specific about specific ion effects. Science 319:1197–1198

    CAS  Google Scholar 

  • Vlachy N, Jagoda-Cwiklik B, Vacha R, Touraod D, Jungwirth P, Kunz W (2009) Hofmeister series and specific interactions of charged headgroups with aqueous ions. Adv Coll Interf Sci 146:42–47

    CAS  Google Scholar 

  • Voet A (1937a) Quantitative lyotropy. Chem Rev 20:169–179

    CAS  Google Scholar 

  • Voet A (1937b) Zur numerischen Feststellungder lyotropen Reihe der einwertigen Kationen. Koll Z 78:201–204

    CAS  Google Scholar 

  • von Hippel PH, Wong K-Y (1964) Neutral salts. The generality of their effects on the stability of macromolecular conformations. Science 145:577–580

    CAS  Google Scholar 

  • Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nutall RL (1982) The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data 11(2):1–392

    Google Scholar 

  • Westh P, Kato H, Nishikawa K, Koga Y (2006) Towards understanding the Hofmeister series. 3. Effects of sodium halides on the molecular organization of H2O as probed by 1-propanol. J Phys Chem A 110:2072–2078

    CAS  Google Scholar 

  • Yamasaki M, Yano H, Aoki K (1991) Differential scanning calorimetric studies on bovine serum albumin. II. Effects of neutral salts and urea. Intl J Biol Macromol 13:322–328

    CAS  Google Scholar 

  • Zangi R (2010) Can salting-in/salting-out ions be classified as chaotropes/kosmotropes? J Phys Chem B 114:643–6350

    CAS  Google Scholar 

  • Zhang Y, Cremer PS (2006) Interactions between macromoleculesw and ions: the Hofmeister series. Curr Opin Chem Biol 10:658–663

    CAS  Google Scholar 

  • Zhang Y, Furyk S, Bergbreiter DE, Cremer PS (2005) Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J Am Chem Soc 127:14505–14510

    CAS  Google Scholar 

  • Zhao HJ (2005) Effects of ions and other compatible solutes on enzymatic activity, and its implication for biocatalysis using ionic liquids. Mol Catal B Enzym 37:16–25

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhak Marcus .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marcus, Y. (2012). Biophysical Implications. In: Ions in Water and Biophysical Implications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4647-3_5

Download citation

Publish with us

Policies and ethics