Skip to main content

Water Surfaces

  • Chapter
  • First Online:
  • 1069 Accesses

Abstract

The interface of liquid water and aqueous solutions with other phases: water vapour, immiscible liquids, solids, or dispersed particles, has properties that differ from those of bulk water or solution. A direct measure of the difference is the change in the surface tension. In the case of electrolyte solutions this is manifested as a surface potential. Solutes may either accumulate at the surface (some such solutes are said to be surface active, surfactants) whereas others (most small ions) are rejected from the surface. Such behaviour has been studied both experimentally and by computer simulations and related to the properties of the water and the solutes. Structures in aqueous solutions, such as colloidal dispersions, micelles and vesicles, result from the interplay of these surface properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramzon AA, Gaukberg RD (1993) Surface tension of salt solutions. J Appl Chem 66:1139–1147, 1315–1320

    Google Scholar 

  • Adamson AW (1968) An adsorption model for contact angle and spreading. J Coll Interf, Sci 27:180–181

    CAS  Google Scholar 

  • Adamson AW (1990) Physical chemistry of surfaces, 5th ed. Wiley, New York, p 101 ff

    Google Scholar 

  • Alejandro J, Tildesley DJ, Chapela GA (1995) Molecular dynamics simulation of the orthobaric densities and surface tension of water. J Chem Phys 102:4574–4583

    Google Scholar 

  • Allen HC, Gregson DE, Richmond DL (1999). Molecular structure and adsorption of dimethyl sulfoxide at the surface of aqueous solutions. J Phys Chem B 103:660–666

    CAS  Google Scholar 

  • Aveyard R, Saleem SM (1976) Interfacial tensions at alkane-aqueous electrolyte interfaces. J Chem Soc, Faraday Trans 1(72):1609–1617

    Google Scholar 

  • Bandyopadhyay G, Dutta S, Lahiri SC (2010) Determination of surface tension, structural, and related properties of aquo-alcohol mixtures at 298 K. Z Phys Chem (Munich) 224:729–742

    CAS  Google Scholar 

  • Benjamin I (1996) Chemical reactions and solvation at liquid interfaces: a microscopic perspective. Chem Rev 96:1449–1475

    CAS  Google Scholar 

  • Benjamin I (1999) Structure, thermodynamics, and dynamics of the liquid/vapour interface of water/dimethylsulfoxide mixtures. J Chem Phys 110:8070–8079

    CAS  Google Scholar 

  • Benjamin I (2005) Hydrogen bond dynamics at water/organic liquid interfaces. J Phys Chem B 109:13711–13715

    CAS  Google Scholar 

  • Böhm R, Morgner H, Oberbrodhage J, Wulf M (1994) Strong salt depletion at the surface of highly concentrated aqueous solutions of CsF, studied by HeI-UPS. Surf Sci 317:407–421

    Google Scholar 

  • Boström M, Kunz W, Ninham BW (2005) Hofmeister effects in surface tension of aqueous electrolyte solutions. Langmuir 21:2619–2623

    Google Scholar 

  • Boström M, Williams DRM, Ninham BW (2001) Surface tension of electrolytes: specific ion effects explained by dispersion forces. Langmuir 17:4475–4478

    Google Scholar 

  • Carey BS, Scriven LE, Davis HT (1978) Semiempirical theory of surface tensions of pure normal alkanes and alcohols. AIChE J 24:1076–1080

    CAS  Google Scholar 

  • Chang T-M, Dang LX (1996) Molecular dynamics simulations of CCl4-H2O liquid-liquid interface with polariazble potential models. J Chem Phys 104:6772–6783

    CAS  Google Scholar 

  • Chang T-M, Dang LX (2005) Liquid-vapor interface of methanol-water mixtures: a molecular dynamics study. J Phys Chem B 109:5759–5765

    CAS  Google Scholar 

  • Chen H, Gan W, Lu R, Guo Y, Wang H-F (2005) Determination of structure and energetics for Gibbs surface adsorption layers of binary liquid mixture. 1. Acetone + water. J Phys Chem B 109:8053–8063

    CAS  Google Scholar 

  • Chen H, Gan W, Lu R, Guo Y, Wang H-F (2005a) Determination of structure and energetics for Gibbs surface adsorption layers of binary liquid mixture. 2. Methanol + water. J Phys Chem B 109:8064–8075

    CAS  Google Scholar 

  • de Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827–863

    CAS  Google Scholar 

  • Erb RA (1968) Wettability of metals under continuous condensing conditions. J Phys Chem 69:1306–1309

    Google Scholar 

  • Ferrari M, Ravera F (2010) Surfactants and wetting at superhydrophobic surfaces: water solutions and non aqueous liquids. Adv Coll Interf Sci 161:22–28

    CAS  Google Scholar 

  • Freitas AA, Quina FH, Carroll FA (1997) Estimation of water-organic interfacial tensions. A linear free energy relationship analysis of interfacial adhesion. J Phys Chem B 101:7488–7493

    CAS  Google Scholar 

  • Guerrero MI, Davis HT (1980) Gradient theory of surface tension of water. Ind Eng Chem Fund 19:309–311

    CAS  Google Scholar 

  • Guggenheim EA (1945) The principle of corresponding states. J Chem Phys 13:253–265

    CAS  Google Scholar 

  • Hantal G, Darvas M, Partay LB, Horvai G, Jedlovszky P (2010) Molecular level properties of the free water surface and different organic liquid/water interfaces, as seen from ITIM analysis of computer simulation results. J Phys: Condens Matter 22(28):284112-1/14

    Google Scholar 

  • Henderson MA (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46:1–308

    CAS  Google Scholar 

  • Hill RM (1998) Superspreading. Curr Opinion Coll Interf Sci 3:247–254

    CAS  Google Scholar 

  • Hodgson A, Haq S (2009) Water adsorption and the wetting of metal surfaces. Surf Sci Rep 64:381–451

    CAS  Google Scholar 

  • Hore DK, Walker DS, MacKinnon L, Richmond GL (2007) Molecular structure of the chloroform-water and dichloromethane-water interfaces. J Phys Chem C 111:8832–8842

    CAS  Google Scholar 

  • Huang JY, Wu MH (1994) Nonlinear optical studies of binary mixtures of hydrogen bonded liquids. Phys Rev E 50:3737–3746

    CAS  Google Scholar 

  • Ito M (2008) Structures of water at electrified interfaces: microscopic understanding of electrode potential in electric double layers on electrode surfaces. Surf Sci Rep 63:329–389

    CAS  Google Scholar 

  • Janczuk B, Bialopiotroeicz T (1988) Components of surface free energy of some clay minerals. Clays Clay Min 36:243–248

    CAS  Google Scholar 

  • Jarvis NL, Scheiman MA (1968) Surface potentials of aqueous electrolyte solutions. J Phys Chem 72:74–78

    CAS  Google Scholar 

  • Jedlovszky P (2004) The hydrogen bonding structure of water in the vicinity of apolar interfaces: a computer simulation study. J Phys: Condens Matter 16:S5389–S5402

    CAS  Google Scholar 

  • Jhon MS, van Artsdalen ER, Ghosh J, Eyring H (1967) J Chem Phys 47:2231–2238

    CAS  Google Scholar 

  • Jungwirth P, Tobias DJ (2002) Molecular structure of salt solutions: a new view of the interface with implications for heterogeneous atmospheric chemistry. J Phys Chem B 105:10468–10472

    Google Scholar 

  • Jungwirth P, Tobias DJ (2006) Specific ion effects aqt the air/water interface. Chem Rev 106:1259–1281

    CAS  Google Scholar 

  • Kamusewitz H, Possart W (1985) The static contact angle hysteresis obtained by different experiments for nthe system PTFE/water. Int J Adhes Adhes 5:211–215

    CAS  Google Scholar 

  • Karpovich DS, Ray DJ (1998) Adsorption of dimethyl sulfoxide to the liquid/vapor interface of water and the thermochemistry of transport across the Interface. Phys Chem B 102:649–652

    CAS  Google Scholar 

  • Kereszturi A, Jedlovszky P (2005) Computer simulation investigation of the water-benzene interface in a broad range of thermodynamic states from ambient to supercritical conditions. J Phys Chem B 109:16782–16793

    CAS  Google Scholar 

  • Kim J, Chou KC, Somorjai GA (2003) Structure and dynamics of acetonitrile at the air/liquid interface of binary solutions studied by infrared-visible sum frequency generation. J Phys Chem B 107:1592–1596

    CAS  Google Scholar 

  • Koczorowski Z, Zagorska I (1983) Investigations on volta potentials in water-nitrobenzene systems and the surface potentials of these solvents. J Electroanal Chem 159:183–193

    CAS  Google Scholar 

  • Koczorowski Z, Zagorska I (1985) On the surface and zero charge potentials at the water/nitrobenzene interface. J Electroanal Chem 190:257–260

    CAS  Google Scholar 

  • Koczorowski Z, Zagorska I, Kalinska A (1989) Differences between surface potentials of water and some organic solvents. Electrochim Acta 34:1857–1862

    CAS  Google Scholar 

  • Kreuter J (1983) Physicochemical characterization of polyacrilic nanoparticles. Int J Pharmaceut 14:43–58

    CAS  Google Scholar 

  • Krishtalik LI, Alpatova NM, Ovsyannikova EV (1992) Determination of the surface potentials of solvents. J Electroanal Chem 329:1–8

    CAS  Google Scholar 

  • Kunz W, Belloni L, Bernard O, Ninham BW (2004) Osmotic coefficients and surface tensions of aqueous electrolyte solutions: role of dispersion forces. J Phys Chem B 108:2398–2404

    CAS  Google Scholar 

  • Lee L-H (2000) The gap between the measured and calculated liquid-liquid interfacial tensions derived from contact angles. J Adhesion Sci Technol 14:167–185

    CAS  Google Scholar 

  • Li ZX, Lu JR, Styrkas SA, Thomas RK, Rennie AR, Penfold L (1993) The structure of the surface of ethanol/water mixtures. Mol Phys 80:925–939

    CAS  Google Scholar 

  • LoNostro P, Fratoni L, Ninham BW, Baglioni P (2002) Water absorbency by wool fibers: hofmeiter effect. Biomacromol 3:1217–1224

    CAS  Google Scholar 

  • Ma G, Allen HC (2003) Surface studies of aqueous methanol solutions by vibhrational broad bandwidth sum frequency generation spectroscopy. J Phys Chem B 107:6343–6349

    CAS  Google Scholar 

  • Maheshwari R, Sreeram KJ, Dhathathreyan A (2003) Surface energy of aqueous msolutions of Hofmeister electrolytes at air/liquid and solid/liquid interface. Chem Phys Lett 375:157–161

    CAS  Google Scholar 

  • Marcus Y (1998) The properties of solvents. Wiley, Chichester

    Google Scholar 

  • Marcus Y (2008) Properties of individual ions in solution. In: Bostrelli DV (ed) Solution chemistry research progress. Nova Science publishers, Inc., Hauppauge, p 51–68

    Google Scholar 

  • Marcus Y (2008a) Clustering in liquid mixtures of water and acetonitrile. In: Bostrelli DV (ed) Solution chemistry research progress. Nova Science, Publishers, Inc., Hauppauge pp 1–4

    Google Scholar 

  • Marcus Y (2010) Surface tension of aqueous electrolytes and ions. J Chem Eng Data 55:3641–3644

    CAS  Google Scholar 

  • Marcus Y (2011a) Unpublished results

    Google Scholar 

  • Marcus Y (2011b) Water structure enhancement in water-rich binary solvent mixtures. J Mol Liq 158:23–26

    CAS  Google Scholar 

  • Marcus Y, Migron Y (1991) On the polarity, hydrogen bonding, and structure of mixtures of water and cyanomethane. J Phys Chem 95:400–406

    CAS  Google Scholar 

  • Matsumoto M, Takaoka Y, Kataoka Y (1993) Liquid/vapour interface of water-methanol mixture. 1. Computer simulation. J Chem Phys 96:1464–1472

    Google Scholar 

  • Mayer SW (1963) Dependence of surface tension on temperature. J Chem Phys 38:1803–1808

    CAS  Google Scholar 

  • Mayer SW (1963a) A molecular parameter relationship between surface tension and liquid compressibility. J Phys Chem 67:2160–2164

    CAS  Google Scholar 

  • Michael D, Benjamin I (1995) Solute orientational dynamics and surface roughness of water/hydrocarbon interfaces. J Phys Chem 99:1530–1536

    CAS  Google Scholar 

  • Michael D, Benjamin I (1998) Molecular dynamics simulation of the water/nitrobenzene interface. J Electroanal Chem 450:335–345

    CAS  Google Scholar 

  • Minofar B, Jungwirth P, Das MR, Kunz W, Mahiuddin S (2007) Propensity of formate, acetate, benzoate, and phenolate for the aqueous solution/vapour interface: surface tension measurements and molecular dynamics simulations. J Phys Chem. C 111:8242–8247

    CAS  Google Scholar 

  • Neumann AW, David R, Zuo Y, eds (2011) Applied surface thermo-dynamics, 2nd ed. CRC Press, Boca Raton, USA, pp 743

    Google Scholar 

  • Parfenyuk VI (2002) Surface potential at the gas-aqueous solution interface. Coll J 64:588–595; Koll Zh 64:651–659

    CAS  Google Scholar 

  • Partay L, Jedloszky P, Vincze A (2005) Structure of the liquid-vapor interface of water-methanol mixtures from Monte Carlo simulations. J Phys Chem B 109:20493–20503

    CAS  Google Scholar 

  • Partay L, Jedloszky P, Vincze A, Horvai G (2008) Properties of free surface of water-methanol mixtures. An analysis of the truly interfacial molecular layer in computer simulation. J Phys Chem B 112:5428–5438

    CAS  Google Scholar 

  • Partay LB, Hantal G, Jedlovszky P, Vincze A, Horvai G (2008a) A new method for determining the interfacial molecules and characterizing the surface roughness in computer simulations. Application to the liquid-vapor interface of water. J Comput Chem 29:945–956

    CAS  Google Scholar 

  • Partay LB, Jedlovszky P, Horvai G (2009) Structure of the liquid-vapor interface of water-acetonitrile mixtures as seen from molecular dynamics simulations and identification of truly interfacial molecules analysis. J Phys Chem C 113:18173–18183

    CAS  Google Scholar 

  • Paul S, Chandra A (2005) Liquid-vapor interfaces of water-acetonitrile mixtures of varying composition. J Chem Phys 123:184706-1/8

    Google Scholar 

  • Pegram LM, Record MT Jr (2007). Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air-water interface. J Phys Chem B 111:5411–5417

    CAS  Google Scholar 

  • Pegram LM, Record MT Jr (2008) Quantifying accumulation or exclusion of H+, OH, and Hofmeister salt ions near interfaces. Chem Phys Lett 467:1–8

    CAS  Google Scholar 

  • Petersen PB, Saykally RJ (2004) Confirmation of enhanced anion concentration at the liquid water surface. Chem Phys Lett 397:51–55

    CAS  Google Scholar 

  • Petersen PB, Saykally RJ (2005) Evidence for an enhanced hydronium concentration at the liquid water surface. J Phys Chem B 109:7976–7980

    CAS  Google Scholar 

  • Petersen PB, Saykally RJ, Mucha M, Jungwirth P (2005) Enhanced concentration of polarizable anions at the liquid water surface: SHG spectroscopy and MD simulations of sodium thiocyanide. J Phys Chem B 109:10915–10921

    CAS  Google Scholar 

  • Pierotti RA (1967).On the scaled-particle theory of dilute aqueous solutions. J Phys Chem 71:2366–2367

    CAS  Google Scholar 

  • Randles JEB (1957). Ionic hydration and the surface potential of aqueous electrolytes. Disc Faraday Soc 24: 194–199

    Google Scholar 

  • Randles JEB (1977) Structure of the free surface of water and electrolyte solutions. Phys Chem Liq 7:107–179

    CAS  Google Scholar 

  • Reiss H, Frisch HL, Elfant E, Leibowitz JL (1960) Aspects of the statistical thermodynamics of real fluids. J Chem Phys 32:119–124

    CAS  Google Scholar 

  • Richards TW, Carver, EK (1921) A critical study of the capillary-rise method of determining surface tension, with data for water, benzene, toluene, chloroform, carbon tetrachloride, ether and dimethylaniline. J Am Chem Soc 43:827–847

    CAS  Google Scholar 

  • Schmutzer, E (1955) The theory of surface tension of solutions. The connection between radial distribution functions and the thermodynamic functions. Z Phys Chem (Leipzig) 204:131–156

    CAS  Google Scholar 

  • Schnitzer C, Baldelli S, Schulz MK (2000) Sum frequency generation of water on NaCl, NaNO3, KHSO4, HCl, HNO3, and H2SO4 aqueous solutions. J Phys Chem B 104:585–590

    CAS  Google Scholar 

  • Spagnoli C, Loos K, Ulman A, Cowan MK (2003) Imaging structured water and bound polysaccharides on mica surface at ambient temperature. J Am Chem Soc 125:7124–7128

    CAS  Google Scholar 

  • Stillinger PH, Ben-Naim A (1967) Liquid-vapor interface potential for water. J Chem Phys 47:4431–4437

    CAS  Google Scholar 

  • Tadros ME, Hu P, Adamson AW (1974) Adsorption and contact angle studies. 1. Water and smooth carbon, linear polyethylene, and stearic acid-coated copper. J Coll Interf, Sci 49:184–195

    CAS  Google Scholar 

  • Tadros TF, (ed) (2011) Self-organized surfactant structures. Wiley-VCH Verlag, Germany, pp 270

    Google Scholar 

  • Tarasevich YuI (2008) Energetics of the interaction of water and other liquids with bthe surface of hydrophilic and hydrophobic sorbents according to data on the heats of wetting. Theor Exptl Chem 44:1–23

    CAS  Google Scholar 

  • Tarek M, Tobias DJ, Klein ML (1996) Molecular dynamics investigation of the surface/bulk equilibrium in an ethanol-water solution. J Chem Soc, Faraday Trans 92:559–563

    CAS  Google Scholar 

  • Taylor RS, Dang LX, Garrett BC (1996) Molecular dynamics simulations of the liquid/vapour interface of SPC/E water. J Phys Chem 100:11720–11725

    CAS  Google Scholar 

  • Thiel PA, Madey TE (1987) The interaction of water with solid surfaces: fundamental aspects. Surf Sci Rep 7:211–385

    CAS  Google Scholar 

  • Tolman RC (1949) The effect of droplet size on surface tension. J Chem Phys 17:118–128, 333–227

    CAS  Google Scholar 

  • Trasatti S (1974) Relative and absolute electrochemical quantities. Components of the potential difference across the electrode-solution interface. J Chem Soc, Faraday Trans 1(70):1752–1768

    Google Scholar 

  • Trasatti S (1983) Physical, chemical, and structural aspects of the electrode/solution interface. Electrochim Acta 28:1083–1091

    CAS  Google Scholar 

  • Trasatti S (1987) Interfacial behaviour of non-aqueous solvents. Electrochim Acta 32:843–850

    CAS  Google Scholar 

  • Trasatti S (1995) Surface science and electrochemistry: concepts and problems. Surf Sci 335: 1–9

    CAS  Google Scholar 

  • Verdaguer A, Sacha GM, Bluhm H, Salmeron M (2006) Molecular structure of water at interfaces: wetting at the nanometer scale. Chem Rev 106:1478–1510

    CAS  Google Scholar 

  • Vogler EA (1999) Water and the acute biological response to surfaces. J Biomater Sci Polymer Edn 10:1015–1045

    CAS  Google Scholar 

  • Volkov AG, Deamer DW (1996) Liquid-liquid Interfaces. Theory and methods. CRC Press, Boca Raton, USA

    Google Scholar 

  • Volyak LD, Stepanov VG, Tarlakov YV (1975) Temperature dependence of the angle of contact of water and water-d2 on quartz and sapphire. Zh Fiz Khim 49:2931–3133

    CAS  Google Scholar 

  • Walker DS, Moore FG, Richmond GL (2007) Vibrational sum frequency spectroscopy and molecular dynamics simulations of the carbon tetrachloride-water and 1,2-dichloromethane-water interfaces. J Phys Chem C 111:6103–6112

    CAS  Google Scholar 

  • Wang J, Zeng XC (2009) Computer simulation of liquid-vapor interfacial tension: Lennard-Jones fluid and water revisited. J Theo Comp Chem 8:733–763

    CAS  Google Scholar 

  • Watts A, VanderNoot TJ (1996) The electrical double layer at liquid-liquid interfaces. In: Volkov AG, Deamer DW, (eds) Liquid-liquid Interfaces. Theory and methods. CRC Press, Boca Raton, USA, pp 77–102

    Google Scholar 

  • Weber R, Winter B, Schmidt PM, Widdra W, Hertel IV, Dittmar M, Faubel M (2004) photoemission from aqueous alkali-metal-iodide salt solutions using EUV synchrotron radiation. J Phys Chem B 108:4729–4736

    CAS  Google Scholar 

  • Weissenborn PK, Pugh RJ (1996) Surface tension of aqueous solutions of electyrolytes: relationship with ion hydration, oxygen solubility, and bubble coalescence. J Coll Interf Sci 184:550–563

    CAS  Google Scholar 

  • Wendt PL, Hoysted D, (eds) (2010). Non-Ionic Surfactants. Nova Science Publishers, Hauppauge, New York, pp 360

    Google Scholar 

  • Wilson MA, Pohorille A (1997) Adsorption and solvation of ethanol at the water liquid-vapor interface: a molecular dynamics study. J Phys Chem B 101:3130–3135

    CAS  Google Scholar 

  • Wilson MA, Pohorille A, Pratt LR (1987) Molecular dynamics of the water liquid-vapor interface. J Phys Chem 91:4873–4878

    CAS  Google Scholar 

  • Winter B, Weber R, Schmidt PM, Hertel IV, Faubel M, Vrbka L (2004) Molecular structure of surface-active salt solutions: photoelectron spectroscopy and molecular dynamics simulations of aqueous tetrabutylammonium iodide. J Phys Chem B 108:14558–14564

    Google Scholar 

  • Yang B, Sullivan DE, Tjipo-Margo B, Gray CG (1991) Molecular orientational structure of the water liquid/vapour interfrace. J Phys Cond Matt 3:F109–F125

    CAS  Google Scholar 

  • Zhang D, Gutow JH, Eisenthal KB, Heinz TF (1993) Sudden structural changes at an air/binary liquid interface: sum frequency study of the air/acetonitrile-water interface. J Chem Phys 98:5099–5101

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhak Marcus .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marcus, Y. (2012). Water Surfaces. In: Ions in Water and Biophysical Implications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4647-3_4

Download citation

Publish with us

Policies and ethics