Skip to main content

Effects of Ions on Water Structure and Vice Versa

  • Chapter
  • First Online:
Book cover Ions in Water and Biophysical Implications

Abstract

Macroscopic effects of ions on the dynamics of electrolyte solutions include their effects on the fluidity of the solution and on the self-diffusion of the water. Microscopic effects are on the movements of individual water molecules: their mutual orientations, the rate of breaking or making of hydrogen bonds, etc. measured by relaxation processes. Computer simulations yield the residence times of water molecules in the vicinity of ions. Vibrational and x-ray spectroscopy augment these studies. Some thermodynamic quantities, such as internal pressure, structural entropy, and transfer of ions from light to heavy water, also provide evidence on the effects of ions on the structure of the water. According to all these diverse studies, ions are classified as water structure-making or structure-breaking and the extent of these effects are quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham MH, Liszi J (1978) Calculations on ionic solvation. Part 2. entropies of solvation of gaseous univalent ions using a one-layer continuum model. J Chem Soc Faraday Trans 1 74:2858–2867

    Article  CAS  Google Scholar 

  • Abraham MH, Liszi J, Papp E (1982) Calculations on ionic solvation. Part 6. Structure-making and structure-breaking effects of alkali halide ions from electrostatic entropies of solvation: correlation with viscosity B-coefficients, nuclear magnetic resonance B’-coefficients, and partial molal volumes. J Chem Soc Faraday Trans 78:197–211

    Article  CAS  Google Scholar 

  • Abrosimov VK (1973) The connection between the structural and the limiting temperature of aqueous solutions of electrolytes. Russ J Struct Chem 14:133–135 (Zh Strukt Khim 14:154–156)

    Article  Google Scholar 

  • Armunanto R, Schwenk CF, Rode BM (2003) Structure and dynamics of hydrated Ag (I): ab initio quantum mechanical-molecular mechanical molecular dynamics simulation. J Phys Chem A 107:3132–3138

    Article  CAS  Google Scholar 

  • Armunanto R, Schwenk CF, Tran HT, Rode BM (2004) Structure and dynamics of Au+ ion in aqueous solution: ab initio QM/MM MD simulations. J Am Chem Soc 126:2582–2587

    Article  CAS  Google Scholar 

  • Asaki MLT, Redondo A, Zawodzinski TA, Taylor AJ (2002) Dielectric relaxation of electrolyte solutions using terahertz transmission spectroscopy. J Chem Phys 116:8469–8482

    Article  CAS  Google Scholar 

  • Azam SS, Hofer TS, Randolf BR, Rode BM (2009a) Hydration of sodium(I) and potassium(I) revisited: a comparative QM/MM and QMCF MD simulation study of weakly hydrated ions. J Phys Chem A 113:1827–1834

    Article  CAS  Google Scholar 

  • Azam SS, Hofer TS, Bhattacharjee A, Lim LHV, Pribil AB, Randolf BR, Rode BM (2009) Beryllium(II): the strongest structure-forming ion in water? A QMCF MD simulation study. J Phys Chem B 113:9289–9295

    Article  CAS  Google Scholar 

  • Azam SS, Lin LHV, Hofer TS, Randolf BR, Rode BM (2010) Hydrated germanium (II): Irregular structural and dynamical properties revealed by a quantum mechanical charge field molecular dynamics study. J Comput Chem 31:278–285

    CAS  Google Scholar 

  • Bakker HJ (2008) Structual dynamics of aqueous salt solutions. Chem Rev 108:1456–1473

    Article  CAS  Google Scholar 

  • Bakker HJ, Kropman MF, Omta AW (2005) Effect of ions on the structure and dynamics of liquid water. J Phys Condens Matter 17:S3215–S3224

    Article  CAS  Google Scholar 

  • Balbuena PB, Johnston KP, Rossky PJ, Hyun J-K (1998) Aqueous ion transport properties and water reorientation dynamics from ambient to supercritical conditions. J Phys Chem B 102:3806–3814

    Article  CAS  Google Scholar 

  • Barthel J, Buchner R, Eberspächer P-N, Münsterer M, Stauber J, Wurm B (1998) Dielectric relaxation spectroscopy of electrolyte solutions. recent developments and prospects. J Mol Liq 78:83–109

    Article  CAS  Google Scholar 

  • Ben-Naim A (1975) Structure-breaking and structure-promoting processes in aqueous solutions. J Phys Chem 79:1268–1274

    Article  CAS  Google Scholar 

  • Bernal JD, Fowler RH (1933) A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J Chem Phys 1:515–548

    Article  CAS  Google Scholar 

  • Bernal-Uruchurtu MI, Ortega-Blake I (1995) A refined Monte Carlo study of Mg2+ and Ca2+  hydration. J Chem Phys 103:1588–1598

    Article  CAS  Google Scholar 

  • Bhattacharjee A, Hofer TS, Pribil AB, Randolf BR, Lim LHV, Lichtenberger AF, Rode BM (2009) Revisiting the hydration of Pb(II): a QMCF MD approach. J Phys Chem B 113:13007–13013

    Article  CAS  Google Scholar 

  • Bhattacharjee A, Hofer TS, Pribil AB, Randolf BR, Rode BM (2009a) Hydrolysis of As(III): a femtosecond process. Chem Phys Lett 473:176–178

    Article  CAS  Google Scholar 

  • Bhattacharjee A, Pribil AB, Lim LHV, Hofer TS, Randolf BR, Rode BM (2010) Structural and dynamic aspects of hydration of HAsO4–2: An ab initio QMCF MD simulation. J Phys Chem B 114:3921–3926

    Article  CAS  Google Scholar 

  • Blauth M, Pribil AB, Randolf BR, Rode BM, Hofer TS (2010) Structure and dynamics of hydrated Ag+: an ab initio quantum mechanical/charge field simulation. Chem Phys Lett 500:251–255

    Article  CAS  Google Scholar 

  • Bonner OD, Jumper CF (1973) Effect of ions on water structure. Infrared Phys 13:233–242

    Article  CAS  Google Scholar 

  • Buchner R, Hefter G (2009) Interactions and dynamics in electrolyte solutions by dielectric spectroscopy. Phys Chem Chem Phys 11:8984–8988

    Article  CAS  Google Scholar 

  • Buchner R, Hefter G, Barthel J(1994) Dielectric relaxation of aqueous NaF and KF solutions. J Chem Soc Faraday Trans 90:2475–2479

    Article  CAS  Google Scholar 

  • Buchner R, Hölzl C, Stauber J, Barthel J (2002) Dielectric spectroscopy mof ion-pairing and hydration in aqueous tetra-nalkylammonium halide solutions. Phys Chem Chem Phys 4:2169–2179

    Article  CAS  Google Scholar 

  • Bunzl KW (1967) Near-infrared spectra of aqueous solutions of some tetra-n-alkylammonium bromides. J Phys Chem 71:1358–1363

    Article  CAS  Google Scholar 

  • Cappa CD, Smith JD, Wilson KR, Messer BM, Gilles MK, Cohen RC, Saykally RJ (2005) Effects of alkali metal halide salts on the hydrogen bond network of liquid water. J Phys Chem B 109:7046–7052

    Article  CAS  Google Scholar 

  • Cappa CD, Smith JD, Messer BM, Cohen RC, Saykally RJ (2006) Effects of cations on the hydrogen bond network of liquid water: new results from x-ray absorptioin spectroscopy of liquid microjets. J Phys Chem B 110:5301–5309

    Article  CAS  Google Scholar 

  • Cappa CD, Smith JD, Messer BM, Cohen RC, Saykally RJ (2006a) The electronic structure of the hydrated proton: a comparative x-ray absorption study of aqueous HCl and NaCl solutions. J Phys Chem B 110:1166–1171

    Article  CAS  Google Scholar 

  • Cappa CD, Smith JD, Messer BM, Cohen RC, Saykally RJ (2007) Nature of aqueous hydroxide ion probed by x-ray absorption spectroscopy. J Phys Chem B 111:4776–4785

    Article  CAS  Google Scholar 

  • Cavalleri M, Näslund L-Ǻ, Edwards DC, Wernet P, Ogasawara H, Myneni S, Ojamäe L, Odelius M, Nilsson A, Pettersson LGM (2006) The local structure of protonated water from x-ray absorptionh and density functional theory. J Chem Phys 124:1945081–1945088

    Article  CAS  Google Scholar 

  • Chalikian TV (2001) Structural thermodynamics of hydration. J Phys Chem B 105:12566–12578

    Article  CAS  Google Scholar 

  • Chen T, Hefter G, Buchner R (2003) Dielectric spectroscopy of aqueous solutions of KCl and CsCl. J Phys Chem A 107:4025–4031

    Article  CAS  Google Scholar 

  • Chizhik VI (1997) Estimated ionic B-coefficients from NMR measurements in aqueous electrolyte solutions. Mol Phys 90:653–659

    Article  CAS  Google Scholar 

  • Choppin GR, Buijs KJ (1963) Near-infrared studies of the structure of water. II. Ionic solutions. Chem Phys 39:2042–2050

    CAS  Google Scholar 

  • Chowdhuri S, Chandra A (2001) Molecular dynamics simulations of aqueous NaCl and KCl solutions: effects of ion concentration on the single-particle, pair, and collective dynamical properties of ions and water molecules J Chem Phys 115:3732–3741

    Article  CAS  Google Scholar 

  • Collins KD (1997) Biophys J 72:65–76

    Article  CAS  Google Scholar 

  • Corey VB (1943) Adiabatic compressibilities of some aqueous ionic solutions and their variation with indicated liquid structure of the water. Phys Rev 64:350–357

    Article  CAS  Google Scholar 

  • Cox WM, Wolfenden JH (1934) Viscosity of strong electrolytes measured by a differential method. Proc Royal Soc (London) A 145:475–488

    Article  CAS  Google Scholar 

  • Dack MR (1975) The importance of solvent internal pressure and cohesion to solution phenomena. J Aust J Chem 28:211–229

    Article  Google Scholar 

  • Dack MR (1976) Solvent structure. II. a study of the structure-making and structure-breaking effects of dissolved species in water by internal pressure measurements. J Aust J Chem 29:771–778

    Article  CAS  Google Scholar 

  • Dack MR (1976a) Solvent structure. III. the dependence of partial molal volumes on internal pressure and solvent compressibility. J Aust J Chem 29:779–786

    Article  CAS  Google Scholar 

  • Davies J, Ormondroyd S, Symons MCR (1971) Solvation spectra. 41. Absolute proton magnetic resonance shifts for water protons induced by cations and anions in aqueous solutions. Trans Faraday Soc 67:3465–3473

    Article  CAS  Google Scholar 

  • Desnoyers JE, Perron G (1972) Viscosity of aqueous solutions of alkali and tetraalkylammonium halides at 25 deg. J Solution Chem 1:199–212

    Article  CAS  Google Scholar 

  • Diamond RM (1958) Activity coefficients of strong electrolytes. the halide salts J Am Chem Soc 80:48084812

    Article  Google Scholar 

  • Durdagi S, Hofer TS, Randolf BR, Rode BM (2005) Structural and dynamical properties of Bi3+ in water. Chem Phys Lett 406:20–23

    Article  CAS  Google Scholar 

  • Dutkiewicz E, Jakubowska A (2002) Water activity in aqueous solutions of homogeneous electrolytes: the effects of ions on the structure of water. Chem Phys Chem 3:221–224

    Article  CAS  Google Scholar 

  • Endon L, Hertz HG, Thuel B, Zeidler MD (1967) Microdynamic model of electrolyte solutions as derived from nuclear magnetic relaxation and self diffusion. Ber Bunsenges Phys Chem 71:1008–1031

    Google Scholar 

  • Engel G, Hertz HG (1968) Negative hydration. a nuclear magnetic relaxation study. Ber Bunsenges Phys Chem 72:808–834

    CAS  Google Scholar 

  • Fajans K, Johnson O (1942) Apparent volumes of individual ions in aqueous solution. J Am Chem Soc 64:668–678

    Article  CAS  Google Scholar 

  • Fatmi MQ, Hofer TS, Randolf BR, Rode BM (2005) An extended ab initio QM/MM MD approach to structure and dynamics of Zn(II) in aqueous solution. J Chem Phys 123:054514-1-8

    Article  CAS  Google Scholar 

  • Feakins D, Freemantle DJ, Lawrence KG (1974) Transition state treatment of the relative viscosity of electrolytic solutions. applications to aqueous, nonaqueous, and methanol + water systems. J Chem Soc Faraday Trans 70:795–806

    Article  CAS  Google Scholar 

  • Feakins D, Waghorne WE, Lawrence KG (1986) The viscosity and structure of solutions. Part 1. a new theory of the Jones-Dole B-coefficient and the related activation parameters: application to aqueous solutions. J Chem Soc Faraday Trans 82:563–568

    Article  CAS  Google Scholar 

  • Frank HS, Evans MW (1945) Free volume and entropy in condensed systems. III. entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J Chem Phys 13:507–532

    Article  CAS  Google Scholar 

  • Frank HS, Robinson AL (1940) The entropy of dilution of strong electrolytes in aqueous solutions. J Chem Phys 8:933–938

    Article  CAS  Google Scholar 

  • Frick RJ, Hofer TS, Pribil AB, Randolf BR, Rode BM (2009) Structure and dynamics of the UO2 2+ ion in aqueous solution: an ab initio QMCF MD Study. J Phys Chem A 113:12496–12503

    Article  CAS  Google Scholar 

  • Frick RJ, Hofer TS, Pribil AB, Randolf BR, Rode BM (2010) Structure and dynamics of the UO2+ ion in aqueous solution: an ab initio QMCF-MD study. Phys Chem Chem Phys 12:11736–11743

    Article  CAS  Google Scholar 

  • Fumino K, Yukiyasu K, Shimizu A, Taniguchi Y (1998) NMR studies on dynamic behavior of water molecules in tetraalkylammonium bromide-D2O solutions at 5–25 °C. J Mol Liq 75:1–12

    Article  CAS  Google Scholar 

  • Geiger A (1981) Molecular dynamics simulation of the negative hydration effect in aqueous electrolyte solutions. Ber Bunsenges Phys Chem 85, 52–63

    Article  CAS  Google Scholar 

  • Giese K, Kaatze U, Pottel RJ (1970) Permittivity and dielectric and proton magnetic relaxation of aqueous solutions of the alkali halides. Phys Chem 74:3718–3725

    Article  CAS  Google Scholar 

  • Guardia E, Laria D, Marti J (2006) Hydrogen bond structure and dynamics in aqueous electrolytes at ambient and supercritical conditions. J Phys Chem B 110:6332–6338

    Article  CAS  Google Scholar 

  • Gulaboski R, Caban K, Stojek Z, Scholz F (2004) The determination of the standard Gibbs energies of ion transfer between water and heavy water by using the three-phase electrode approach. Electrochem Commun 6:215–218

    Article  CAS  Google Scholar 

  • Gurney RW (1953) Ionic processes in solution. McGraw-Hill, New York

    Google Scholar 

  • Heil SR, Holz M, Kastner TM, Weingärtner H (1995) Self-diffusion of the perchlorate ion in aqueous electrolyte solutions measured by 35Cl NMR spin-echo experiments. J Chem Soc Faraday Trans 91:1877–1880

    Article  CAS  Google Scholar 

  • Heinzinger K (1985) Computer simulations of aqueous electrolyte solutions Physica B 131:196–216

    Article  CAS  Google Scholar 

  • Heinzinger K, Palinkas G (1987) Interactions of water in ionic hydrates. in Kleeberg H ed. Interactions of Water and Nonionic Hydrates. Springer, Berlin, 1–22

    Book  Google Scholar 

  • Heinzinger K, Schäfer H (1999) On the hydration of ions. Cond Matter Phys 18:273–284

    CAS  Google Scholar 

  • Hepler LG (1969) Thermal expansion and structure in water and aqueous solutions. Can J Chem 47:4613–4617

    Article  CAS  Google Scholar 

  • Hinteregger A, Pribil AB, Hofer TS, Randolf BR, Weiss AKH, Rode BM (2010) Structure and dynamics of the chromate ion in aqueous solution. An ab Initio QMCF-MD simulation. Inorg Chem 49:7964–7968

    Article  CAS  Google Scholar 

  • Hofer TS, Tran HT, Schwenk CF, Rode BM (2004) Characterization of dynamics and reactivities of solvated ions by ab initio simulations. J Comp Chem 25:211–217

    Article  CAS  Google Scholar 

  • Hofer TS, Randolf BR, Rode BM (2005) Structure-breaking effects of solvated Rb(I) in dilute aqueous solution-an ab initio QM/MM MD approach. J Comput Chem 26:949–956

    Article  CAS  Google Scholar 

  • Hofer TS, Rode BM, Randolf BR (2005a) Structure and dynamics of solvated Ba(II) in dilute aqueous solution—an ab initio QM/MM MD approach. Chem Phys 312:81–88

    Article  CAS  Google Scholar 

  • Hofer TS, Scharnagl H, Randolf BR, Rode BM (2006) Structure and dynamics of La(III) in aqueous solution—an ab initio QM/MM MD approach. Chem Phys 327:31–42

    Article  CAS  Google Scholar 

  • Hofer TS, Randolf BR, Rode BM (2006a) Sr(II) in water: a labile hydrate with a highly mobile structure. J Phys Chem B 110:20409–20417

    Article  CAS  Google Scholar 

  • Hofer TS, Randolf BR, Rode BM (2008) The hydration of the mercury(I)-dimer—a quantum mechanical charge field molecular dynamics study. Chem Phys 349:210–218

    Article  CAS  Google Scholar 

  • Hofer TS, Randolf BR, Rode BM (2008a) Al(III) hydration revisited. an ab initio quantum mechanical charge field molecular dynamics study. J Phys Chem B 112:11726–11733

    Article  CAS  Google Scholar 

  • Hofer TS, Randolf BR, Rode BM, Persson I (2009) The hydrated platinum(II) ion in aqueous solution—a combined theoretical and EXAFS spectroscopic study. Dalton Trans 1512–1515

    Google Scholar 

  • Hofer TS, Weiss AKH, Randolf BR, Rode BM (2010) Hydration of highly charged ions. Chem Phys Lett 512:139–145

    Article  CAS  Google Scholar 

  • Holba V (1982) Spectroscopic study of the solute effect on the structure of liquid water. Coll Czech Chem Comm 47:2484–2490

    Article  CAS  Google Scholar 

  • Ibuki K, Nakahara M (1986) Dielectric friction theory of the viscosity of electrolyte solutions. J Chem Phys 85:7312–7317

    Article  CAS  Google Scholar 

  • Inada Y, Mohammed AM, Loeffler HH, Rode BM (2002) Hydration structure and water exchange reaction of Nickel(II) Ion: classical and QM/MM simulations. J Phys Chem A 106:6783–6791

    Article  CAS  Google Scholar 

  • Jenkins HBD, Marcus Y (1995) Viscosity B-coefficients of ions in solution. Chem Rev 95:2695–2724

    Article  CAS  Google Scholar 

  • Jiang J, Sandler S (2003) A New Model for the Viscosity of Electrolyte Solutions. Ind Eng Chem Res 42:6267–6272

    Article  CAS  Google Scholar 

  • Jones G, Stauffer RE (1936) Viscosity of aqueous solutions as a function of the concentration. IV. Potassium ferrocyanide. J Am Chem Soc 58:2558–2560

    Article  CAS  Google Scholar 

  • Kaatze U (1997) The dielectric properties of water in its different states of interaction. J Solution Chem 26:1049–1112

    Article  CAS  Google Scholar 

  • Kecki Z, Dryjanski P, Kozlowska E (1968) Effect of electrolytes on the intensity of the infrared band of water Rocz. Chem 42:1749–1754

    CAS  Google Scholar 

  • Kiselev M, Poxleitner M, Seitz-Beyl J, Heinzinger K (1993) An investigation of the structure of aqueous electrolyte solutions by statistical geometry. Z Naturforsch A 48a:806–810

    Google Scholar 

  • Krestov GA (1962) Thermodynamic characteristics of structural changes in water associated with the hydration of ions. Zh Strukt Khim 3:137–142

    CAS  Google Scholar 

  • Krestov GA (1962a) Thermodynamic characteristics of the structural changes in water connected with the hydration of multiatomic and complex ions. Zh Strukt Khim 3:402–410

    CAS  Google Scholar 

  • Krestov GA (1991) Thermodynamics of Solvation. Ellis Horwood, New York

    Google Scholar 

  • Krestov GA, Abrosimov VK (1964) Thermodynamic characteristics of structural changes in water induced by ion hydration at various temperatures. Zh Strukt Khim 5:510–516

    CAS  Google Scholar 

  • Kritayakornupong C, Plankensteiner K, Rode BM (2003) Structural and dynamical properties of Co(III) in aqueous solution: ab initio quantum mechanical/molecular mechanical molecular dynamics simulation. J Chem Phys 119:6068–6072

    Article  CAS  Google Scholar 

  • Kritayakornupong C, Plankensteiner K, Rode BM (2003a) Dynamics in the hydration shell of Hg2+ ion: classical and ab initio QM/MM molecular dynamics simulations. Chem Phys Lett 371:438–444

    Article  CAS  Google Scholar 

  • Kritayakornupong C, Plankensteiner K, Rode BM (2003b) Structure and dynamics of the Cd2+ Ion in aqueous solution: ab initio QM/MM molecular dynamics simulation. J Phys Chem A 107:10330–10334

    Article  CAS  Google Scholar 

  • Kritayakornupong C, Plankensteiner K, Rode BM (2004) The Jahn-Teller effect of the Ti(III) ion in aqueous solution: extended ab initio QM/MM molecular dynamics simulations. Chem Phys Chem 5:1499–1506

    Article  CAS  Google Scholar 

  • Kritayakornupong C, Vchirawongkwin V, Rode BM (2010) An ab initio quantum mechanical charge field molecular dynamics simulation of a dilute aqueous HCl solution. J Comput Chem 31:1785–1792

    CAS  Google Scholar 

  • Kritayakornupong C, Vchirawongkwin V, Rode BM (2010a) Determination of structure and dynamics of the solvated bisulfide (HS-) ion by ab initio QMCF molecular dynamics. J Phys Chem B 114:12883–12887

    Article  CAS  Google Scholar 

  • Kropman MF, Bakker HJ (2003) Vibrational relaxation of liquid water in ionic solvation shells. Chem Phys Lett 370:741–746

    Article  CAS  Google Scholar 

  • Kropman MF, Nienhuys H-K, Bakker HJ (2002) Real-Time Measurement of the Orientational Dynamics of Aqueous Solvation Shells in Bulk Liquid Water. Phys Rev Lett 88:77601–1/4

    Article  CAS  Google Scholar 

  • Kujumzelis ThG (1938) The alterations in the structure of water produced by ions. Z Phys 110:742–759

    Article  CAS  Google Scholar 

  • Laurence VD, Wolfenden JH (1934) The viscosity of solutions of strong electrolytes. J Chem Soc 1144–1147

    Google Scholar 

  • Leyendekkers JV (1982) Ionic contributions to partial molal volumes in aqueous solutions. J Chem Soc Faraday Trans 1 76:357–375

    Article  Google Scholar 

  • Leyendekkers JV (1983) Structure of aqueous electrolyte solutions. thermodynamic internal pressure. J Chem Soc Faraday Trans 1 79:1109–1121

    Article  CAS  Google Scholar 

  • Leyendekkers JV (1983a) Structure of aqueous electrolyte solutions. Ionic internal pressures and proton chemical shifts. J Chem Soc Faraday Trans 1 79:1123–1134

    Article  CAS  Google Scholar 

  • Li R, Jiang Zh, Chen F, Yang H, Guan Y (2004) Hydrogen bonded structure of water and aqueous solutions of sodium halides: a Raman spectroscopic study. J Mol Struct 707:83–88

    Article  CAS  Google Scholar 

  • Lichtenberger PM, Ellmerer AE, Hofer TS, Randolf BR, Rode BM (2011) Gold(I) and mercury(II)—isoelectronic ions with strongly different chemistry: ab initio QMCF molecular dynamics simulations of their hydration structure. J Phys Chem B 115:5993–5998

    Article  CAS  Google Scholar 

  • Lim LHV, Hofer TS, Pribil AB, Rode BM (2009) The hydration structure of Sn(II): An ab initio quantum mechanical charge field molecular dynamics study. J Phys Chem B 113:4372–4378

    Article  CAS  Google Scholar 

  • Lim LHV, Pribil AB, Ellmerer AE, Randolf BR, Rode BM (2010) Temperature dependence of structure and dynamics of the hydrated Ca2+ ion according to ab initio quantummechanical charge field and classical molecular dynamics. J Comput Chem 31:1195–1200

    CAS  Google Scholar 

  • Lim LHV, Bhattacharjee A, Asam SS, Hofer TS, Randolf BR, Rode BM (2010a) Structural and dynamical aspects of the unsymmetric hydration of Sb(III): an ab initio quantum mechanical charge field molecular dynamics simulation. Inorg Chem 49:2132–2140

    Article  CAS  Google Scholar 

  • Lim LHV, Bhattacharjee A, Randolf BR, Rode BM (2010b) Hydrolysis of tetravalent group IV metal ions: an ab initio simulation study. Phys Chem Chem Phys 12:12423–12426

    Article  CAS  Google Scholar 

  • Loefler HH, Rode BM (2002) The hydration structure of the lithium ion. J Chem Phys 117:110–117

    Article  CAS  Google Scholar 

  • Luck W (1965) Association of water. II. Salt effects on the infrared bands of water. Ber. Bunsenges Phys Chem 69:69–76

    CAS  Google Scholar 

  • Luck W (1975) In: Franks, F (ed) In water, a comprehensive treatise, Vol 2, Ch. 4. Plenum, New York

    Google Scholar 

  • Marcus Y (1985) Ion Solvation. Wiley, Chichester, p. 66

    Google Scholar 

  • Marcus Y (1986) The hydration entropies of ions and their effects on the structure of water. J Chem Soc Faraday Trans 1 82:233–240

    Article  CAS  Google Scholar 

  • Marcus Y (1987) Thermodynamics of ion hydration and its interpretation in terms of a common model. Pure Appl Chem 59:1093–1101

    Article  CAS  Google Scholar 

  • Marcus Y (1994) Viscosity B-coefficients, structural entropies and heat capacities, and the effects of ions on the structure of water. J Solution Chem 23:831–847

    Article  CAS  Google Scholar 

  • Marcus Y (2008) On the Relation between Thermodynamic, Transport and Structural Properties of Electrolyte Solutions. Elektrokhimiya 44:18–31 (Russ J Electrochem 44:16–27)

    Google Scholar 

  • Marcus Y (2009) The effects of ions on the structure of water: structure breaking and – making. Chem Rev 109:1346–1370

    Article  CAS  Google Scholar 

  • Marcus Y (2010) The effect of ions on the structure of water. Pure Appl Chem 82:1889–1899

    Article  CAS  Google Scholar 

  • Marcus Y (2011) unpublished result

    Google Scholar 

  • Marcus Y (2011a) Water structure enhancement in water-rich binary solvent mixtures. J Mol Liq 158:23–26

    Article  CAS  Google Scholar 

  • Marcus Y (2012) The viscosity B-coeffricient of the thiocyanate anion. J Chem Eng Data

    Google Scholar 

  • Marcus Y, Ben-Naim A (1985) A study of the structure of water and its dependence on solutes, based on the isotope effects on solvation thermodynamics in water. J Chem Phys 83:4744–4759

    Article  CAS  Google Scholar 

  • Marcus Y, Loewenschuss A (1985) Standard entropies of hydration of ions. Annu Rep Part C (Royal Soc Chem, London) 1984, 81–135

    Google Scholar 

  • McCall DW, Douglass DC (1965) The effect of ions on the self-diffusion of water. I. Concentration dependence. J Phys Chem 69:2001–2011

    Article  CAS  Google Scholar 

  • Messner ChB, Hofer TS, Randolf BR, Rode BM (2011) Computational study of the hafnium (IV) ion in aqueous solution. Chem Phys Lett 501:292295

    Google Scholar 

  • Milovidova ND, Moiseev BM, Fedorov LI (1970) Measurement of structural temperature of diamagnetic electrolyte solutions by nuclear magnetic resonance. Russ J Struct Chem 11:121–123 (Zh Strukt Khim 11:136–138)

    Article  Google Scholar 

  • Moin ST, Hofer TS, Pribil AB, Randolf BR, Rode BM (2010) A quantum mechanical charge field molecular dynamics study of Fe2+ and Fe3+ ions in aqueous solutions. Inorg Chem 49:5101–5106

    Article  CAS  Google Scholar 

  • Müller KJ, Hertz HG (1996) A parameter as an indicator for water-water association in solutions of strong electrolytes. J Phys Chem 100:1256–1265

    Article  Google Scholar 

  • Näslund L-Ǻ, Edwards DC, Wernet P, Bergmann U, Ogasawara H, Pettersson LGM, Myneni S, Nilsson A (2005) X-ray absorption spectroscopy study of the hydrogen bond network in the bulk water of aqueous solutions. J Phys Chem A 109:5995–6002

    Article  CAS  Google Scholar 

  • Nickolov ZS, Miller JD (2005) J Coll Interf Sci 287:572–580

    Article  CAS  Google Scholar 

  • Nightingale ER (1959) Phenomenological theory of ion solvation. effective radii of hydrated ions. J Phys Chem 63:1381–1387

    Article  CAS  Google Scholar 

  • Nowikow A, Rodnikova M, Barthel J, Sobolev O (1999) Quasielastic neutron scattering of aqueous tetrabutylammonium chloride solutions. J Mol Liq 79:203–212

    Article  Google Scholar 

  • Omta AW, Kropman MF, Woutersen S, Bakker HJ (2003) Influence of ions on the hydrogen-bond structure in liquid water. J Chem Phys 119:12457–12461

    Article  CAS  Google Scholar 

  • Payaka A, Tongraar A, Rode BM (2009) Combined QM/MM MD study of HCOO-water hydrogen bonds in aqueous solution. J Phys Chem A 113:3291–3298

    Article  CAS  Google Scholar 

  • Payaka A, Tongraar A, Rode BM (2010) QM/MM dynamics of CH3COO water hydrogen bonds in aqueous solution. J Phys Chem A 114:10443–10453

    Article  CAS  Google Scholar 

  • Pribil AB, Hofer TS, Vchirawongkwin V, Randolf BR, Rode BM (2008) Quantum mechanical simulation studies of molecular vibrations and dynamics of oxo-anions in water. Chem Phys 346:182–185

    Article  CAS  Google Scholar 

  • Remsungnen T, Rode BM (2004) Molecular dynamics simulation of the hydration of transition metal ions: the role of non-additive effects in the hydration shells of Fe2+ and Fe3+ ions. Chem Phys Lett 385:491–497

    Article  CAS  Google Scholar 

  • Robinson RA, Stokes RH (1959) Electrolyte Solutions, 2nd edn. Butterworths, London

    Google Scholar 

  • Rode BM, Lim LHV (2010) The influence of the lone electron pair on structure and dynamics of divalent group IV metal ion hydrates. J Mol Liq 157:79–82

    Article  CAS  Google Scholar 

  • Sacco A, Weingärtner H, Braun BM, Holz M (1994) Study of the structure-breaking effect on aqueous CsCl solutions based on H2O/D2O isotope effects on transport coefficients and microdynamical properties. J Chem Soc Faraday Trans 90:849–854

    Article  CAS  Google Scholar 

  • Samoilov OYa (1957) A new approach to the study of hydration of ions in aqueous solutions. Disc Faraday Soc 24:141–146

    Article  Google Scholar 

  • Schwenk CF, Rode BM (2003) Extended ab initio quantum mechanical/molecular mechanical molecular dynamics simulations of hydrated Cu2+. J Chem Phys 119:9523–9531

    Article  CAS  Google Scholar 

  • Schwenk CF, Loeffler HH, Rode BM (2003) Structure and Dynamics of Metal Ions in Solution: QM/MM Molecular Dynamics Simulations of Mn2+ and V2+. J Am Chem Soc 125:1618–1624

    Article  CAS  Google Scholar 

  • Schwenk CF, Hofer TS, Rode BM (2004) “Structure Breaking” Effect of Hydrated Cs+. J Phys Chem A 108:1509–1514

    Article  CAS  Google Scholar 

  • Steward GW (1939) The variation in the structure of water in ionic solutions. J Chem Phys 7:869–877

    Article  Google Scholar 

  • Szasz GI, Heinzinger K, Palinkas G (1981) The structure of the hydration shell of the lithium ion. Chem Phys Lett 78:194–196

    Article  CAS  Google Scholar 

  • Tongraar A, Rode BM (2003) The hydration structures of F- and Cl- investigated by ab initio QM/MM molecular dynamics simulations. Phys Chem Chem Phys 5:357–362

    Article  CAS  Google Scholar 

  • Tongraar A, Rode BM (2005) Ab initio QM/MM dynamics of anion–water hydrogen bonds in aqueous solution. Chem Phys Lett 403:314–319

    Article  CAS  Google Scholar 

  • Tongraar A, Rode BM (2005a) Structural arrangement and dynamics of the hydrated Mg2+: An ab initio QM/MM molecular dynamics simulation. Chem Phys Lett 409:304–309

    Article  CAS  Google Scholar 

  • Tongraar A, Liedl KR, Rode BM (1998) Born-Oppenheimer ab Initio QM/MM Dynamics Simulations of Na+ and K+ in Water: From Structure Making to Structure Breaking Effects. J Phys Chem A 102:10340–10347

    Google Scholar 

  • Tongraar A, Tangkawanwanit P, Rode BM (2006) A combined QM/MM molecular dynamics simulations study of nitrate anion NO3 in aqueous solution. J Phys Chem A 110:12918–12926

    Article  CAS  Google Scholar 

  • Tongraar A, Hannongbua S, Rode BM (2010) QM/MM MD simulations of iodide ion (I-) in aqueous solution: a delicate balance between ion-water and water-water H-bond interactions. J Phys Chem A 114:43344339

    Article  CAS  Google Scholar 

  • Tromans A, May PM, Hefter G, Sato T, Buchner R (2004) Ion pairing and solvent relaxation processes in aqueous solutions of sodium malonate and sodium succinate. J Phys Chem B 108:13789–13795

    Article  CAS  Google Scholar 

  • Vchirawongwin V, Hofer TS, Randolf BR, Rode BM (2007) Tl(I)-the strongest structure-breaking metal ion in water? a quantum mechanical/molecular mechanical simulation study. J Comput Chem 28:100610016

    Google Scholar 

  • Vchirawongwin V, Hofer TS, Randolf BR, Rode BM (2007a) Quantum mechanical/molecular mechanical mimulations of the Tl(III) ion in water. J Comput Chem 28:1057–1067

    Article  CAS  Google Scholar 

  • Vchirawongkwin V, Kritayakornupong C, Rode BM (2010) Structural and dynamical properties and vibrational spectra of bisulfate ion in water: a study by ab initio quantum mechanical charge field molecular dynamics. J Phys Chem B 114:11561–11569

    Article  CAS  Google Scholar 

  • Vchirawongkwin V, Pribil AB, Rode BM (2010a) Ab initio quantum mechanical charge field study of hydrated bicarbonate ion: structural and dynamical properties. J Comput Chem 31:249–257

    CAS  Google Scholar 

  • Wachter W, Kunz W, Buchner R, Hefter G (2005) Is there an anionic Hofmeister effect on water dynamics? dielectric spectroscopy of aqueous solutions of NaBr, NaI, NaNO3, NaClO4, and NaSCN. J Phys Chem A 109:8675–8683

    Article  CAS  Google Scholar 

  • Wachter W, Buchner R, Hefter G (2006) Hydration of tetraphenylphosphonium and tetraphenylborate ions by dielectric relaxation spectroscopy. J Phys Chem B 110:5147–5154

    Article  CAS  Google Scholar 

  • Wachter W, Fernandez S, Buchner R, Hefter G (2007) J Phys Chem B 111:9010–9017

    Article  CAS  Google Scholar 

  • Walrafen GE (1970) Raman spectral studies of the effects of perchlorate ion on water structure. J Chem Phys 52:4176–4198

    Article  CAS  Google Scholar 

  • Wen W-Y, Kaatze U (1977) Aqueous solutions of azoniaspiroalkane halides. 3. dielectric relaxation. J Phys Chem 81:177–181

    Article  CAS  Google Scholar 

  • Worley JD, Klotz IM (1966) Near-infrared spectra of H2O-D2O solutions. J Chem Phys 45:2868–2071

    Article  CAS  Google Scholar 

  • Yoshida K, Ibuki K, Ueno M (1996) Estimated ionic B-coefficients from NMR measurements in aqueous electrolyte solutions. J Solution Chem 25:435–453

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhak Marcus .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marcus, Y. (2012). Effects of Ions on Water Structure and Vice Versa. In: Ions in Water and Biophysical Implications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4647-3_3

Download citation

Publish with us

Policies and ethics