Skip to main content

Teachers’ Instrumental Geneses When Integrating Spreadsheet Software

  • Chapter
  • First Online:
Book cover The Mathematics Teacher in the Digital Era

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 2))

Abstract

The spreadsheet is not a priori a didactical tool for mathematics education. It may progressively become such an instrument through the process of professional geneses on the part of teachers. This chapter describes the beginning of such a genesis, and presents some results concerning teachers’ professional development with ICT by examining the outcomes of two different sets of data. Theoretical notions, such as instrumental distance and double instrumental genesis supported the analysis of data leading to a comparison of a teacher integrating spreadsheets, for the first time in her practices, with the practices of teachers who are more expert with spreadsheets. The similarities found in the ways they use the tool leads to some hypotheses on the importance of these common elements as key issues in teachers’ ICT practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The name taken in the initial French research is ‘Dan’; in this chapter, it is translated to ‘Ann’ as the teacher is a woman.

  2. 2.

    This term is explained in section 3.

  3. 3.

    There is no research at world scale comparing integration of geometry software and spreadsheets, but all local studies that can be found indicate a better penetration of geometry software than spreadsheets (see the examples cited in Haspekian 2005a).

  4. 4.

    The reader can find a brief explanation of the basic functionalities, in a didactic approach, in Haspekian 2005a, pp.18–23.

  5. 5.

    One can see in Coulange (1998) at which point the algebraic methods rest on rules of didactic contract and remain fragile for pupils ages 15–16 who, facing atypical problems, provide correct answers in rupture with the algebraic rules of the didactic contract.

  6. 6.

    Analyse/synthesis, trial/refinement and equations.

  7. 7.

    because the algebraic character of the formulas is restricted to their utility in carrying out and automating calculations, the focus is not on providing an operational language to analyse and handle relations (Capponi and Balacheff 1989).

  8. 8.

    Because of this dialectic “it is not possible to clearly distinguish between these two processes” (Trouche 2004).

  9. 9.

    We limit ourselves to the case of the material artefacts, but the ergonomic approach is extended to ‘psychological’ artefacts: symbols, signs, cards, etc.

  10. 10.

    This raises difficulties for teachers, see the experiment described in Haspekian 2005b.

  11. 11.

    Mathematical objects are not isolated, in educational institutions they live through mathematical and didactical organisations that are praxeologies: a quadruplet composed of tasks, techniques, technologies (discourse about the techniques: explanations, justifications…) and theories. See (Chevallard 2007).

  12. 12.

    The words ‘representation’ and ‘conception’ are not problematised in this chapter and used in their common senses.

  13. 13.

    Rabardel (2002) distinguishes the usage schemes (related to the material dimension of the tool) from the schemes of instrumented action (related to the global achievement of the task, with goals and intentions).

  14. 14.

    It may not be the case for all teachers: unlike Ann’s case, the first instrument can be already constituted in a more advanced way, long before trying to make it a didactical instrument.

  15. 15.

    The formula refers to the value 50 for the total. If one changes the value of any headcount, then the total will change and the formula becomes wrong.

  16. 16.

    Increment of references after filling makes the formula refer to empty cells. By default, empty cells are treated in formulas as if they contain the value 0, this option that can be changed.

References

  • Ainley, J. (1999). Doing algebra-type stuff: Emergent algebra in the primary school. In O. Zaslavsky (Ed.), Proceedings of the twenty third annual conference of the International Group for the Psychology of Mathematics, Haifa, Israel.

    Google Scholar 

  • Ainley, J., Bills, L., & Wilson, K. (2003). Designing tasks for purposeful algebra. Proceedings of the third conference of the European Society for Research in Mathematics Education, Bellaria, Italy.

    Google Scholar 

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274.

    Article  Google Scholar 

  • Arzarello, F., Bazzini, L., & Chiappini, G. (2001). A model for analysing algebraic processes of thinking. In R. Sutherland, T. Assude, A. Bell, & R. Lins (Eds.), Perspectives on school algebra (Vol. 22, pp. 61–81). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Baker, J., & Sugden, S. (2003). Spreadsheets in Education –The First 25 Years. Spreadsheets in Education (eJSiE): Vol. 1–1, Article 2.

    Google Scholar 

  • Balacheff, N. (1994). La transposition informatique. Note sur un nouveau problème pour la didactique. In M. Artigue (Ed.), Vingt ans de Didactique des Mathématiques en France (pp. 364–370). Grenoble: La pensée sauvage.

    Google Scholar 

  • Balanskat, B., Blamire, R., & Kefala, S. (2006). The ICT impact report. A review of studies of ICT impact on schools in Europe. Report written by European Schoolnet in the framework of the European Commission’s ICT cluster. http://ec.europa.eu/education/pdf/doc254_en.pdf

  • Bruillard, E. & Blondel, F.-M. (2007). Histoire de la construction de l’objet tableur, document de pré-publication, version 1 du 22 octobre 2007. http://hal.archives-ouvertes.fr/docs/00/18/09/12/PDF/histoire_construction_objet_tableur_v1.pdf

  • Bruillard, E., Blondel, F.-M., & Tort, F. (2008). DidaTab project main results: Implications for education and teacher development. In K. McFerrin, R. Weber, R. Carlsen, & D. A. Willis (Eds.), Proceedings of the International Conference, SITE 2008 (pp. 2014–2021). Chesapeake, USA: AACE.

    Google Scholar 

  • Capponi, B. (2000). Tableur, arithmétique et algèbre. L’algèbre au lycée et au collège, Actes des journées de formation de formateurs 1999 (pp. 58–66). IREM de Montpellier.

    Google Scholar 

  • Capponi, B., & Balacheff, N. (1989). Tableur et Calcul Algébrique. Educational Studies in Mathematics, 20, 179–210.

    Google Scholar 

  • Chevallard, Y. (1992). Intégration et viabilité des objets informatiques dans l’enseignement des mathématiques. In B. Cornu (Ed.), L’ordinateur pour enseigner les mathématiques (pp. 183–203). Paris: Presses Universitaires de France.

    Google Scholar 

  • Chevallard, Y. (2007). Readjusting didactics to a changing epistemology. European Educational Research Journal, 6(2), 131–134.

    Article  Google Scholar 

  • Clark-Wilson, A. (2010a). Connecting mathematics in a connected classroom: Teachers emergent practices within a collaborative learning environment. British Congress on Mathematics Education, BSRLM Proceedings, 30(1). University of Manchester.

    Google Scholar 

  • Clark-Wilson, A. (2010b). How does a multi-representational mathematical ICT tool mediate teachers’ mathematical and pedagogical knowledge concerning variance and invariance? Ph.D. thesis, Institute of Education, University of London.

    Google Scholar 

  • Coulange, L. (1998). Les problèmes “concrets à mettre en équation” dans l’enseignement. Petit x n 47. 33–58.

    Google Scholar 

  • Dettori, G., Garuti, R., Lemut, E., & Netchitailova, L. (1995). An analysis of the relationship between spreadsheet and algebra. In L. Burton & B. Jaworski (Eds.), Technology in mathematics teaching: A bridge between teaching and learning (pp. 261–274). Bromley: Chartwell-Bratt.

    Google Scholar 

  • Dettori, G., Garuti, R., & Lemut, E. (2001). From arithmetic to algebraic thinking by using a spreadsheet. In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Eds.), Perspectives on school algebra (pp. 191–207). Dordrecht: Kluwer.

    Google Scholar 

  • Drijvers, P. (2000). Students encountering obstacles using CAS. International Journal of Computers for Mathematical Learning, 5(3), 189–209.

    Article  Google Scholar 

  • Eurydice. (2004). Keydata on information and communication technology in schools in 2004. [On line] http://www.eurydice.org/ressources/eurydice/pdf/048EN/004_chapB_048EN.pdf

  • Eurydice. (2005, October 2005). How boys and girls in Europe are finding their way with information and communication technology? Eurydice in brief. Brussels. [On line] http://bookshop.europa.eu/en/how-boys-and-girls-in-europe-are-finding-their-way-with-information-and-communication-technology--pbEC3212339/

  • Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: The case of calculators. International Journal for Computer Algebra in Mathematics Education, 3(3), 195–227.

    Google Scholar 

  • Guin, D., Ruthven, K., & Trouche, L. (2004). The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument. New York: Springer.

    Google Scholar 

  • Haspekian, M. (2005a). Intégration d’outils informatiques dans l’enseignement des mathématiques, Etude du cas des tableurs. Ph.D. thesis, University Paris 7. tel.archives-ouvertes.fr/tel-00011388/en/.

    Google Scholar 

  • Haspekian, M. (2005b). An “Instrumental Approach” to study the integration of a computer tool into mathematics teaching: The case of spreadsheets. International Journal of Computers for Mathematical Learning, 10(2), 109–141.

    Article  Google Scholar 

  • Haspekian, M. (2006). Evolution des usages du tableur. In Rapport intermédiaire de l’ACI-EF Genèses d’usages professionnels des technologies chez les enseignants.http://gupten.free.fr/ftp/GUPTEn-RapportIntermediaire.pdf

  • Haspekian, M. (2011). The co-construction of a mathematical and a didactical instrument. In M. Pytlak, E. Swoboda & T. Rowland (Eds.), Proceedings of the seventh Congress of the European Society for Research in Mathematics Education. CERME 7, Rzesvow.

    Google Scholar 

  • Laborde, C. (2001). Integration of technology in the design of geometry tasks with Cabri geometry. International Journal of Computers for Mathematical Learning, 6(3), 283–317.

    Article  Google Scholar 

  • Laborde, C., & Capponi, B. (1994). Cabri-géomètre constituant d’un milieu pour l’apprentissage de la notion de figure géométrique, Recherche en didactique des mathématiques, 14(1-2).

    Google Scholar 

  • Lagrange, J. B. (1999). Complex calculators in the classroom: Theoretical and practical reflections on teaching pre-calculus. International Journal of Computers for Mathematical Learning, 4(1), 51–81.

    Google Scholar 

  • Lagrange, J. B. (2000). Lintegration d’instruments informatiques dans l’enseignement : une approche par les techniques. Educational Studies in Mathematics, 43, 1–30.

    Article  Google Scholar 

  • Monaghan, J. (2004). Teacher’s activities in technology-based mathematics lessons. International Journal of Computers for Mathematics Learning, 9, 327–357.

    Article  Google Scholar 

  • Norton, S., McRobbier, C. J., & Cooper, T. J. (2000). Exploring secondary mathematics teachers’ reasons for not using computers in their teaching: Five case studies. Journal of Research on Computing in Education, 33(1).

    Google Scholar 

  • Parzysz, B. (1988). Voir et savoir – la représentation du “perçu” et du “su” dans les dessins de la géométrie de l'espace. Bulletin de l'APMEP, 364.

    Google Scholar 

  • Pelgrum, W. J., & Anderson, R. E. (Eds.). (2001). ICT and the emerging paradigm for life-long learning. Amsterdam: IEA.

    Google Scholar 

  • Rabardel, P. (1993). Représentations pour l’action dans les situations d’activité instrumentée. In A. Weill-Fassina, P. Rabardel, & D. Dubois (Eds.), Représentations pour l’action. Octares: Toulouse.

    Google Scholar 

  • Rabardel, P. (2002). People and technology -a cognitive approach to contemporary instruments.http://ergoserv.psy.univ-paris8.fr

  • Robert, A., & Rogalski, J. (2002). Le système complexe et cohérent des pratiques des enseignants de mathématiques: une double approche. Revue canadienne de l’enseignement des sciences, des mathématiques et des technologies, 2, 505–528.

    Google Scholar 

  • Rojano, T., & Sutherland R. (1997). Pupils’ strategies and the Cartesian method for solving problems: The role of spreadsheets. Proceedings of the 21st international PME conference (Vol. 4, pp. 72–79).

    Google Scholar 

  • Ruthven, K. (2007). Teachers, technologies and the structures of schooling. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the fith congress of the European Society for Research in Mathematics Education (pp. 52–68). Larnaca.

    Google Scholar 

  • Stacey, K., Chick, H., & Kendal, M. (2004). The future of the teaching and learning of algebra (The 12th ICMI study). Kluwer, Dordrecht.

    Google Scholar 

  • Trouche, L. (2004). Managing complexity of human/machine interactions in computerized learning environments: Guiding student’s command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9(3), 281–307.

    Article  Google Scholar 

  • Trouche, L. (2005). Instrumental genesis, individual and social aspects. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument (pp. 97–230). New York: Springer.

    Google Scholar 

  • Vérillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of though in relation to instrumented activity. European Journal of Education, X(1), 77–101.

    Google Scholar 

Download references

Acknowledgments

I would like to thank Rebecca Freund, and the anonymous second reviewer, who very carefully reviewed the English of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariam Haspekian .

Editor information

Editors and Affiliations

Appendice-Extract of the Questionnaire Trainees and Experts

Appendice-Extract of the Questionnaire Trainees and Experts

figure afigure a
figure bfigure b
figure cfigure c
figure dfigure d
figure efigure e
figure ffigure f

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haspekian, M. (2014). Teachers’ Instrumental Geneses When Integrating Spreadsheet Software. In: Clark-Wilson, A., Robutti, O., Sinclair, N. (eds) The Mathematics Teacher in the Digital Era. Mathematics Education in the Digital Era, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4638-1_11

Download citation

Publish with us

Policies and ethics