Skip to main content

Targeting Cancer Stem Cell Efficient DNA Repair Pathways: Screening for New Therapeutics

  • Chapter
  • First Online:
DNA Repair of Cancer Stem Cells

Abstract

The existence of ‘cancer stem cells (CSCs)’ has been a topic of vigorous discussion for the last few years within the field of cancer biology. Continuous characterization of tumor cells has lead to an abundance of data supporting the existence of cell populations with stem cell characteristics, including self-renewal and expression of stem cell markers. There is also evidence suggesting that these cells are responsible for chemo- and radio-resistance and are the initiation point for metastasis, cancer recurrence, and ultimately patient demise. Therefore, finding new drugs that induce cancer stem cell death are of high interest as new therapies for cancer. Gene expression arrays, functional genomics screens with siRNA, as well as screening of small molecule libraries are approaches being used to better understand the cellular pathways that are critical for cancer stem cell survival. Finding drugs that target these pathways in cancer stem cells could represent novel therapies for cancer, in particular for the prevention of metastasis and recurrence. Recent data shows that DNA repair genes are upregulated in pancreatic cancer stem cells, thus providing increased genomic stability and resistance to cell death upon treatment with DNA damaging agents such as gemcitibine. Here we review how a higher efficiency of DNA repair in cancer stem cells can be leveraged therapeutically, and discuss how small molecule screening approaches using stem cells are being used to find new potential therapies that result in terminal differentiation or cell death of cancer stem cells, both as single agents or in combination with other chemotherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frosina G (2009) DNA repair in normal and cancer stem cells, with special reference to the central nervous system. Curr Med Chem 16(7):854–866

    Article  PubMed  CAS  Google Scholar 

  2. Gallmeier E, Hermann PC, Mueller MT et al (2011) Inhibition of ataxia telangiectasia- and Rad3-related function abrogates the in vitro and in vivo tumorigenicity of human colon cancer cells through depletion of the CD133(+) tumor-initiating cell fraction. Stem Cells 29(3):418–429

    Article  PubMed  CAS  Google Scholar 

  3. Garrett MD, Collins I (2011) Anticancer therapy with checkpoint inhibitors: what, where and when? Trends Pharmacol Sci 32(5):308–316

    Google Scholar 

  4. Wolpaw AJ, Shimada K, Skouta R et al (2011) Modulatory profiling identifies mechanisms of small molecule-induced cell death. Proc Natl Acad Sci USA 108(39):E771–E780

    Google Scholar 

  5. Lehar J, Krueger AS, Avery W et al (2009) Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol 27(7):659–666

    Article  PubMed  CAS  Google Scholar 

  6. Ranson M, Middleton MR, Bridgewater J et al (2006) Lomeguatrib, a potent inhibitor of O6-alkylguanine-DNA-alkyltransferase: phase I safety, pharmacodynamic, and pharmacokinetic trial and evaluation in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res 12(5):1577–1584

    Article  PubMed  CAS  Google Scholar 

  7. Kelley MR, Fishel ML (2008) DNA repair proteins as molecular targets for cancer therapeutics. Anticancer Agents Med Chem 8(4):417–425

    Article  PubMed  CAS  Google Scholar 

  8. Kato T, Natsume A, Toda H et al (2010) Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells. Gene Ther 17(11):1363–1371

    Google Scholar 

  9. Fishel ML, He Y, Smith ML et al (2007) Manipulation of base excision repair to sensitize ovarian cancer cells to alkylating agent temozolomide. Clin Cancer Res 13(1):260–267

    Article  PubMed  CAS  Google Scholar 

  10. Rinne M, Caldwell D, Kelley MR (2004) Transient adenoviral N-methylpurine DNA glycosylase overexpression imparts chemotherapeutic sensitivity to human breast cancer cells. Mol Cancer Ther 3(8):955–967

    PubMed  CAS  Google Scholar 

  11. Taverna P, Liu L, Hwang HS et al (2001) Methoxyamine potentiates DNA single strand breaks and double strand breaks induced by temozolomide in colon cancer cells. Mutat Res 485(4):269–281

    Article  PubMed  CAS  Google Scholar 

  12. Sengupta S, Harris CC (2005) p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 6(1):44–55

    Article  PubMed  CAS  Google Scholar 

  13. Zhuang W, Li B, Long L et al (2011) Knockdown of the DNA-dependent protein kinase catalytic subunit radiosensitizes glioma-initiating cells by inducing autophagy. Brain Res 1371:7–15

    Google Scholar 

  14. Nutley BP, Smith NF, Hayes A et al (2005) Preclinical pharmacokinetics and metabolism of a novel prototype DNA-PK inhibitor NU7026. Br J Cancer 93(9):1011–1018

    PubMed  CAS  Google Scholar 

  15. Shinohara ET, Geng L, Tan J et al (2005) DNA-dependent protein kinase is a molecular target for the development of noncytotoxic radiation-sensitizing drugs. Cancer Res 65(12):4987–4992

    Article  PubMed  CAS  Google Scholar 

  16. Tichy ED, Stambrook PJ (2008) DNA repair in murine embryonic stem cells and differentiated cells. Exp Cell Res 314(9):1929–1936

    Article  PubMed  CAS  Google Scholar 

  17. Ralhan R, Kaur J, Kreienberg R et al (2007) Links between DNA double strand break repair and breast cancer: accumulating evidence from both familial and nonfamilial cases. Cancer Lett 248(1):1–17

    Article  PubMed  CAS  Google Scholar 

  18. Inglese J, Auld DS, Jadhav A et al (2006) Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc Natl Acad Sci USA 103(31):11473–11478

    Article  PubMed  CAS  Google Scholar 

  19. Collins FS (2011) Reengineering translational science: the time is right. Sci Transl Med 3(90):1–6

    Article  PubMed  Google Scholar 

  20. Severyn B, Liehr RA, Wolicki A et al (2012) Parsimonious discovery of synergistic drug combinations. ACS Chem Biol 6(12):1391–1398

    Google Scholar 

  21. Chen S, Do JT, Zhang Q et al (2006) Self-renewal of embryonic stem cells by a small molecule. Proc Natl Acad Sci USA 103(46):17266–17271

    Article  PubMed  CAS  Google Scholar 

  22. Ding S, Wu TY, Brinker A et al (2003) Synthetic small molecules that control stem cell fate. Proc Natl Acad Sci USA 100(13):7632–7637

    Article  PubMed  CAS  Google Scholar 

  23. Chen S, Borowiak M, Fox JL et al (2009) A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 5(4):258–265

    Article  PubMed  CAS  Google Scholar 

  24. Desbordes SC, Placantonakis DG, Ciro A et al (2008) High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell 2(6):602–612

    Article  PubMed  CAS  Google Scholar 

  25. Danovi D, Falk A, Humphreys P et al (2010) Imaging-based chemical screens using normal and glioma-derived neural stem cells. Biochem Soc Trans 38(4):1067–1071

    Article  PubMed  CAS  Google Scholar 

  26. Koyanagi M, Takahashi J, Arakawa Y et al (2008) Inhibition of the Rho/ROCK pathway reduces apoptosis during transplantation of embryonic stem cell-derived neural precursors. J Neurosci Res 86(2):270–280

    Article  PubMed  CAS  Google Scholar 

  27. Liu Y, Lacson R, Cassaday J et al (2009) Identification of small-molecule modulators of mouse SVZ progenitor cell proliferation and differentiation through high-throughput screening. J Biomol Screen 14(4):319–329

    PubMed  CAS  Google Scholar 

  28. Chen S, Zhang Q, Wu X et al (2004) Dedifferentiation of lineage-committed cells by a small molecule. J Am Chem Soc 126(2):410–411

    Article  PubMed  CAS  Google Scholar 

  29. Anastasia L, Sampaolesi M, Papini N et al (2006) Reversine-treated fibroblasts acquire myogenic competence in vitro and in regenerating skeletal muscle. Cell Death Differ 13(12):2042–2051

    Article  PubMed  CAS  Google Scholar 

  30. Phillips BW, Crook JM (2010) Pluripotent human stem cells: a novel tool in drug discovery. BioDrugs 24(2):99–108

    Google Scholar 

  31. Baxter MA, Rowe C, Alder J et al (2010) Generating hepatic cell lineages from pluripotent stem cells for drug toxicity screening. Stem Cell Res 5(1):4–22

    Google Scholar 

  32. Inoue H, Yamanaka S (2011) The use of induced pluripotent stem cells in drug development. Clin Pharmacol Ther 89(5):655–661

    Article  PubMed  CAS  Google Scholar 

  33. Kim K, Doi A, Wen B et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290

    Article  PubMed  CAS  Google Scholar 

  34. Pollard SM, Yoshikawa K, Clarke ID et al (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4(6):568–580

    Article  PubMed  CAS  Google Scholar 

  35. Visnyei K, Onodera H, Damoiseaux R et al (2011) A molecular screening approach to identify and characterize inhibitors of glioblastoma multiforme stem cells. Mol Cancer Ther 10(10):1818–1828

    Google Scholar 

  36. Gupta PB, Onder TT, Jiang G et al (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4):645–659

    Article  PubMed  CAS  Google Scholar 

  37. Iwatsuki M, Mimori K, Yokobori T et al (2010) Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 101(2):293–299

    Article  PubMed  CAS  Google Scholar 

  38. Kong D, Banerjee S, Ahmad A et al (2010) Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 5(8):e12445

    Article  PubMed  Google Scholar 

  39. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29(34):4741–4751

    Article  PubMed  CAS  Google Scholar 

  40. Elenbaas B, Spirio L, Koerner F et al (2001) Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15(1):50–65

    Article  PubMed  CAS  Google Scholar 

  41. Onder TT, Gupta PB, Mani SA et al (2008) Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68(10):3645–3654

    Article  PubMed  CAS  Google Scholar 

  42. Huang, R, Southall N, Wang Y et al (2011) The NCGC pharmaceutical collection: a comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci Transl Med 3(80):80ps16

    Google Scholar 

  43. Akyuz N, Boehden GS, Susse S et al (2002) DNA substrate dependence of p53-mediated regulation of double-strand break repair. Mol Cell Biol 22(17):6306–6317

    Article  PubMed  CAS  Google Scholar 

  44. Nakanishi K, Cavallo F, Brunet E et al (2004) Homologous recombination assay for interstrand cross-link repair. Methods Mol Biol 745:283–291

    Article  Google Scholar 

  45. Mathews LA, Cabarcas SM, Hurt EM et al (2011) Increased expression of DNA repair genes in invasive human pancreatic cancer cells. Pancreas 40(5):730–739

    Article  PubMed  CAS  Google Scholar 

  46. Casalino L, Magnani D, De Falco S et al (2012) An automated high throughput screening-compatible assay to identify regulators of stem cell neural differentiation. Mol Biotechnol 50(3):171–180

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Ferrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mathews, L., Crea, F., Ferrer, M. (2013). Targeting Cancer Stem Cell Efficient DNA Repair Pathways: Screening for New Therapeutics. In: Mathews, L., Cabarcas, S., Hurt, E. (eds) DNA Repair of Cancer Stem Cells. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4590-2_9

Download citation

Publish with us

Policies and ethics