Skip to main content

Pancreatic Cancer Stem Cells in Tumor Progression, Metastasis, Epithelial-Mesenchymal Transition and DNA Repair

  • Chapter
  • First Online:
  • 1713 Accesses

Abstract

Pancreatic cancer is an aggressive solid malignancy with poor response to therapy and the subsequent dismal survival rate has remained a hallmark of this disease. There is evidence to indicate that pancreatic cancer is initiated and propagated by cancer stem cell (CSC)s. The CSC population is defined by its tumor initiating capacity and has been shown to be invasive or metastatic. Loss of genome stability is a hallmark of cancer with DNA repair enzymes aiding in maintenance of stability. The potential to assess the risk of cancer development lies in careful determination of one’s capacity in nurturing genome stability. DNA repair genes are over expressed in CSCs and both pancreatic CSCs and invasive cells in turn provide greater DNA damage response and repair mechanisms. Pancreatic tumor-initiating cells as well as invasive cells have a large number of genes related to DNA repair. RAD51, the key player in the recombinational repair of damaged DNA might act as a critical mediator of efficient DNA repair mechanisms of CSCs. We update here the current research results regarding CSCs in pancreatic cancer progression, metastasis and discuss the DNA repair mechanism in pancreatic CSCs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ALDH:

Aldehyde dehydrogenase

BER:

Base excision repair

CSCs:

Cancer stem cells

CXCR4:

CXC chemokine receptor 4

DSB:

Double-strand break

EMT:

Epithelial to mesenchymal transition

EpCAM:

Epithelial cell adhesion molecule

ESA:

Epithelial specific antigen

HMG CoA:

3-hydroxy-3-methylglutaryl coenzyme A reductase

HR:

Homologous recombination

MMR:

Mismatch repair

NER:

Nucleotide excision repair

NHEJ:

Non-homologous end-joining

PARP:

Poly ADP ribose polymerase

PDAC:

Pancreatic ductal adenocarcinoma

SCs:

Stem cells

SDF-1:

Stromal derived factor-1

SSB:

Single-strand break

TGF-β:

Transforming growth factor beta

ZEB:

Zinc-finger transcription factor

References

  1. Parkin DM, Bray F, Ferlay J et al (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  2. Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17:313–319

    Article  PubMed  CAS  Google Scholar 

  3. Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66:9339–9344

    Article  PubMed  CAS  Google Scholar 

  4. Tang C, Ang BT, Pervaiz S (2007) Cancer stem cell: target for anti-cancer therapy. FASEB J 21:3777–3785

    Article  PubMed  CAS  Google Scholar 

  5. Ma S, Chan KW, Hu L et al (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132:2542–2556

    Article  PubMed  CAS  Google Scholar 

  6. O’Brien CA, Pollett A, Gallinger S et al (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  Google Scholar 

  7. Kim CF, Jackson EL, Woolfenden AE et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835

    Article  PubMed  CAS  Google Scholar 

  8. Lee CJ, Dosch J, Simeone DM (2008) Pancreatic cancer stem cells. J Clin Oncol 26:2806–2812

    Article  PubMed  Google Scholar 

  9. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  10. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33

    Article  PubMed  CAS  Google Scholar 

  11. Hastings PJ, Lupski JR, Rosenberg SM et al (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10:551–564

    Article  PubMed  CAS  Google Scholar 

  12. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458:719–724

    Article  PubMed  CAS  Google Scholar 

  13. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374

    Article  PubMed  CAS  Google Scholar 

  14. O’Driscoll M, Jeggo PA (2006) The role of double-strand break repair—insights from human genetics. Nat Rev Genet 7:45–54

    Article  PubMed  Google Scholar 

  15. Wyman C, Kanaar R (2006) DNA double-strand break repair: all’s well that ends well. Annu Rev Genet 40:363–383

    Article  PubMed  CAS  Google Scholar 

  16. Heyer WD, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139

    Article  PubMed  CAS  Google Scholar 

  17. Mathews LA, Cabarcas SM, Farrar WL (2011) DNA repair: the culprit for tumor-initiating cell survival? Cancer Metastasis Rev 30:185–197

    Article  PubMed  Google Scholar 

  18. Ralhan R, Kaur J, Kreienberg R et al (2007) Links between DNA double strand break repair and breast cancer: accumulating evidence from both familial and nonfamilial cases. Cancer Lett 248:1–17

    Article  PubMed  CAS  Google Scholar 

  19. Sarasin A, Kauffmann A (2008) Overexpression of DNA repair genes is associated with metastasis: a new hypothesis. Mutat Res 659:49–55

    Article  PubMed  CAS  Google Scholar 

  20. Adhikari AS, Agarwal N, Iwakuma T (2011) Metastatic potential of tumor-initiating cells in solid tumors. Front Biosci 16:1927–1938

    Article  PubMed  CAS  Google Scholar 

  21. Zischek C, Niess H, Ischenko I et al (2009) Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann Surg 250:747–753

    Article  PubMed  Google Scholar 

  22. Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  PubMed  CAS  Google Scholar 

  23. Hermann PC, Huber SL, Herrler T et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323

    Article  PubMed  CAS  Google Scholar 

  24. Rasheed ZA, Yang J, Wang Q et al (2010) Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst 102:340–351

    Article  PubMed  CAS  Google Scholar 

  25. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  PubMed  CAS  Google Scholar 

  26. Munz M, Kieu C, Mack B et al (2004) The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene 23:5748–5758

    Article  PubMed  Google Scholar 

  27. Thayer SP, di Magliano MP, Heiser PW et al (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425:851–856

    Article  PubMed  CAS  Google Scholar 

  28. Narducci MG, Scala E, Bresin A et al (2006) Skin homing of Sezary cells involves SDF-1-CXCR4 signaling and down-regulation of CD26/dipeptidylpeptidase IV. Blood 107:1108–1115

    Article  PubMed  CAS  Google Scholar 

  29. Klein RS, Rubin JB, Gibson HD et al (2001) SDF-1 alpha induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells. Development 128:1971–1981

    PubMed  CAS  Google Scholar 

  30. Doitsidou M, Reichman-Fried M, Stebler J et al (2002) Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111:647–659

    Article  PubMed  CAS  Google Scholar 

  31. Aiuti A, Webb IJ, Bleul C et al (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185:111–120

    Article  PubMed  CAS  Google Scholar 

  32. Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70:5649–5669

    Article  PubMed  CAS  Google Scholar 

  33. Mimeault M, Johansson SL, Senapati S et al (2010) MUC4 down-regulation reverses chemoresistance of pancreatic cancer stem/progenitor cells and their progenies. Cancer Lett 295:69–84

    Article  PubMed  CAS  Google Scholar 

  34. Yao J, Cai HH, Wei JS et al (2010) Side population in the pancreatic cancer cell lines SW1990 and CFPAC-1 is enriched with cancer stem-like cells. Oncol Rep 23:1375–1382

    PubMed  CAS  Google Scholar 

  35. Hong SP, Wen J, Bang S et al (2009) CD44-positive cells are responsible for gemcitabine resistance in pancreatic cancer cells. Int J Cancer 125:2323–2331

    Article  PubMed  CAS  Google Scholar 

  36. Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829

    Article  PubMed  CAS  Google Scholar 

  37. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    Article  PubMed  CAS  Google Scholar 

  38. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    Article  PubMed  CAS  Google Scholar 

  39. Kang Y, Massague J (2004) Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118:277–279

    Article  PubMed  CAS  Google Scholar 

  40. Wels J, Kaplan RN, Rafii S et al (2008) Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev 22:559–574

    Article  PubMed  CAS  Google Scholar 

  41. von Burstin J, Eser S, Paul MC et al (2009) E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology 137:361–371, 371 e361–365

    Article  Google Scholar 

  42. Singh A, Greninger P, Rhodes D et al (2009) A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell 15:489–500

    Article  PubMed  CAS  Google Scholar 

  43. Wang Z, Li Y, Kong D et al (2009) Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res 69:2400–2407

    Article  PubMed  CAS  Google Scholar 

  44. Huber MA, Azoitei N, Baumann B et al (2004) NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114:569–581

    PubMed  CAS  Google Scholar 

  45. Moustakas A, Heldin CH (2007) Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98:1512–1520

    Article  PubMed  CAS  Google Scholar 

  46. Zavadil J, Bottinger EP (2005) TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24:5764–5774

    Article  PubMed  CAS  Google Scholar 

  47. Timmerman LA, Grego-Bessa J, Raya A et al (2004) Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18:99–115

    Article  PubMed  CAS  Google Scholar 

  48. Zavadil J, Cermak L, Soto-Nieves N et al (2004) Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J 23:1155–1165

    Article  PubMed  CAS  Google Scholar 

  49. Sarkar FH, Li Y, Wang Z et al (2009) Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chir 64:489–500

    PubMed  CAS  Google Scholar 

  50. Bianco C, Rangel MC, Castro NP et al (2010) Role of Cripto-1 in stem cell maintenance and malignant progression. Am J Pathol 177:532–540

    Article  PubMed  CAS  Google Scholar 

  51. Lonardo E, Hermann PC, Mueller MT et al (2011) Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell 9:433–446

    Article  PubMed  CAS  Google Scholar 

  52. Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  53. Wang Z, Li Y, Ahmad A et al (2011) Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol 8:27–33

    Article  PubMed  CAS  Google Scholar 

  54. Shah AN, Summy JM, Zhang J et al (2007) Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol 14:3629–3637

    Article  PubMed  Google Scholar 

  55. Wang Z, Ahmad A, Li Y et al (2011) Targeting notch to eradicate pancreatic cancer stem cells for cancer therapy. Anticancer Res 31:1105–1113

    PubMed  CAS  Google Scholar 

  56. Li C, Lee CJ, Simeone DM (2009) Identification of human pancreatic cancer stem cells. Methods Mol Biol 568:161–173

    Article  PubMed  CAS  Google Scholar 

  57. Feldmann G, Fendrich V, McGovern K et al (2008) An orally bioavailable small-molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer. Mol Cancer Ther 7:2725–2735

    Article  PubMed  CAS  Google Scholar 

  58. Feldmann G, Dhara S, Fendrich V et al (2007) Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 67:2187–2196

    Article  PubMed  CAS  Google Scholar 

  59. Wellner U, Schubert J, Burk UC et al (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11:1487–1495

    Article  PubMed  CAS  Google Scholar 

  60. Shimono Y, Zabala M, Cho RW et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138:592–603

    Article  PubMed  CAS  Google Scholar 

  61. Brabletz S, Brabletz T (2010) The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Rep 11:670–677

    Article  PubMed  CAS  Google Scholar 

  62. Gerson SL, Keynon J, Qing YL (2008) DNA repair: an essential role in stem cell maintenance. Blood Cell Mol Dis 40:267–268

    Article  Google Scholar 

  63. Tutt A, Ashworth A (2002) The relationship between the roles of BRCA genes in DNA repair and cancer predisposition. Trends Mol Med 8:571–576

    Article  PubMed  CAS  Google Scholar 

  64. Croker AK, Allan AL (2008) Cancer stem cells: implications for the progression and treatment of metastatic disease. J Cell Mol Med 12:374–390

    Article  PubMed  CAS  Google Scholar 

  65. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66:1883–1890; discussion 1895–1886

    Article  PubMed  CAS  Google Scholar 

  66. Nagathihalli NS, Nagaraju G (2011) RAD51 as a potential biomarker and therapeutic target for pancreatic cancer. Biochim Biophys Acta 1816:209–218

    PubMed  CAS  Google Scholar 

  67. Viale A, De Franco F, Orleth A et al (2009) Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 457:51–56

    Article  PubMed  CAS  Google Scholar 

  68. Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11:220–228

    Article  PubMed  CAS  Google Scholar 

  69. Olaussen KA, Dunant A, Fouret P et al (2006) DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355:983–991

    Article  PubMed  CAS  Google Scholar 

  70. Liu S, Ginestier C, Charafe-Jauffret E et al (2008) BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci USA 105:1680–1685

    Article  PubMed  CAS  Google Scholar 

  71. Molyneux G, Geyer FC, Magnay FA et al (2010) BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7:403–417

    Article  PubMed  CAS  Google Scholar 

  72. Smalley MJ, Reis-Filho JS, Ashworth A (2008) BRCA1 and stem cells: tumour typecasting. Nat Cell Biol 10:377–379

    Article  PubMed  CAS  Google Scholar 

  73. James CR, Quinn JE, Mullan PB et al (2007) BRCA1, a potential predictive biomarker in the treatment of breast cancer. Oncologist 12:142–150

    Article  PubMed  CAS  Google Scholar 

  74. Yu X, Luo Y, Zhou Y et al (2008) BRCA1 overexpression sensitizes cancer cells to lovastatin via regulation of cyclin D1-CDK4-p21WAF1/CIP1 pathway: analyses using a breast cancer cell line and tumoral xenograft model. Int J Oncol 33:555–563

    PubMed  CAS  Google Scholar 

  75. Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11:196–207

    Article  PubMed  CAS  Google Scholar 

  76. Nagaraju G, Scully R (2007) Minding the gap: the underground functions of BRCA1 and BRCA2 at stalled replication forks. DNA Repair (Amst) 6:1018–1031

    Article  CAS  Google Scholar 

  77. Sung P, Klein H (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7:739–750

    Article  PubMed  CAS  Google Scholar 

  78. San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257

    Article  Google Scholar 

  79. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    PubMed  CAS  Google Scholar 

  80. Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66:630–670 (table of contents)

    Article  PubMed  CAS  Google Scholar 

  81. Tsuzuki T, Fujii Y, Sakumi K et al (1996) Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci USA 93:6236–6240

    Article  PubMed  CAS  Google Scholar 

  82. Maacke H, Jost K, Opitz S et al (2000) DNA repair and recombination factor Rad51 is over-expressed in human pancreatic adenocarcinoma. Oncogene 19:2791–2795

    Article  PubMed  CAS  Google Scholar 

  83. Richardson C (2005) RAD51, genomic stability, and tumorigenesis. Cancer Lett 218:127–139

    Article  PubMed  CAS  Google Scholar 

  84. Klein HL (2008) The consequences of Rad51 overexpression for normal and tumor cells. DNA Repair (Amst) 7:686–693

    Article  CAS  Google Scholar 

  85. Henning W, Sturzbecher HW (2003) Homologous recombination and cell cycle checkpoints: Rad51 in tumour progression and therapy resistance. Toxicology 193:91–109

    Article  PubMed  CAS  Google Scholar 

  86. Vispe S, Cazaux C, Lesca C et al (1998) Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation. Nucleic Acids Res 26:2859–2864

    Article  PubMed  CAS  Google Scholar 

  87. Richardson C, Jasin M (2000) Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405:697–700

    Article  PubMed  CAS  Google Scholar 

  88. Richardson C, Stark JM, Ommundsen M et al (2004) Rad51 overexpression promotes alternative double-strand break repair pathways and genome instability. Oncogene 23:546–553

    Article  PubMed  CAS  Google Scholar 

  89. Connell PP, Jayathilaka K, Haraf DJ et al (2006) Pilot study examining tumor expression of RAD51 and clinical outcomes in human head cancers. Int J Oncol 28:1113–1119

    PubMed  CAS  Google Scholar 

  90. Hannay JA, Liu J, Zhu QS et al (2007) Rad51 overexpression contributes to chemoresistance in human soft tissue sarcoma cells: a role for p53/activator protein 2 transcriptional regulation. Mol Cancer Ther 6:1650–1660

    Article  PubMed  CAS  Google Scholar 

  91. Charafe-Jauffret E, Ginestier C, Iovino F et al (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69:1302–1313

    Article  PubMed  CAS  Google Scholar 

  92. Sorensen CS, Hansen LT, Dziegielewski J et al (2005) The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 7:195–201

    Article  PubMed  CAS  Google Scholar 

  93. Liu Q, Guntuku S, Cui XS et al (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14:1448–1459

    Article  PubMed  CAS  Google Scholar 

  94. Takai H, Tominaga K, Motoyama N et al (2000) Aberrant cell cycle checkpoint function and early embryonic death in Chk1(−/−) mice. Genes Dev 14:1439–1447

    PubMed  CAS  Google Scholar 

  95. Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421–429

    Article  PubMed  CAS  Google Scholar 

  96. Hurley PJ, Bunz F (2007) ATM and ATR: components of an integrated circuit. Cell Cycle 6:414–417

    Article  PubMed  CAS  Google Scholar 

  97. Ramalho-Santos M, Yoon S, Matsuzaki Y et al (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298:597–600

    Article  PubMed  CAS  Google Scholar 

  98. Ivanova NB, Dimos JT, Schaniel C et al (2002) A stem cell molecular signature. Science 298:601–604

    Article  PubMed  CAS  Google Scholar 

  99. Chen R, Nishimura MC, Bumbaca SM et al (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17:362–375

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Nipun Merchant, Elaine Hurt, Stephanie Cabarcas, Lesley Mathews and Michael Van Saun for their useful comments and stimulating discussions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaraj S. Nagathihalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nagathihalli, N., Brown, E. (2013). Pancreatic Cancer Stem Cells in Tumor Progression, Metastasis, Epithelial-Mesenchymal Transition and DNA Repair. In: Mathews, L., Cabarcas, S., Hurt, E. (eds) DNA Repair of Cancer Stem Cells. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4590-2_8

Download citation

Publish with us

Policies and ethics