Skip to main content

Introduction to Cancer Stem Cells

  • Chapter
  • First Online:
Book cover DNA Repair of Cancer Stem Cells

Abstract

A wealth of data points to the existence of a subset of tumor-initiating cells that have properties similar to stem cells, termedcancer stem cells (CSCs). CSCs are thought to be at the apex of a cellular hierarchy, where they are capable of differentiating into the other cells found within a tumor. They may also be responsible for both patient relapse due to their relative resistance to chemotherapy as well as metastasis. In recent years, much research has focused on these cells, their properties and potential targets within these cells for cancer treatment. This chapter will introduce the CSC theory, discuss important properties of these cells, and highlight the need to target them for improved patient outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pierce GB, Johnson LD (1971) Differentiation and cancer. In Vitro 7:140–145

    Article  PubMed  CAS  Google Scholar 

  2. Sell S, Pierce GB (1994) Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 70:6–22

    PubMed  CAS  Google Scholar 

  3. Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  PubMed  CAS  Google Scholar 

  4. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  5. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  6. Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66:9339–9344

    Article  PubMed  CAS  Google Scholar 

  7. Ishizawa K, Rasheed ZA, Karisch R et al (2010) Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 7:279–282

    Google Scholar 

  8. Shackleton MJ, Quintana E, Fullen DR, Sabel MS, Johnson TM (2009) Melanoma: do we need a hatchet or a scalpel? Arch Dermatol 145:307–308

    Article  PubMed  Google Scholar 

  9. Nordling CO (1953) A new theory on cancer-inducing mechanism. Br J Cancer 7:68–72

    Article  PubMed  CAS  Google Scholar 

  10. Ashkenazi R, Gentry SN, Jackson TL (2008) Pathways to tumorigenesis—modeling mutation acquisition in stem cells and their progeny. Neoplasia 10:1170–1182

    PubMed  CAS  Google Scholar 

  11. Maguer-Satta V, Petzer AL, Eaves AC, Eaves CJ (1996) BCR-ABL expression in different subpopulations of functionally characterized Ph+ CD34+ cells from patients with chronic myeloid leukemia. Blood 88:1796–1804

    PubMed  CAS  Google Scholar 

  12. Birnie R, Bryce SD, Roome C et al (2008) Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol 9:R83

    Article  PubMed  CAS  Google Scholar 

  13. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  14. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  15. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  16. Stephens PJ, Greenman CD, Fu B et al (2011)Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40

    Google Scholar 

  17. Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  18. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    Article  PubMed  CAS  Google Scholar 

  19. Feuring-Buske M, Hogge DE (2001) Hoechst 33342 efflux identifies a subpopulation of cytogenetically normal CD34(+)CD38(-) progenitor cells from patients with acute myeloid leukemia. Blood 97:3882–3889

    Article  PubMed  CAS  Google Scholar 

  20. Wulf GG, Wang RY, Kuehnle I et al. (2001) A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood 98:1166–1173

    Article  PubMed  CAS  Google Scholar 

  21. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT et al (2006) Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA 103:11154–11159

    Article  PubMed  CAS  Google Scholar 

  22. Chiba T, Kita K, Zheng YW et al (2006) Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 44:240–251

    Article  PubMed  CAS  Google Scholar 

  23. Hirschmann-Jax C, Foster AE, Wulf GG et al (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233

    Article  PubMed  CAS  Google Scholar 

  24. Setoguchi T, Taga T, Kondo T (2004) Cancer stem cells persist in many cancer cell lines. Cell Cycle 3:414–415

    Article  PubMed  CAS  Google Scholar 

  25. Shen G, Shen F, Shi Z et al (2008) Identification of cancer stem-like cells in the C6 glioma cell line and the limitation of current identification methods. In Vitro Cell Dev Biol Anim 44:280–289

    Article  PubMed  CAS  Google Scholar 

  26. Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67:4827–4833

    Article  PubMed  CAS  Google Scholar 

  27. Salcido CD, Larochelle A, Taylor BJ, Dunbar CE, Varticovski L (2010) Molecular characterisation of side population cells with cancer stem cell-like characteristics in small-cell lung cancer. Br J Cancer 102:1636–1644

    Article  PubMed  CAS  Google Scholar 

  28. Mitsutake N, Iwao A, Nagai K et al (2007) Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively. Endocrinology 148:1797–1803

    Article  PubMed  CAS  Google Scholar 

  29. Wang J, Guo LP, Chen LZ, Zeng YX, Lu SH (2007) Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res 67:3716–3724

    Article  PubMed  CAS  Google Scholar 

  30. Wu C, Wei Q, Utomo V et al (2007) Side population cells isolated from mesenchymal neoplasms have tumor initiating potential. Cancer Res 67:8216–8222

    Article  PubMed  CAS  Google Scholar 

  31. Sussman RT, Ricci MS, Hart LS, Sun SY, El-Deiry WS (2007) Chemotherapy-resistant side-population of colon cancer cells has a higher sensitivity to TRAIL than the non-SP, a higher expression of c-Myc and TRAIL-receptor DR4. Cancer Biol Ther 6:1490–1495

    Article  PubMed  CAS  Google Scholar 

  32. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res 65:6207–6219

    Article  PubMed  CAS  Google Scholar 

  33. Christgen M, Ballmaier M, Bruchhardt H, von Wasielewski R, Kreipe H, Lehmann U (2007) Identification of a distinct side population of cancer cells in the Cal-51 human breast carcinoma cell line. Mol Cell Biochem 306:201–212

    Article  PubMed  CAS  Google Scholar 

  34. Nakanishi T, Chumsri S, Khakpour N et al (2010) Side-population cells in luminal-type breast cancer have tumour-initiating cell properties, and are regulated by HER2 expression and signalling. Br J Cancer 102:815–826

    Article  PubMed  CAS  Google Scholar 

  35. Engelmann K, Shen H, Finn OJ (2008) MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1. Cancer Res 68:2419–2426

    Article  PubMed  CAS  Google Scholar 

  36. Tabor MH, Clay MR, Owen JH et al (2011) Head and neck cancer stem cells: the side population. Laryngoscope 121:527–533

    Article  PubMed  CAS  Google Scholar 

  37. Schmuck R, Warneke V, Behrens HM, Simon E, Weichert W, Rocken C (2011) Genotypic and phenotypic characterization of side population of gastric cancer cell lines. Am J Pathol 178:1792–1804

    Article  PubMed  Google Scholar 

  38. Yanamoto S, Kawasaki G, Yamada S et al (2011) Isolation and characterization of cancer stem-like side population cells in human oral cancer cells. Oral Oncol 47:855–860

    Article  PubMed  CAS  Google Scholar 

  39. Yang M, Yan M, Zhang R, Li J, Luo Z (2011) Side population cells isolated from human osteosarcoma are enriched with tumor-initiating cells. Cancer Sci 102:1774–1781

    Google Scholar 

  40. Zhang SN, Huang FT, Huang YJ, Zhong W, Yu Z (2011) Characterization of a cancer stem cell-like side population derived from human pancreatic adenocarcinoma cells. Tumori 96:985–992

    Google Scholar 

  41. Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP (2002) Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci USA 99:12339–12344

    Article  PubMed  CAS  Google Scholar 

  42. Zhou S, Schuetz JD, Bunting KD et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034

    Article  PubMed  CAS  Google Scholar 

  43. Mao Q, Unadkat JD (2005)Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J 7:E118–133

    Google Scholar 

  44. Loebinger MR, Giangreco A, Groot KR et al (2008) Squamous cell cancers contain a side population of stem-like cells that are made chemosensitive by ABC transporter blockade. Br J Cancer 98:380–387

    Google Scholar 

  45. Katayama R, Koike S, Sato S, Sugimoto Y, Tsuruo T, Fujita N (2009) Dofequidar fumarate sensitizes cancer stem-like side population cells to chemotherapeutic drugs by inhibiting ABCG2/BCRP-mediated drug export. Cancer Sci 100:2060–2068

    Article  PubMed  CAS  Google Scholar 

  46. Yamamoto K, Suzu S, Yoshidomi Y, Hiyoshi M, Harada H, Okada S (2007) Erythroblasts highly express the ABC transporter Bcrp1/ABCG2 but do not show the side population (SP) phenotype. Immunol Lett 114:52–58

    Article  PubMed  CAS  Google Scholar 

  47. Yajima T, Ochiai H, Uchiyama T, Takano N, Shibahara T, Azuma T (2009) Resistance to cytotoxic chemotherapy-induced apoptosis in side population cells of human oral squamous cell carcinoma cell line Ho-1-N-1. Int J Oncol 35:273–80

    PubMed  CAS  Google Scholar 

  48. Bhatt RI, Brown MD, Hart CA et al (2003) Novel method for the isolation and characterisation of the putative prostatic stem cell. Cytometry A 54:89–99

    Article  PubMed  Google Scholar 

  49. Golebiewska A, Brons NH, Bjerkvig R, Niclou SP (2011) Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell 8:136–147

    Google Scholar 

  50. Broadley KW, Hunn MK, Farrand KJ et al (2011) Side population is not necessary or sufficient for a cancer stem cell phenotype in glioblastoma multiforme. Stem Cells 29:452–461

    Article  PubMed  CAS  Google Scholar 

  51. Wan G, Zhou L, Xie M, Chen H, Tian J (2010) Characterization of side population cells from laryngeal cancer cell lines. Head Neck 32:1302–1309

    Article  PubMed  Google Scholar 

  52. Hosonuma S, Kobayashi Y, Kojo S et al (2011) Clinical significance of side population in ovarian cancer cells. Hum Cell 24:9–12

    Google Scholar 

  53. Moserle L, Ghisi M, Amadori A, Indraccolo S (2009) Side population and cancer stem cells: therapeutic implications. Cancer Lett 288:1–9

    Article  PubMed  CAS  Google Scholar 

  54. Sobhan PK, Seervi M, Joseph J et al (2011) Identification of heat shock protein 90 inhibitors to sensitize drug resistant side population tumor cells using a cell based assay platform. Cancer Lett 317:78–88

    Google Scholar 

  55. Foster AE, Okur FV, Biagi E et al (2010) Selective elimination of a chemoresistant side population of B-CLL cells by cytotoxic T lymphocytes in subjects receiving an autologous hCD40L/IL-2 tumor vaccine. Leukemia 24:563–572

    Google Scholar 

  56. Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  57. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  58. Son MJ, Woolard K, Nam DH, Lee J, Fine HA (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4:440–452

    Article  PubMed  CAS  Google Scholar 

  59. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  PubMed  CAS  Google Scholar 

  60. Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL (2008) CD44+ CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 98:756–765

    Article  PubMed  CAS  Google Scholar 

  61. Prince ME, Sivanandan R, Kaczorowski A et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104:973–978

    Article  PubMed  CAS  Google Scholar 

  62. Ma S, Chan KW, Hu L et al (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132:2542–2556

    Article  PubMed  CAS  Google Scholar 

  63. Yang ZF, Ho DW, Ng MN et al (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13:153–166

    Article  PubMed  CAS  Google Scholar 

  64. Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  PubMed  CAS  Google Scholar 

  65. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  CAS  Google Scholar 

  66. Dalerba P, Dylla SJ, Park IK et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104:10158–10163

    Article  PubMed  CAS  Google Scholar 

  67. Botchkina IL, Rowehl RA, Rivadeneira DE et al (2009) Phenotypic subpopulations of metastatic colon cancer stem cells: genomic analysis. Cancer Genomics Proteomics 6:19–29

    PubMed  CAS  Google Scholar 

  68. Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  PubMed  CAS  Google Scholar 

  69. Hermann PC, Huber SL, Herrler T et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323

    Article  PubMed  CAS  Google Scholar 

  70. Atsumi N, Ishii G, Kojima M, Sanada M, Fujii S, Ochiai A (2008) Podoplanin, a novel marker of tumor-initiating cells in human squamous cell carcinoma A431. Biochem Biophys Res Commun 373:36–41

    Article  PubMed  CAS  Google Scholar 

  71. Eramo A, Lotti F, Sette G et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514

    Article  PubMed  CAS  Google Scholar 

  72. Schatton T, Murphy GF, Frank NY et al (2008) Identification of cells initiating human melanomas. Nature 451:345–349

    Article  PubMed  CAS  Google Scholar 

  73. Takaishi S, Okumura T, Tu S et al (2009) Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27:1006–1020

    Article  PubMed  CAS  Google Scholar 

  74. Curley MD, Therrien VA, Cummings CL et al (2009) CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 27:2875–2883

    PubMed  CAS  Google Scholar 

  75. Zhang S, Balch C, Chan MW et al (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68:4311–4320

    Article  PubMed  CAS  Google Scholar 

  76. Alvero AB, Chen R, Fu HH et al (2009) Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle 8:158–166

    Article  PubMed  CAS  Google Scholar 

  77. Weigmann A, Corbeil D, Hellwig A, Huttner WB (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 94:12425–12430

    Article  PubMed  CAS  Google Scholar 

  78. Yin AH, Miraglia S, Zanjani ED et al (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012

    PubMed  CAS  Google Scholar 

  79. Corbeil D, Roper K, Hellwig A et al (2000) The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 275:5512–5520

    Article  PubMed  CAS  Google Scholar 

  80. Maw MA, Corbeil D, Koch J et al (2000) A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet 9:27–34

    Article  PubMed  CAS  Google Scholar 

  81. Bourseau-Guilmain E, Griveau A, Benoit JP, Garcion E (2011) The importance of the stem cell marker prominin-1/CD133 in the uptake of transferrin and in iron metabolism in human colon cancer Caco-2 cells. PLoS One 6:e25515

    Google Scholar 

  82. Du L, Wang H, He L et al (2008) CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 14:6751–6760

    Article  PubMed  CAS  Google Scholar 

  83. Goodison S, Urquidi V, Tarin D (1999) CD44 cell adhesion molecules. Mol Pathol 52:189–196

    Article  PubMed  CAS  Google Scholar 

  84. Ahrens T, Assmann V, Fieber C et al (2001) CD44 is the principal mediator of hyaluronic-acid-induced melanoma cell proliferation. J Invest Dermatol 116:93–101

    Article  PubMed  CAS  Google Scholar 

  85. Misra S, Toole BP, Ghatak S (2006) Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. J Biol Chem 281:34936–34941

    Article  PubMed  CAS  Google Scholar 

  86. Sheridan C, Kishimoto H, Fuchs RK et al (2006) CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8:R59

    Article  PubMed  CAS  Google Scholar 

  87. Omara-Opyene AL, Qiu J, Shah GV, Iczkowski KA (2004) Prostate cancer invasion is influenced more by expression of a CD44 isoform including variant 9 than by Muc18. Lab Invest 84:894–907

    Article  PubMed  CAS  Google Scholar 

  88. Zhang T, Huang XH, Dong L et al (2010) PCBP-1 regulates alternative splicing of the CD44 gene and inhibits invasion in human hepatoma cell line HepG2 cells. Mol Cancer 9:72

    Google Scholar 

  89. Li Y, Heldin P (2001) Hyaluronan production increases the malignant properties of mesothelioma cells. Br J Cancer 85:600–607

    Article  PubMed  CAS  Google Scholar 

  90. Paradis V, Eschwege P, Loric S et al (1998) De novo expression of CD44 in prostate carcinoma is correlated with systemic dissemination of prostate cancer. J Clin Pathol 51:798–802

    Article  PubMed  CAS  Google Scholar 

  91. Orian-Rousseau V (2010) CD44, a therapeutic target for metastasising tumours. Eur J Cancer 46:1271–1277

    Google Scholar 

  92. Park HY, Lee KJ, Lee SJ, Yoon MY Screening of Peptides Bound to Breast Cancer Stem Cell Specific Surface Marker CD44 by Phage Display. Mol Biotechnol 51:212–220

    Google Scholar 

  93. Joshua B, Kaplan MJ, Doweck I et al Frequency of cells expressing CD44, a Head and Neck cancer stem cell marker: correlation with tumor aggressiveness. Head Neck 34:42–49

    Google Scholar 

  94. Colnot DR, Roos JC, de Bree R et al (2003) Safety, biodistribution, pharmacokinetics, and immunogenicity of 99mTc-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with squamous cell carcinoma of the head and neck. Cancer Immunol Immunother 52:576–582

    Article  PubMed  CAS  Google Scholar 

  95. Borjesson PK, Postema EJ, Roos JC et al (2003) Phase I therapy study with (186)Re-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with head and neck squamous cell carcinoma. Clin Cancer Res 9(39):61 S–72 S

    Google Scholar 

  96. Tijink BM, Buter J, de Bree R et al (2006) A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin Cancer Res 12:6064–6072

    Article  PubMed  CAS  Google Scholar 

  97. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174

    Article  PubMed  CAS  Google Scholar 

  98. Rocco A, Liguori E, Pirozzi G et al (2011) CD133 and CD44 cell surface markers do not identify cancer stem cells in primary human gastric tumours. J Cell Physiol 227:2686–2693

    Google Scholar 

  99. Eppert K, Takenaka K, Lechman ER et al (2011) Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 17:1086–1093

    Google Scholar 

  100. Park SY, Lee HE, Li H, Shipitsin M, Gelman R, Polyak K (2010) Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin Cancer Res 16:876–887

    Google Scholar 

  101. Ali HR, Dawson SJ, Blows FM, Provenzano E, Pharoah PD, Caldas C (2011) Cancer stem cell markers in breast cancer: pathological, clinical and prognostic significance. Breast Cancer Res 13:R118

    Google Scholar 

  102. Allalunis-Turner MJ, Siemann DW (1986) Recovery of cell subpopulations from human tumour xenografts following dissociation with different enzymes. Br J Cancer 54:615–622

    Article  PubMed  CAS  Google Scholar 

  103. Abuzakouk M, Feighery C, O’Farrelly C (1996) Collagenase and Dispase enzymes disrupt lymphocyte surface molecules. J Immunol Methods 194:211–216

    Article  PubMed  CAS  Google Scholar 

  104. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  PubMed  CAS  Google Scholar 

  105. Yu S, Zhang JZ, Zhao CL, Zhang HY, Xu Q (2004) Isolation and characterization of the CD133+ precursors from the ventricular zone of human fetal brain by magnetic affinity cell sorting. Biotechnol Lett 26:1131–1136

    Article  PubMed  CAS  Google Scholar 

  106. Ponti D, Costa A, Zaffaroni N et al (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511

    Article  PubMed  CAS  Google Scholar 

  107. Fang D, Nguyen TK, Leishear K et al (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337

    Article  PubMed  CAS  Google Scholar 

  108. Gou S, Liu T, Wang C et al (2007) Establishment of clonal colony-forming assay for propagation of pancreatic cancer cells with stem cell properties. Pancreas 34:429–35

    Article  PubMed  Google Scholar 

  109. Duhagon MA, Hurt EM, Sotelo-Silveira JR, Zhang X, Farrar WL (2010)Genomic profiling of tumor initiating prostatospheres. BMC Genomics 11:324

    Google Scholar 

  110. Todaro M, Alea MP, Di Stefano AB et al (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1:389–402

    Article  PubMed  CAS  Google Scholar 

  111. Yuan X, Curtin J, Xiong Y et al (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400

    Article  PubMed  CAS  Google Scholar 

  112. Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  PubMed  CAS  Google Scholar 

  113. Gibbs CP, Kukekov VG, Reith JD et al (2005) Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 7:967–976

    Article  PubMed  CAS  Google Scholar 

  114. Suslov ON, Kukekov VG, Ignatova TN, Steindler DA (2002) Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc Natl Acad Sci USA 99:14506–14511

    Article  PubMed  CAS  Google Scholar 

  115. Patrawala L, Calhoun T, Schneider-Broussard R et al (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25:1696–1708

    Article  PubMed  CAS  Google Scholar 

  116. Jensen JB, Parmar M (2006) Strengths and limitations of the neurosphere culture system. Mol Neurobiol 34:153–161

    Article  PubMed  CAS  Google Scholar 

  117. Sladek NE (2003) Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol 17:7–23

    Article  PubMed  CAS  Google Scholar 

  118. Moreb JS (2008) Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther 3:237–246

    Article  PubMed  CAS  Google Scholar 

  119. Storms RW, Trujillo AP, Springer JB et al (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 96:9118–9123

    Article  PubMed  CAS  Google Scholar 

  120. Alison MR, Guppy NJ, Lim SM, Nicholson LJ (2010)Finding cancer stem cells: are aldehyde dehydrogenases fit for purpose? J Pathol 222:335–344

    Google Scholar 

  121. Pearce DJ, Taussig D, Simpson C et al (2005) Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells 23:752–760

    Article  PubMed  CAS  Google Scholar 

  122. Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    Article  PubMed  CAS  Google Scholar 

  123. Boonyaratanakornkit JB, Yue L, Strachan LR et al (2010) Selection of tumorigenic melanoma cells using ALDH. J Invest Dermatol 130:2799–2808

    Google Scholar 

  124. van den Hoogen C, van der Horst G, Cheung H et al (2010) High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 70:5163–5173

    Google Scholar 

  125. Silva IA, Bai S, McLean K et al (2011) Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res 71:3991–4001

    Google Scholar 

  126. Liang D, Shi Y (2012) Aldehyde dehydrogenase-1 is a specific marker for stem cells in human lung adenocarcinoma. Med Oncol 29:633–639

    Google Scholar 

  127. Wang L, Park P, Zhang H, La Marca F, Lin CY (2011) Prospective identification of tumorigenic osteosarcoma cancer stem cells in OS99-1 cells based on high aldehyde dehydrogenase activity. Int J Cancer 128:294–303

    Google Scholar 

  128. Hwang-Verslues WW, Kuo WH, Chang PH et al (2009) Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS One 4:e8377

    Article  PubMed  CAS  Google Scholar 

  129. Yu C, Yao Z, Dai J et al (2011) ALDH activity indicates increased tumorigenic cells, but not cancer stem cells, in prostate cancer cell lines. In Vivo 25:69–76

    Google Scholar 

  130. Zhou J, Wang H, Cannon V, Wolcott KM, Song H, Yates C (2011) Side population rather than CD133(+) cells distinguishes enriched tumorigenicity in hTERT-immortalized primary prostate cancer cells. Mol Cancer 10:112

    Article  PubMed  CAS  Google Scholar 

  131. Camargo FD, Chambers SM, Drew E, McNagny KM, Goodell MA (2006) Hematopoietic stem cells do not engraft with absolute efficiencies. Blood 107:501–507

    Article  PubMed  CAS  Google Scholar 

  132. Grotenhuis BA, Wijnhoven BP, van Lanschot JJ (2012)Cancer stem cells and their potential implications for the treatment of solid tumors. J Surg Oncol doi: 10.1002/jso.23069

    Google Scholar 

  133. Jones RJ (2009) Cancer stem cells-clinical relevance. J Mol Med (Berl) 87:1105–1110

    Article  Google Scholar 

  134. Zeppernick F, Ahmadi R, Campos B et al (2008) Stem Cell Marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 14:123–129

    Article  PubMed  CAS  Google Scholar 

  135. Liu R, Wang X, Chen GY et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356:217–226

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine M. Hurt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gao, C., Hollingsworth, R., Hurt, E. (2013). Introduction to Cancer Stem Cells. In: Mathews, L., Cabarcas, S., Hurt, E. (eds) DNA Repair of Cancer Stem Cells. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4590-2_1

Download citation

Publish with us

Policies and ethics