Skip to main content

Regulation of MicroRNAs by Natural Compounds: Implications for Cancer Therapy

  • Chapter
  • First Online:
Natural compounds as inducers of cell death

Abstract

MicroRNAs (miRNAs) are evolutionarily conserved short (19–22 nucleotides) noncoding RNA sequences that bind to target mRNAs, leading to their degradation or inhibition of translation. They have received a lot of attention in recent years as fine regulators of gene expression thus influencing many biological processes including the development and progression of cancers. Many miRNAs with a role in cancer including invasion and metastasis as well as those having tumor suppressor activities have been characterized. Expression profiling of miRNAs classifies cancers and even serves to predict prognosis. Aberrations in miRNA expression affect that of their target proteins eventually altering the chemosensitivity of tumor cells. Targeting miRNAs for cancer therapy is thus an emerging field for treatment optimization aiming to inhibit proliferation of cancer cells and/or to increase their sensitivity to conventional chemotherapy by inducing apoptosis. Natural compounds and dietary constituents such as curcumin, epigallocatechin-3-gallate, ellagitannin, folates, retinoids and some isoflavones are known to have antiproliferative and/or apoptotic effects in cancer cells and have been shown to modulate the miRNA expression profiles. However, detailed mechanisms as to how curcumin or other natural compounds regulate miRNAs are not known. The natural compounds are relatively non-toxic and their combination with conventional chemotherapy could be a novel and safer approach to eliminate the resistant cancer stem cells or those undergoing epithelial to mesenchymal transition (EMT) and realize the ultimate goal of improving the drug sensitivity (Kawasaki et al. 2008; Kakarala et al. 2010; Tang et al. 2010a). Deep understanding on the mechanisms of miRNA regulation by natural compounds would offer promising hopes to overcome anticancer drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn J-I, Jeong K, Ko M-J, Shin H, Kim H, Chung H, Jeong H-S (2010) Changes of miRNA and mRNA expression in HepG2 cells treated by epigallocatechin gallate. Mol Cell Toxicol 6(2):169–177. doi:10.1007/s13273-010-0024-3

    CAS  Google Scholar 

  • Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM, Wang Z, Philip PA, Sarkar FH (2010) Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 70(9):3606–3617. doi:0008-5472.CAN-09-4598 [pii] 10.1158/0008-5472.CAN-09-4598

    PubMed  CAS  Google Scholar 

  • Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33(8):2697–2706. doi:33/8/2697 [pii] 10.1093/nar/gki567

    PubMed  CAS  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. doi:10.1038/nature02871 nature02871 [pii]

    PubMed  CAS  Google Scholar 

  • Aziz MH, Nihal M, Fu VX, Jarrard DF, Ahmad N (2006) Resveratrol-caused apoptosis of human prostate carcinoma LNCaP cells is mediated via modulation of phosphatidylinositol 3′-kinase/Akt pathway and Bcl-2 family proteins. Mol Cancer Ther 5(5):1335–1341. doi:5/5/1335 [pii] 10.1158/1535-7163.MCT-05-0526

    PubMed  CAS  Google Scholar 

  • Bar N, Dikstein R (2010) miR-22 forms a regulatory loop in PTEN/AKT pathway and modulates signaling kinetics. PLoS One 5(5):e10859. doi:10.1371/journal.pone.0010859

    PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:S0092-8674(09)00008-7 [pii] 10.1016/j.cell.2009.01.002

    PubMed  CAS  Google Scholar 

  • Benitez DA, Pozo-Guisado E, Alvarez-Barrientos A, Fernandez-Salguero PM, Castellon EA (2007) Mechanisms involved in resveratrol-induced apoptosis and cell cycle arrest in prostate cancer-derived cell lines. J Androl 28(2):282–293. doi:jandrol.106.000968 [pii] 10.2164/jandrol.106.000968

    PubMed  CAS  Google Scholar 

  • Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC (2007) Mammalian mirtron genes. Mol Cell 28(2):328–336. doi:S1097-2765(07)00669-7 [pii] 10.1016/j.molcel.2007.09.028

    PubMed  CAS  Google Scholar 

  • Boesch-Saadatmandi C, Loboda A, Wagner AE, Stachurska A, Jozkowicz A, Dulak J, Doring F, Wolffram S, Rimbach G (2010) Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. J Nutr Biochem. doi:S0955-2863(10)00066-5 [pii] 10.1016/j.jnutbio.2010.02.008

    Google Scholar 

  • Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10(12):1957–1966. doi:rna.7135204 [pii] 10.1261/rna.7135204

    PubMed  CAS  Google Scholar 

  • Calin GA, Croce CM (2006a) Genomics of chronic lymphocytic leukemia microRNAs as new players with clinical significance. Semin Oncol 33(2):167–173. doi:S0093-7754(06)00019-4 [pii] 10.1053/j.seminoncol.2006.01.010

    PubMed  CAS  Google Scholar 

  • Calin GA, Croce CM (2006b) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866. doi:nrc1997 [pii] 10.1038/nrc1997

    PubMed  CAS  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101(9):2999–3004. doi:10.1073/pnas.0307323101 0307323101 [pii]

    PubMed  CAS  Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752. doi:S1097-2765(07)00310-3 [pii] 10.1016/j.molcel.2007.05.010

    PubMed  CAS  Google Scholar 

  • Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, Cai X, Wang K, Wang G, Ba Y, Zhu L, Wang J, Yang R, Zhang Y, Ren Z, Zen K, Zhang J, Zhang CY (2009) Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28(10):1385–1392. doi:onc2008474 [pii] 10.1038/onc.2008.474

    PubMed  CAS  Google Scholar 

  • Chen H, Chen Q, Fang M, Mi Y (2010) microRNA-181b targets MLK2 in HL-60 cells. Sci China Life Sci 53(1):101–106. doi:10.1007/s11427-010-0002-y

    PubMed  CAS  Google Scholar 

  • Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W, Yu HS, Jee SH, Chen GS, Chen TM, Chen CA, Lai MK, Pu YS, Pan MH, Wang YJ, Tsai CC, Hsieh CY (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21(4B):2895–2900

    PubMed  CAS  Google Scholar 

  • Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH (2007) Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res 67(5):1979–1987. doi:67/5/1979 [pii] 10.1158/0008-5472.CAN-06-1479

    PubMed  CAS  Google Scholar 

  • Cho WC (2010) MicroRNAs in cancer – from research to therapy. Biochim Biophys Acta 1805(2):209–217. doi:S0304-419X(09)00075-4 [pii] 10.1016/j.bbcan.2009.11.003

    PubMed  CAS  Google Scholar 

  • Cho WJ, Shin JM, Kim JS, Lee MR, Hong KS, Lee JH, Koo KH, Park JW, Kim KS (2009) miR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell line through direct regulation of LATS2. Mol Cells 28(6):521–527. doi:10.1007/s10059-009-0158-0

    PubMed  CAS  Google Scholar 

  • Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, Pilpel Y, Nielsen FC, Oren M, Lund AH (2010) p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17(2):236–245. doi:cdd2009109 [pii] 10.1038/cdd.2009.109

    PubMed  CAS  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102(39):13944–13949. doi:0506654102 [pii] 10.1073/pnas.0506654102

    PubMed  CAS  Google Scholar 

  • Clape C, Fritz V, Henriquet C, Apparailly F, Fernandez PL, Iborra F, Avances C, Villalba M, Culine S, Fajas L (2009) miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One 4(10):e7542. doi:10.1371/journal.pone.0007542

    PubMed  Google Scholar 

  • Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67(18):8433–8438. doi:0008-5472.CAN-07-1585 [pii] 10.1158/0008-5472.CAN-07-1585

    PubMed  CAS  Google Scholar 

  • Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ, Buckingham M (2009) Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci USA 106(32):13383–13387. doi:0900210106 [pii] 10.1073/pnas.0900210106

    PubMed  CAS  Google Scholar 

  • Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714. doi:nrg2634 [pii] 10.1038/nrg2634

    PubMed  CAS  Google Scholar 

  • Das S, Foley N, Bryan K, Watters KM, Bray I, Murphy DM, Buckley PG, Stallings RL (2010) MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Res. doi:0008-5472.CAN-10-1534 [pii] 10.1158/0008-5472.CAN-10-1534

    Google Scholar 

  • Deshpande A, Pastore A, Deshpande AJ, Zimmermann Y, Hutter G, Weinkauf M, Buske C, Hiddemann W, Dreyling M (2009) 3′UTR mediated regulation of the cyclin D1 proto-oncogene. Cell Cycle 8(21):3584–3592. doi:9993 [pii]

    PubMed  Google Scholar 

  • Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18(5):504–511. doi:10.1101/gad.1184404 1184404 [pii]

    PubMed  CAS  Google Scholar 

  • Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102(10):3627–3632. doi:0500613102 [pii] 10.1073/pnas.0500613102

    PubMed  CAS  Google Scholar 

  • Ernst A, Campos B, Meier J, Devens F, Liesenberg F, Wolter M, Reifenberger G, Herold-Mende C, Lichter P, Radlwimmer B (2010) De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene 29(23):3411–3422. doi:onc201083 [pii] 10.1038/onc.2010.83

    PubMed  CAS  Google Scholar 

  • Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3(2):87–98. doi:S1550-4131(06)00029-5 [pii] 10.1016/j.cmet.2006.01.005

    PubMed  CAS  Google Scholar 

  • Esquela-Kerscher A, Slack FJ (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269. doi:nrc1840 [pii] 10.1038/nrc1840

    PubMed  CAS  Google Scholar 

  • Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2009) Deadenylation is a widespread effect of miRNA regulation. RNA 15(1):21–32. doi:rna.1399509 [pii] 10.1261/rna.1399509

    PubMed  CAS  Google Scholar 

  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104(40):15805–15810. doi:0707628104 [pii] 10.1073/pnas.0707628104

    PubMed  CAS  Google Scholar 

  • Faber AC, Chiles TC (2006) Resveratrol induces apoptosis in transformed follicular lymphoma OCI-LY8 cells: evidence for a novel mechanism involving inhibition of BCL6 signaling. Int J Oncol 29(6):1561–1566

    PubMed  CAS  Google Scholar 

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379. doi:10.1146/annurev-biochem-060308-103103

    PubMed  CAS  Google Scholar 

  • Faller M, Guo F (2008) MicroRNA biogenesis: there’s more than one way to skin a cat. Biochim Biophys Acta 1779(11):663–667. doi:S1874-9399(08)00177-6 [pii] 10.1016/j.bbagrm.2008.08.005

    PubMed  CAS  Google Scholar 

  • Fassi Fehri L, Koch M, Belogolova E, Khalil H, Bolz C, Kalali B, Mollenkopf HJ, Beigier-Bompadre M, Karlas A, Schneider T, Churin Y, Gerhard M, Meyer TF (2010) Helicobacter pylori induces miR-155 in T cells in a cAMP-Foxp3-dependent manner. PLoS One 5(3):e9500. doi:10.1371/journal.pone.0009500

    PubMed  Google Scholar 

  • Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123(5):819–831. doi:S0092-8674(05)00977-3 [pii] 10.1016/j.cell.2005.09.023

    PubMed  CAS  Google Scholar 

  • Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, Lulli V, Morsilli O, Santoro S, Valtieri M, Calin GA, Liu CG, Sorrentino A, Croce CM, Peschle C (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102(50):18081–18086. doi:0506216102 [pii] 10.1073/pnas.0506216102

    PubMed  CAS  Google Scholar 

  • Felli N, Pedini F, Romania P, Biffoni M, Morsilli O, Castelli G, Santoro S, Chicarella S, Sorrentino A, Peschle C, Marziali G (2009) MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis. Haematologica 94(4):479–486. doi:haematol.2008.002345 [pii] 10.3324/haematol.2008.002345

    PubMed  CAS  Google Scholar 

  • Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Giovannini C, Croce CM, Bolondi L, Negrini M (2008) MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27(43):5651–5661. doi:onc2008178 [pii] 10.1038/onc.2008.178

    PubMed  CAS  Google Scholar 

  • Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283(2):1026–1033. doi:M707224200 [pii] 10.1074/jbc.M707224200

    PubMed  CAS  Google Scholar 

  • Fuchs BC, Fujii T, Dorfman JD, Goodwin JM, Zhu AX, Lanuti M, Tanabe KK (2008) Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res 68(7):2391–2399. doi:68/7/2391 [pii] 10.1158/0008-5472.CAN-07-2460

    PubMed  CAS  Google Scholar 

  • Gao J, Zhou H, Lei T, Zhou L, Li W, Li X, Yang B (2011) Curcumin inhibits renal cyst formation and enlargement in vitro by regulating intracellular signaling pathways. Eur J Pharmacol 654(1):92–99. doi:S0014-2999(10)01235-5 [pii] 10.1016/j.ejphar.2010.12.008

    PubMed  CAS  Google Scholar 

  • Garvin S, Ollinger K, Dabrosin C (2006) Resveratrol induces apoptosis and inhibits angiogenesis in human breast cancer xenografts in vivo. Cancer Lett 231(1):113–122. doi:S0304-3835(05)00106-0 [pii] 10.1016/j.canlet.2005.01.031

    PubMed  CAS  Google Scholar 

  • Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R, Cimmino A, Wang H, Sun H, Volinia S, Alder H, Calin GA, Liu CG, Andreeff M, Croce CM (2007) MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene 26(28):4148–4157. doi:1210186 [pii] 10.1038/sj.onc.1210186

    PubMed  CAS  Google Scholar 

  • Gironella M, Seux M, Xie MJ, Cano C, Tomasini R, Gommeaux J, Garcia S, Nowak J, Yeung ML, Jeang KT, Chaix A, Fazli L, Motoo Y, Wang Q, Rocchi P, Russo A, Gleave M, Dagorn JC, Iovanna JL, Carrier A, Pebusque MJ, Dusetti NJ (2007) Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci USA 104(41):16170–16175. doi:0703942104 [pii] 10.1073/pnas.0703942104

    PubMed  CAS  Google Scholar 

  • Goga A, Benz C (2007) Anti-oncomir suppression of tumor phenotypes. Mol Interv 7(4):199–202. doi:, 180

    PubMed  CAS  Google Scholar 

  • Golden EB, Lam PY, Kardosh A, Gaffney KJ, Cadenas E, Louie SG, Petasis NA, Chen TC, Schonthal AH (2009) Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors. Blood 113(23):5927–5937. doi:blood-2008-07-171389 [pii] 10.1182/blood-2008-07-171389

    PubMed  CAS  Google Scholar 

  • Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, Calin GA, Giovannini C, Ferrazzi E, Grazi GL, Croce CM, Bolondi L, Negrini M (2007) Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 67(13):6092–6099. doi:67/13/6092 [pii] 10.1158/0008-5472.CAN-06-4607

    PubMed  CAS  Google Scholar 

  • Gramantieri L, Fornari F, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Croce CM, Bolondi L, Negrini M (2009) MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res 15(16):5073–5081. doi:1078-0432.CCR-09-0092 [pii] 10.1158/1078-0432.CCR-09-0092

    PubMed  CAS  Google Scholar 

  • Gregersen LH, Jacobsen AB, Frankel LB, Wen J, Krogh A, Lund AH (2010) MicroRNA-145 targets YES and STAT1 in colon cancer cells. PLoS One 5(1):e8836. doi:10.1371/journal.pone.0008836

    PubMed  Google Scholar 

  • Gregory RI, Chendrimada TP, Shiekhattar R (2006) MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol Biol 342:33–47. doi:1-59745-123-1:33 [pii] 10.1385/1-59745-123-1:33

    PubMed  CAS  Google Scholar 

  • Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105. doi:S1097-2765(07)00407-8 [pii] 10.1016/j.molcel.2007.06.017

    PubMed  CAS  Google Scholar 

  • Guan Y, Yao H, Zheng Z, Qiu G, Sun K (2010) MiR-125b targets BCL3 and suppresses ovarian cancer proliferation. Int J Cancer. doi:10.1002/ijc.25575

    Google Scholar 

  • Hatcher H, Planalp R, Cho J, Torti F, Torti S (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65(11):1631–1652. doi:10.1007/s00018-008-7452-4

    PubMed  CAS  Google Scholar 

  • Hawkins PG, Morris KV (2008) RNA and transcriptional modulation of gene expression. Cell Cycle 7(5):602–607. doi:5522 [pii]

    PubMed  CAS  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833. doi:nature03552 [pii] 10.1038/nature03552

    PubMed  CAS  Google Scholar 

  • Hong C, Firestone GL, Bjeldanes LF (2002) Bcl-2 family-mediated apoptotic effects of 3,3′-diindolylmethane (DIM) in human breast cancer cells. Biochem Pharmacol 63(6):1085–1097. doi:S0006295202008560 [pii]

    PubMed  CAS  Google Scholar 

  • Horie T, Ono K, Nishi H, Nagao K, Kinoshita M, Watanabe S, Kuwabara Y, Nakashima Y, Takanabe-Mori R, Nishi E, Hasegawa K, Kita T, Kimura T (2010) Acute doxorubicin cardiotoxicity is associated with miR-146a-induced inhibition of the neuregulin-ErbB pathway. Cardiovasc Res 87(4):656–664. doi:cvq148 [pii] 10.1093/cvr/cvq148 [doi]

    PubMed  CAS  Google Scholar 

  • Hossain A, Kuo MT, Saunders GF (2006) Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 26(21):8191–8201. doi:MCB.00242-06 [pii] 10.1128/MCB.00242-06

    PubMed  CAS  Google Scholar 

  • Huang H, Xie C, Sun X, Ritchie RP, Zhang J, Chen YE (2010a) miR-10a contributes to retinoid acid-induced smooth muscle cell differentiation. J Biol Chem 285(13):9383–9389. doi:M109.095612 [pii] 10.1074/jbc.M109.095612

    PubMed  CAS  Google Scholar 

  • Huang L, Luo J, Cai Q, Pan Q, Zeng H, Guo Z, Dong W, Huang J, Lin T (2010b) MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int J Cancer. doi:10.1002/ijc.25509

    Google Scholar 

  • Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K (2009) MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 113(2):396–402. doi:blood-2008-07-163907 [pii] 10.1182/blood-2008-07-163907

    PubMed  CAS  Google Scholar 

  • Ji X (2008) The mechanism of RNase III action: how dicer dices. Curr Top Microbiol Immunol 320:99–116

    PubMed  CAS  Google Scholar 

  • Ji SJ, Han DH, Kim JH (2006) Inhibition of proliferation and induction of apoptosis by EGCG in human osteogenic sarcoma (HOS) cells. Arch Pharm Res 29(5):363–368

    PubMed  CAS  Google Scholar 

  • Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, Xiang D, Desano JT, Bommer GT, Fan D, Fearon ER, Lawrence TS, Xu L (2009) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4(8):e6816. doi:10.1371/journal.pone.0006816

    PubMed  Google Scholar 

  • Jiang Y, Wu Y, Greenlee AR, Wu J, Han Z, Li X, Zhao Y (2010) miR-106a-mediated malignant transformation of cells induced by anti-benzo[a]pyrene-trans-7,8-diol-9,10-epoxide. Toxicol Sci. doi:kfq306 [pii] 10.1093/toxsci/kfq306

    Google Scholar 

  • Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Brummelkamp TR, Fleming MD, Camargo FD (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451(7182):1125–1129. doi:nature06607 [pii] 10.1038/nature06607

    PubMed  CAS  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647. doi:S0092-8674(05)00088-7 [pii] 10.1016/j.cell.2005.01.014

    PubMed  CAS  Google Scholar 

  • Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J, Chin L, Brown D, Slack FJ (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67(16):7713–7722. doi:67/16/7713 [pii] 10.1158/0008-5472.CAN-07-1083

    PubMed  CAS  Google Scholar 

  • Kakarala M, Brenner DE, Korkaya H, Cheng C, Tazi K, Ginestier C, Liu S, Dontu G, Wicha MS (2010) Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat 122(3):777–785. doi:10.1007/s10549-009-0612-x

    PubMed  CAS  Google Scholar 

  • Kan T, Sato F, Ito T, Matsumura N, David S, Cheng Y, Agarwal R, Paun BC, Jin Z, Olaru AV, Selaru FM, Hamilton JP, Yang J, Abraham JM, Mori Y, Meltzer SJ (2009) The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology 136(5):1689–1700

    PubMed  CAS  Google Scholar 

  • Kapinas K, Kessler C, Ricks T, Gronowicz G, Delany AM (2010) miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem 285(33):25221–25231. doi:M110.116137 [pii] 10.1074/jbc.M110.116137

    PubMed  CAS  Google Scholar 

  • Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri EZ, Scheideler M (2009) microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun 390(2):247–251. doi:S0006-291X(09)01915-9 [pii] 10.1016/j.bbrc.2009.09.098

    PubMed  CAS  Google Scholar 

  • Karunagaran D, Rashmi R, Kumar TR (2005) Induction of apoptosis by curcumin and its implications for cancer therapy. Curr Cancer Drug Targets 5(2):117–129

    PubMed  CAS  Google Scholar 

  • Karunagaran D, Joseph J, Kumar TR (2007) Cell growth regulation. Adv Exp Med Biol 595:245–268

    PubMed  Google Scholar 

  • Kawasaki BT, Hurt EM, Mistree T, Farrar WL (2008) Targeting cancer stem cells with phytochemicals. Mol Interv 8(4):174–184. doi:8/4/174 [pii] 10.1124/mi.8.4.9

    PubMed  CAS  Google Scholar 

  • Kim YK, Kim VN (2007) Processing of intronic microRNAs. EMBO J 26(3):775–783. doi:7601512 [pii] 10.1038/sj.emboj.7601512

    PubMed  CAS  Google Scholar 

  • Kim S, Lee UJ, Kim MN, Lee EJ, Kim JY, Lee MY, Choung S, Kim YJ, Choi YC (2008) MicroRNA miR-199a* regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). J Biol Chem 283(26):18158–18166. doi:M800186200 [pii] 10.1074/jbc.M800186200

    PubMed  CAS  Google Scholar 

  • Kong W, He L, Coppola M, Guo J, Esposito NN, Coppola D, Cheng JQ (2010) MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem 285(23):17869–17879. doi:M110.101055 [pii] 10.1074/jbc.M110.101055

    PubMed  CAS  Google Scholar 

  • Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283(22):14910–14914. doi:C800074200 [pii] 10.1074/jbc.C800074200

    PubMed  CAS  Google Scholar 

  • Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500. doi:ng1536 [pii] 10.1038/ng1536

    PubMed  CAS  Google Scholar 

  • Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W, Jacob ST, Ghoshal K (2006) Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99(3):671–678. doi:10.1002/jcb.20982

    PubMed  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858. doi:10.1126/science.1064921 294/5543/853 [pii]

    PubMed  CAS  Google Scholar 

  • Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O’Day E, Chowdhury D, Dykxhoorn DM, Tsai P, Hofmann O, Becker KG, Gorospe M, Hide W, Lieberman J (2009) miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol Cell 35(5):610–625. doi:S1097-2765(09)00600-5 [pii] 10.1016/j.molcel.2009.08.020

    PubMed  CAS  Google Scholar 

  • le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, Anile C, Maira G, Mercatelli N, Ciafre SA, Farace MG, Agami R (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26(15):3699–3708. doi:7601790 [pii] 10.1038/sj.emboj.7601790

    PubMed  Google Scholar 

  • Lee YS, Dutta A (2007) The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21(9):1025–1030. doi:gad.1540407 [pii] 10.1101/gad.1540407

    PubMed  CAS  Google Scholar 

  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060. doi:10.1038/sj.emboj.7600385 7600385 [pii]

    PubMed  CAS  Google Scholar 

  • Lee KH, Goan YG, Hsiao M, Lee CH, Jian SH, Lin JT, Chen YL, Lu PJ (2009) MicroRNA-373 (miR-373) post-transcriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer. Exp Cell Res 315(15):2529–2538. doi:S0014-4827(09)00261-4 [pii] 10.1016/j.yexcr.2009.06.001

    PubMed  CAS  Google Scholar 

  • Leong H, Firestone GL, Bjeldanes LF (2001) Cytostatic effects of 3,3′-diindolylmethane in human endometrial cancer cells result from an estrogen receptor-mediated increase in transforming growth factor-alpha expression. Carcinogenesis 22(11):1809–1817

    PubMed  CAS  Google Scholar 

  • Levi F, Pasche C, Lucchini F, Ghidoni R, Ferraroni M, La Vecchia C (2005) Resveratrol and breast cancer risk. Eur J Cancer Prev 14(2):139–142. doi:00008469-200504000-00009 [pii]

    PubMed  CAS  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20. doi:S0092867404012607 [pii] 10.1016/j.cell.2004.12.035

    PubMed  CAS  Google Scholar 

  • Li T, Li D, Sha J, Sun P, Huang Y (2009a) MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383(3):280–285. doi:S0006-291X(09)00543-9 [pii] 10.1016/j.bbrc.2009.03.077

    PubMed  CAS  Google Scholar 

  • Li Y, VandenBoom TG 2nd, Kong D, Wang Z, Ali S, Philip PA, Sarkar FH (2009b) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69(16):6704–6712. doi:0008-5472.CAN-09-1298 [pii] 10.1158/0008-5472.CAN-09-1298

    PubMed  CAS  Google Scholar 

  • Li Y, Tan W, Neo TW, Aung MO, Wasser S, Lim SG, Tan TM (2009c) Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci 100(7):1234–1242. doi:CAS1164 [pii] 10.1111/j.1349-7006.2009.01164.x

    PubMed  CAS  Google Scholar 

  • Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen TD, Lopes B, Schiff D, Purow B, Abounader R (2009d) MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 69(19):7569–7576. doi:0008-5472.CAN-09-0529 [pii] 10.1158/0008-5472.CAN-09-0529

    PubMed  CAS  Google Scholar 

  • Liao Y, Du X, Lonnerdal B (2010) miR-214 regulates lactoferrin expression and pro-apoptotic function in mammary epithelial cells. J Nutr 140(9):1552–1556. doi:jn.110.124289 [pii] 10.3945/jn.110.124289

    PubMed  CAS  Google Scholar 

  • Lin CJ, Gong HY, Tseng HC, Wang WL, Wu JL (2008) miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 375(3):315–320. doi:S0006-291X(08)01485-X [pii] 10.1016/j.bbrc.2008.07.154

    PubMed  CAS  Google Scholar 

  • Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y (2007) Potent effect of target structure on microRNA function. Nat Struct Mol Biol 14(4):287–294. doi:nsmb1226 [pii] 10.1038/nsmb1226

    PubMed  CAS  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. doi:nature03702 [pii] 10.1038/nature03702

    PubMed  CAS  Google Scholar 

  • Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL (2007) Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 310(2):442–453. doi:S0012-1606(07)01252-3 [pii] 10.1016/j.ydbio.2007.08.007

    PubMed  CAS  Google Scholar 

  • Lukiw WJ, Zhao Y, Cui JG (2008) An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J Biol Chem 283(46):31315–31322. doi:M805371200 [pii] 10.1074/jbc.M805371200

    PubMed  CAS  Google Scholar 

  • Lund E, Dahlberg JE (2006) Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb Symp Quant Biol 71:59–66. doi:10.1101/sqb.2006.71.050

    PubMed  CAS  Google Scholar 

  • Marsit CJ, Eddy K, Kelsey KT (2006) MicroRNA responses to cellular stress. Cancer Res 66(22):10843–10848. doi:66/22/10843 [pii] 10.1158/0008-5472.CAN-06-1894

    PubMed  CAS  Google Scholar 

  • Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, Parenti AR, Daidone MG, Bicciato S, Piccolo S (2010) A MicroRNA targeting dicer for metastasis control. Cell 141(7):1195–1207. doi:S0092-8674(10)00553-2 [pii] 10.1016/j.cell.2010.05.017

    PubMed  CAS  Google Scholar 

  • Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467(7311):86–90. doi:nature09284 [pii] 10.1038/nature09284

    PubMed  CAS  Google Scholar 

  • Meeran SM, Ahmed A, Tollefsbol TO (2010) Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics 1(3–4):101–116. doi:10.1007/s13148-010-0011-5

    PubMed  CAS  Google Scholar 

  • Melkamu T, Zhang X, Tan J, Zeng Y, Kassie F (2010) Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol. Carcinogenesis 31(2):252–258. doi:bgp208 [pii] 10.1093/carcin/bgp208

    PubMed  CAS  Google Scholar 

  • Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133(2):647–658. doi:S0016-5085(07)01002-5 [pii] 10.1053/j.gastro.2007.05.022

    PubMed  CAS  Google Scholar 

  • Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S (2007) The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67(22):11001–11011. doi:67/22/11001 [pii] 10.1158/0008-5472.CAN-07-2416

    PubMed  CAS  Google Scholar 

  • Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A (2004) High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39(2):167–169. doi:10.1002/gcc.10316

    PubMed  CAS  Google Scholar 

  • Mishra PJ, Song B, Wang Y, Humeniuk R, Banerjee D, Merlino G, Ju J, Bertino JR (2009) MiR-24 tumor suppressor activity is regulated independent of p53 and through a target site polymorphism. PLoS One 4(12):e8445. doi:10.1371/journal.pone.0008445

    PubMed  Google Scholar 

  • Mott JL, Kobayashi S, Bronk SF, Gores GJ (2007) mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26(42):6133–6140. doi:1210436 [pii] 10.1038/sj.onc.1210436

    PubMed  CAS  Google Scholar 

  • Mudduluru G, George-William JN, Muppala S, Asangani IA, Regalla K, Nelson LD, Allgayer H (2010) Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep. doi:BSR20100065 [pii] 10.1042/BSR20100065

    Google Scholar 

  • Murchison EP, Hannon GJ (2004) miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 16(3):223–229. doi:10.1016/j.ceb.2004.04.003 S0955067404000547 [pii]

    PubMed  CAS  Google Scholar 

  • O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843. doi:nature03677 [pii] 10.1038/nature03677

    PubMed  Google Scholar 

  • Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, Lai EC (2008) The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat Struct Mol Biol 15(4):354–363. doi:nsmb.1409 [pii] 10.1038/nsmb.1409

    PubMed  CAS  Google Scholar 

  • Olive V, Bennett MJ, Walker JC, Ma C, Jiang I, Cordon-Cardo C, Li QJ, Lowe SW, Hannon GJ, He L (2009) miR-19 is a key oncogenic component of mir-17-92. Genes Dev 23(24):2839–2849. doi:23/24/2839 [pii] 10.1101/gad.1861409

    PubMed  CAS  Google Scholar 

  • Ostenfeld MS, Bramsen JB, Lamy P, Villadsen SB, Fristrup N, Sorensen KD, Ulhoi B, Borre M, Kjems J, Dyrskjot L, Orntoft TF (2010) miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene 29(7):1073–1084. doi:onc2009395 [pii] 10.1038/onc.2009.395

    PubMed  CAS  Google Scholar 

  • Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, Yoshida Y, Seto M (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 64(9):3087–3095

    PubMed  CAS  Google Scholar 

  • Ovcharenko D, Kelnar K, Johnson C, Leng N, Brown D (2007) Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res 67(22):10782–10788. doi:67/22/10782 [pii] 10.1158/0008-5472.CAN-07-1484

    PubMed  CAS  Google Scholar 

  • Ozen M, Creighton CJ, Ozdemir M, Ittmann M (2008) Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27(12):1788–1793. doi:1210809 [pii] 10.1038/sj.onc.1210809

    PubMed  CAS  Google Scholar 

  • Padhye S, Yang H, Jamadar A, Cui QC, Chavan D, Dominiak K, McKinney J, Banerjee S, Dou QP, Sarkar FH (2009) New difluoro Knoevenagel condensates of curcumin, their schiff bases and copper complexes as proteasome inhibitors and apoptosis inducers in cancer cells. Pharm Res 26(8):1874–1880. doi:10.1007/s11095-009-9900-8

    PubMed  CAS  Google Scholar 

  • Pandey DP, Picard D (2009) miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Mol Cell Biol 29(13):3783–3790. doi:MCB.01875-08 [pii] 10.1128/MCB.01875-08

    PubMed  CAS  Google Scholar 

  • Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22(7):894–907. doi:22/7/894 [pii] 10.1101/gad.1640608

    PubMed  CAS  Google Scholar 

  • Park SY, Lee JH, Ha M, Nam JW, Kim VN (2009) miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 16(1):23–29. doi:nsmb.1533 [pii] 10.1038/nsmb.1533

    PubMed  CAS  Google Scholar 

  • Pedersen IM, Otero D, Kao E, Miletic AV, Hother C, Ralfkiaer E, Rickert RC, Gronbaek K, David M (2009) Onco-miR-155 targets SHIP1 to promote TNFalpha-dependent growth of B cell lymphomas. EMBO Mol Med 1(5):288–295. doi:10.1002/emmm.200900028

    PubMed  CAS  Google Scholar 

  • Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, Volinia S, Alder H, Liu CG, Rassenti L, Calin GA, Hagan JP, Kipps T, Croce CM (2006) Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 66(24):11590–11593. doi:66/24/11590 [pii] 10.1158/0008-5472.CAN-06-3613

    PubMed  CAS  Google Scholar 

  • Peter ME (2009) Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 8(6):843–852. doi:7907 [pii]

    PubMed  CAS  Google Scholar 

  • Pickering MT, Stadler BM, Kowalik TF (2009) miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression. Oncogene 28(1):140–145. doi:onc2008372 [pii] 10.1038/onc.2008.372

    PubMed  CAS  Google Scholar 

  • Pigazzi M, Manara E, Baron E, Basso G (2009) miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res 69(6):2471–2478. doi:0008-5472.CAN-08-3404 [pii] 10.1158/0008-5472.CAN-08-3404

    PubMed  CAS  Google Scholar 

  • Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67(13):6130–6135. doi:67/13/6130 [pii] 10.1158/0008-5472.CAN-07-0533

    PubMed  CAS  Google Scholar 

  • Pratt AJ, MacRae IJ (2009) The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 284(27):17897–17901. doi:R900012200 [pii] 10.1074/jbc.R900012200

    PubMed  CAS  Google Scholar 

  • Qanungo S, Das M, Haldar S, Basu A (2005) Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis 26(5):958–967. doi:bgi040 [pii] 10.1093/carcin/bgi040

    PubMed  CAS  Google Scholar 

  • Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J, Jin Y (2010) miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One 5(2):e9429. doi:10.1371/journal.pone.0009429

    PubMed  Google Scholar 

  • Rahman KM, Aranha O, Glazyrin A, Chinni SR, Sarkar FH (2000) Translocation of Bax to mitochondria induces apoptotic cell death in indole-3-carbinol (I3C) treated breast cancer cells. Oncogene 19(50):5764–5771. doi:10.1038/sj.onc.1203959

    PubMed  CAS  Google Scholar 

  • Ro S, Park C, Young D, Sanders KM, Yan W (2007) Tissue-dependent paired expression of miRNAs. Nucleic Acids Res 35(17):5944–5953. doi:gkm641 [pii] 10.1093/nar/gkm641

    PubMed  CAS  Google Scholar 

  • Robins H, Li Y, Padgett RW (2005) Incorporating structure to predict microRNA targets. Proc Natl Acad Sci USA 102(11):4006–4009. doi:0500775102 [pii] 10.1073/pnas.0500775102

    PubMed  CAS  Google Scholar 

  • Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14(10A):1902–1910. doi:10.1101/gr.2722704 gr.2722704 [pii]

    PubMed  CAS  Google Scholar 

  • Rom S, Rom I, Passiatore G, Pacifici M, Radhakrishnan S, Del Valle L, Pina-Oviedo S, Khalili K, Eletto D, Peruzzi F (2010) CCL8/MCP-2 is a target for mir-146a in HIV-1-infected human microglial cells. FASEB J 24(7):2292–2300. doi:fj.09-143503 [pii] 10.1096/fj.09-143503

    PubMed  CAS  Google Scholar 

  • Rossi S, Kopetz S, Davuluri R, Hamilton SR, Calin GA (2010) MicroRNAs, ultraconserved genes and colorectal cancers. Int J Biochem Cell Biol 42(8):1291–1297. doi:S1357-2725(09)00172-1 [pii] 10.1016/j.biocel.2009.05.018

    PubMed  CAS  Google Scholar 

  • Sabbah M, Emami S, Redeuilh G, Julien S, Prevost G, Zimber A, Ouelaa R, Bracke M, De Wever O, Gespach C (2008) Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug Resist Updat 11(4–5):123–151. doi:S1368-7646(08)00045-9 [pii] 10.1016/j.drup. 2008.07.001

    PubMed  CAS  Google Scholar 

  • Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, Elble R, Watabe K, Mo YY (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 106(9):3207–3212. doi:0808042106 [pii] 10.1073/pnas.0808042106

    PubMed  CAS  Google Scholar 

  • Saito Y, Jones PA (2006) Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle 5(19):2220–2222. doi:3340 [pii]

    PubMed  CAS  Google Scholar 

  • Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6):435–443. doi:S1535-6108(06)00143-7 [pii]10.1016/j.ccr.2006.04.020

    PubMed  CAS  Google Scholar 

  • Salerno E, Scaglione BJ, Coffman FD, Brown BD, Baccarini A, Fernandes H, Marti G, Raveche ES (2009) Correcting miR-15a/16 genetic defect in New Zealand Black mouse model of CLL enhances drug sensitivity. Mol Cancer Ther 8(9):2684–2692. doi:1535-7163.MCT-09-0127 [pii] 10.1158/1535-7163.MCT-09-0127

    PubMed  CAS  Google Scholar 

  • Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, Petrelli NJ, Dunn SP, Krueger LJ (2007) MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67(20):9762–9770. doi:67/20/9762 [pii] 10.1158/0008-5472.CAN-07-2462

    PubMed  CAS  Google Scholar 

  • Sareen D, van Ginkel PR, Takach JC, Mohiuddin A, Darjatmoko SR, Albert DM, Polans AS (2006) Mitochondria as the primary target of resveratrol-induced apoptosis in human retinoblastoma cells. Invest Ophthalmol Vis Sci 47(9):3708–3716. doi:47/9/3708 [pii] 10.1167/iovs.06-0119

    PubMed  Google Scholar 

  • Schickel R, Park SM, Murmann AE, Peter ME (2010) miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol Cell 38(6):908–915. doi:S1097-2765(10)00380-1 [pii] 10.1016/j.molcel.2010.05.018

    PubMed  CAS  Google Scholar 

  • Sharma RA, McLelland HR, Hill KA, Ireson CR, Euden SA, Manson MM, Pirmohamed M, Marnett LJ, Gescher AJ, Steward WP (2001) Pharmacodynamic and pharmacokinetic study of oral curcuma extract in patients with colorectal cancer. Clin Cancer Res 7(7):1894–1900

    PubMed  CAS  Google Scholar 

  • Shi L, Cheng Z, Zhang J, Li R, Zhao P, Fu Z, You Y (2008) hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res 1236:185–193. doi:S0006-8993(08)01836-2 [pii] 10.1016/j.brainres.2008.07.085

    PubMed  CAS  Google Scholar 

  • Shimizu S, Takehara T, Hikita H, Kodama T, Miyagi T, Hosui A, Tatsumi T, Ishida H, Noda T, Nagano H, Doki Y, Mori M, Hayashi N (2010) The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol 52(5):698–704. doi:S0168-8278(10)00082-6 [pii] 10.1016/j.jhep. 2009.12.024

    PubMed  CAS  Google Scholar 

  • Siddiqui FA, Naim M, Islam N (2010) Apoptotic effect of green tea polyphenol (EGCG) on cervical carcinoma cells. Diagn Cytopathol. doi:10.1002/dc.21434

    Google Scholar 

  • Sotiropoulou G, Pampalakis G, Lianidou E, Mourelatos Z (2009) Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA 15(8):1443–1461. doi:rna.1534709 [pii] 10.1261/rna.1534709

    PubMed  CAS  Google Scholar 

  • Srivastava B, Shukla Y (1998) Antitumour promoting activity of indole-3-carbinol in mouse skin carcinogenesis. Cancer Lett 134(1):91–95. doi:S0304-3835(98)00247-X [pii]

    PubMed  CAS  Google Scholar 

  • Stark A, Brennecke J, Russell RB, Cohen SM (2003) Identification of drosophila microRNA targets. PLoS Biol 1(3):E60. doi:10.1371/journal.pbio.0000060

    PubMed  Google Scholar 

  • Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, Sun Z, Zheng X (2008a) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 582(10):1564–1568. doi:S0014-5793(08)00306-2 [pii] 10.1016/j.febslet.2008.03.057

    PubMed  CAS  Google Scholar 

  • Sun M, Estrov Z, Ji Y, Coombes KR, Harris DH, Kurzrock R (2008b) Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther 7(3):464–473. doi:7/3/464 [pii] 10.1158/1535-7163.MCT-07-2272

    PubMed  CAS  Google Scholar 

  • Sun Q, Cong R, Yan H, Gu H, Zeng Y, Liu N, Chen J, Wang B (2009) Genistein inhibits growth of human uveal melanoma cells and affects microRNA-27a and target gene expression. Oncol Rep 22(3):563–567

    PubMed  CAS  Google Scholar 

  • Sun W, Shen W, Yang S, Hu F, Li H, Zhu TH (2010) miR-223 and miR-142 attenuate hematopoietic cell proliferation, and miR-223 positively regulates miR-142 through LMO2 isoforms and CEBP-beta. Cell Res 20(10):1158–1169. doi:cr2010134 [pii] 10.1038/cr.2010.134

    PubMed  Google Scholar 

  • Suzuki Y, Kim HW, Ashraf M, Haider H (2010) Diazoxide potentiates mesenchymal stem cell survival via NF-kappaB-dependent miR-146a expression by targeting Fas. Am J Physiol Heart Circ Physiol 299(4):H1077–H1082. doi:ajpheart.00212.2010 [pii] 10.1152/ajpheart.00212.2010 [doi]

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Forrest AR, Maeno E, Hashimoto T, Daub CO, Yasuda J (2009) MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines. PLoS One 4(8):e6677. doi:10.1371/journal.pone.0006677

    PubMed  Google Scholar 

  • Tang SN, Singh C, Nall D, Meeker D, Shankar S, Srivastava RK (2010a) The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition. J Mol Signal 5:14. doi:1750-2187-5-14 [pii] 10.1186/1750-2187-5-14

    PubMed  Google Scholar 

  • Tang N, Zhang J, Du Y (2010b) Curcumin promoted the apoptosis of cisplain-resistant human lung carcinoma cells A549/DDP through down-regulating miR-186*. Zhongguo Fei Ai Za Zhi 13(4):301–306. doi:10.3779/j.issn.1009-3419.2010.04.06

    PubMed  CAS  Google Scholar 

  • Thangapazham RL, Singh AK, Sharma A, Warren J, Gaddipati JP, Maheshwari RK (2007) Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo. Cancer Lett 245(1–2):232–241. doi:S0304-3835(06)00059-0 [pii] 10.1016/j.canlet.2006.01.027

    PubMed  CAS  Google Scholar 

  • Tili E, Michaille JJ, Gandhi V, Plunkett W, Sampath D, Calin GA (2007) miRNAs and their potential for use against cancer and other diseases. Future Oncol 3(5):521–537. doi:10.2217/14796694.3.5.521

    PubMed  CAS  Google Scholar 

  • Tili E, Michaille JJ, Alder H, Volinia S, Delmas D, Latruffe N, Croce CM (2010a) Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFbeta signaling pathway in SW480 cells. Biochem Pharmacol 80(12):2057–2065. doi:S0006-2952(10)00514-9 [pii] 10.1016/j.bcp. 2010.07.003

    PubMed  CAS  Google Scholar 

  • Tili E, Michaille JJ, Adair B, Alder H, Limagne E, Taccioli C, Ferracin M, Delmas D, Latruffe N, Croce CM (2010b) Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis 31(9):1561–1566. doi:bgq143 [pii] 10.1093/carcin/bgq143

    PubMed  CAS  Google Scholar 

  • Tili E, Michaille JJ, Alder H, Volinia S, Delmas D, Latruffe N, Croce CM (2010c) Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFbeta signaling pathway in SW480 cells. Biochem Pharmacol. doi:S0006-2952(10)00514-9 [pii] 10.1016/j.bcp. 2010.07.003

    Google Scholar 

  • Tsang WP, Kwok TT (2008) Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis 13(10):1215–1222. doi:10.1007/s10495-008-0256-z

    PubMed  CAS  Google Scholar 

  • Tsang WP, Kwok TT (2010) Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem 21(2):140–146. doi:S0955-2863(08)00256-8 [pii] 10.1016/j.jnutbio.2008.12.003

    PubMed  CAS  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7):2257–2261. doi:0510565103 [pii] 10.1073/pnas.0510565103

    PubMed  CAS  Google Scholar 

  • Voorhoeve PM (2010) MicroRNAs: oncogenes, tumor suppressors or master regulators of cancer heterogeneity? Biochim Biophys Acta 1805(1):72–86. doi:S0304-419X(09)00061-4 [pii]10.1016/j.bbcan.2009.09.003

    PubMed  CAS  Google Scholar 

  • Voorhoeve PM, Agami R (2007) Classifying microRNAs in cancer: the good, the bad and the ugly. Biochim Biophys Acta 1775(2):274–282. doi:S0304-419X(06)00064-3 [pii] 10.1016/j.bbcan.2006.11.003

    PubMed  CAS  Google Scholar 

  • Wang T, Xu Z (2010) miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem Biophys Res Commun. doi:S0006-291X(10)01517-2 [pii] 10.1016/j.bbrc.2010.08.031

    Google Scholar 

  • Wang LL, Zhang Z, Li Q, Yang R, Pei X, Xu Y, Wang J, Zhou SF, Li Y (2009a) Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. Hum Reprod 24(3):562–579. doi:den439 [pii] 10.1093/humrep/den439

    PubMed  CAS  Google Scholar 

  • Wang Y, Rathinam R, Walch A, Alahari SK (2009b) ST14 (suppression of tumorigenicity 14) gene is a target for miR-27b, and the inhibitory effect of ST14 on cell growth is independent of miR-27b regulation. J Biol Chem 284(34):23094–23106. doi:M109.012617 [pii] 10.1074/jbc.M109.012617

    PubMed  CAS  Google Scholar 

  • Wang S, Bian C, Yang Z, Bo Y, Li J, Zeng L, Zhou H, Zhao RC (2009c) miR-145 inhibits breast cancer cell growth through RTKN. Int J Oncol 34(5):1461–1466

    PubMed  CAS  Google Scholar 

  • Wei JS, Song YK, Durinck S, Chen QR, Cheuk AT, Tsang P, Zhang Q, Thiele CJ, Slack A, Shohet J, Khan J (2008) The MYCN oncogene is a direct target of miR-34a. Oncogene 27(39):5204–5213. doi:onc2008154 [pii] 10.1038/onc.2008.154

    PubMed  CAS  Google Scholar 

  • Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26(34):5017–5022. doi:1210293 [pii] 10.1038/sj.onc.1210293

    PubMed  CAS  Google Scholar 

  • Wen XY, Wu SY, Li ZQ, Liu ZQ, Zhang JJ, Wang GF, Jiang ZH, Wu SG (2009) Ellagitannin (BJA3121), an anti-proliferative natural polyphenol compound, can regulate the expression of MiRNAs in HepG2 cancer cells. Phytother Res 23(6):778–784. doi:10.1002/ptr.2616

    PubMed  CAS  Google Scholar 

  • Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, Henderson JM, Kutok JL, Rajewsky K (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9(4):405–414. doi:ni1575 [pii] 10.1038/ni1575

    PubMed  CAS  Google Scholar 

  • Xiong J, Yu D, Wei N, Fu H, Cai T, Huang Y, Wu C, Zheng X, Du Q, Lin D, Liang Z (2010) An estrogen receptor alpha suppressor, microRNA-22, is downregulated in estrogen receptor alpha-positive human breast cancer cell lines and clinical samples. FEBS J 277(7):1684–1694. doi:EJB7594 [pii] 10.1111/j.1742-4658.2010.07594.x

    PubMed  CAS  Google Scholar 

  • Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 105(36):13421–13426. doi:0801613105 [pii] 10.1073/pnas.0801613105

    PubMed  CAS  Google Scholar 

  • Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, Huso D, Lowenstein CJ (2010) P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci USA 107(14):6334–6339. doi:0911082107 [pii] 10.1073/pnas.0911082107

    PubMed  CAS  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198. doi:S1535-6108(06)00033-X [pii] 10.1016/j.ccr.2006.01.025

    PubMed  CAS  Google Scholar 

  • Yang H, Kong W, He L, Zhao JJ, O’Donnell JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV, Cheng JQ (2008) MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 68(2):425–433. doi:68/2/425 [pii]10.1158/0008-5472.CAN-07-2488

    PubMed  CAS  Google Scholar 

  • Yang J, Cao Y, Sun J, Zhang Y (2009a) Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med Oncol. doi:10.1007/s12032-009-9344-3

    Google Scholar 

  • Yang L, Belaguli N, Berger DH (2009b) MicroRNA and colorectal cancer. World J Surg 33(4):638–646. doi:10.1007/s00268-008-9865-5

    PubMed  Google Scholar 

  • Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, Xiao S, Lu H (2008) miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest 88(12):1358–1366. doi:labinvest200894 [pii] 10.1038/labinvest.2008.94

    PubMed  CAS  Google Scholar 

  • Zhang J, Zhang T, Ti X, Shi J, Wu C, Ren X, Yin H (2010a) Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem Biophys Res Commun 399(1):1–6. doi:S0006-291X(10)01315-X [pii] 10.1016/j.bbrc.2010.07.013

    PubMed  CAS  Google Scholar 

  • Zhang J, Du Y, Wu C, Ren X, Ti X, Shi J, Zhao F, Yin H (2010b) Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol Rep 24(5):1217–1223

    PubMed  CAS  Google Scholar 

  • Zhang CZ, Zhang JX, Zhang AL, Shi ZD, Han L, Jia ZF, Yang WD, Wang GX, Jiang T, You YP, Pu PY, Cheng JQ, Kang CS (2010c) MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer 9:229. doi:1476-4598-9-229 [pii] 10.1186/1476-4598-9-229

    PubMed  Google Scholar 

  • Zhao JJ, Sun DG, Wang J, Liu SR, Zhang CY, Zhu MX, Ma X (2008) Retinoic acid downregulates microRNAs to induce abnormal development of spinal cord in spina bifida rat model. Childs Nerv Syst 24(4):485–492. doi:10.1007/s00381-007-0520-5

    PubMed  Google Scholar 

  • Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282(19):14328–14336. doi:M611393200 [pii] 10.1074/jbc.M611393200

    PubMed  CAS  Google Scholar 

  • Zhu H, Wu H, Liu X, Evans BR, Medina DJ, Liu CG, Yang JM (2008) Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol 76(5):582–588. doi:S0006-2952(08)00387-0 [pii] 10.1016/j.bcp. 2008.06.007

    PubMed  CAS  Google Scholar 

  • Zhu W, Shan X, Wang T, Shu Y, Liu P (2010) miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer 127(11):2520–2529. doi:10.1002/ijc.25260

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Karunagaran, D., Subramanian, M., Rao, R.S. (2012). Regulation of MicroRNAs by Natural Compounds: Implications for Cancer Therapy. In: Diederich, M., Noworyta, K. (eds) Natural compounds as inducers of cell death. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4575-9_16

Download citation

Publish with us

Policies and ethics