Skip to main content

PCNA Structure and Function: Insights from Structures of PCNA Complexes and Post-translationally Modified PCNA

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 62))

Abstract

Proliferating cell nuclear antigen (PCNA), the eukaryotic DNA sliding clamp, forms a ring-shaped homo-trimer that encircles double-stranded DNA. This protein is best known for its ability to confer high processivity to replicative DNA polymerases. However, it does far more than this, because it forms a mobile platform on the DNA that recruits many of the proteins involved in DNA replication, repair, and recombination to replication forks. X-ray crystal structures of PCNA bound to PCNA-binding proteins have provided insights into how PCNA recognizes its binding partners and recruits them to replication forks. More recently, X-ray crystal structures of ubiquitin-modified and SUMO-modified PCNA have provided insights into how these post-translational modifications alter the specificity of PCNA for some of its binding partners. This article focuses on the insights gained from structural studies of PCNA complexes and post-translationally modified PCNA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amin NS, Holm C (1996) In vivo analysis reveals that the interdomain region of the yeast proliferating cell nuclear antigen is important for DNA replication and DNA repair. Genetics 144:479–493

    PubMed  CAS  Google Scholar 

  • Ayyagari R, Impellizzeri KJ, Yoder BL, Gary SL, Burgers PMJ (1995) A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair. Mol Cell Biol 15:4420–4429

    PubMed  CAS  Google Scholar 

  • Bergink S, Jentsch S (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461–467

    Article  PubMed  CAS  Google Scholar 

  • Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G, Coull B, Kannouche P, Wider G, Peter M, Lehmann AR, Hofmann K, Dikic I (2005) Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310:1821–1824

    Article  PubMed  CAS  Google Scholar 

  • Bomar MG, Pai MT, Tzeng SR, Li SSC, Zhou P (2007) Structure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase η. EMBO Rep 8:247–251

    Article  PubMed  CAS  Google Scholar 

  • Bowman GD, O’Donnell M, Kuriyan J (2004) Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature 429:724–730

    Article  PubMed  CAS  Google Scholar 

  • Bruning JB, Shamoo Y (2004) Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerase δ p66 subunit and flap endonuclease-1. Structure 12:2209–2219

    Article  PubMed  CAS  Google Scholar 

  • Dionne I, Nookala RK, Jackson SP, Doherty AJ, Bell SD (2003) A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Cell 11:275–282

    Article  PubMed  CAS  Google Scholar 

  • Flores-Rozas H, Kelman Z, Dean FB, Pan ZQ, Harper PW, Elledge SJ, O’Donnell M, Hurwitz J (1994) Cdk-interacting protein 1 directly binds with proliferating cell nuclear antigen and inhibits DNA replication catalyzed by the DNA polymerase δ holoenzyme. Proc Natl Acad Sci USA 91:8655–8659

    Article  PubMed  CAS  Google Scholar 

  • Freudenthal BD, Ramaswamy S, Hingorani MM, Washington MT (2008) Structure of a mutant form of proliferating cell nuclear antigen that blocks translesion DNA synthesis. Biochemistry 47:13354–13361

    Article  PubMed  CAS  Google Scholar 

  • Freudenthal BD, Gakhar L, Ramaswamy S, Washington MT (2009) A charged residue at the subunit interface of PCNA promotes trimer formation by destabilizing alternate subunit interactions. Acta Crystallogr D Biol Crystallogr 65:560–566

    Article  PubMed  Google Scholar 

  • Freudenthal BD, Gakhar L, Ramaswamy S, Washington MT (2010) Structure of monoubiquitinated PCNA and implications for translesion synthesis and DNA polymerase exchange. Nat Struct Mol Biol 17:479–484

    Article  PubMed  CAS  Google Scholar 

  • Freudenthal BD, Brogie JE, Gakhar L, Kondratick CM, Washington MT (2011) Crystal structure of SUMO-modified proliferating cell nuclear antigen. J Mol Biol 406:9–17

    Article  PubMed  CAS  Google Scholar 

  • Georgescu RE, Kim SS, Yurieva O, Kuriyan J, Kong XP, O’Donnell M (2008) Structure of a sliding clamp on DNA. Cell 132:43–54

    Article  PubMed  CAS  Google Scholar 

  • Gibbs E, Kelman Z, Gulbis JM, O’Donnell M, Kuriyan J, Burgers PMJ, Hurwitz J (1997) The influence of the proliferating cell nuclear antigen-interacting domain of p21CIP1 on DNA synthesis catalyzed by the human and Saccharomyces cerevisiae polymerase δ holoenzymes. J Biol Chem 272:2373–2381

    Article  PubMed  CAS  Google Scholar 

  • Gulbis JM, Kelman Z, Hurwitz J, O’Donnell M, Kuriyan J (1996) Structure of the C-terminal region of p21WAF1/CIP1 complexed with human PCNA. Cell 87:297–306

    Article  PubMed  CAS  Google Scholar 

  • Henneke G, Koundrioukoff S, Hubscher U (2003) Phosphorylation of human Fen1 by cyclin-dependent kinase modulates its role in replication fork regulation. Oncogene 22:4301–4313

    Article  PubMed  CAS  Google Scholar 

  • Hingorani MM, O’Donnell M (2000) Sliding clamps: a (tail)ored fit. Curr Biol 10:R25–R29

    Article  PubMed  CAS  Google Scholar 

  • Hishiki A, Hashimoto H, Hanafusa T, Kamei K, Ohashi E, Shimizu T, Ohmori H, Sato M (2009) Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen. J Biol Chem 284:10552–10560

    Article  PubMed  CAS  Google Scholar 

  • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141

    Article  PubMed  CAS  Google Scholar 

  • Indiani C, McInerney P, Georgescu R, Goodman MF, O’Donnell M (2005) A sliding-clamp toolbelt binds high-and low-fidelity DNA polymerases simultaneously. Mol Cell 19:805–815

    Article  PubMed  CAS  Google Scholar 

  • Kochaniak AB, Habuchi S, Loparo JJ, Chang DJ, Cimprich KA, Walter JC, van Oijen AM (2009) Proliferating cell nuclear antigen uses two distinct modes to move along DNA. J Biol Chem 284:17700–17710

    Article  PubMed  CAS  Google Scholar 

  • Kong XP, Onrust R, O’Donnell M, Kuriyan J (1992) Three-dimensional structure of the β-subunit of Escherichia coli DNA polymerase III holoenzyme – a sliding DNA clamp. Cell 69:425–437

    Article  PubMed  CAS  Google Scholar 

  • Krejci L, Macris M, Li Y, Van Komen S, Villemain J, Ellenberger T, Klein H, Sung P (2004) Role of ATP hydrolysis in the antirecombinase function of Saccharomyces cerevisiae Srs2 protein. J Biol Chem 279:23193–23199

    Article  PubMed  CAS  Google Scholar 

  • Krishna TSR, Kong XP, Gary S, Burgers PM, Kuriyan J (1994) Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79:1233–1243

    Article  PubMed  CAS  Google Scholar 

  • Maga G, Hubscher U (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 116:3051–3060

    Article  PubMed  CAS  Google Scholar 

  • Matsumiya S, Ishino Y, Morikawa K (2001) Crystal structure of an archaeal DNA sliding clamp: proliferating cell nuclear antigen from Pyrococcus furiosus. Protein Sci 10:17–23

    Article  PubMed  CAS  Google Scholar 

  • Mayanagia K, Kiyonari S, Saito M, Shirai T, Ishino Y, Morikawa K (2009) Mechanism of replication machinery assembly as revealed by the DNA ligase-PCNA-DNA complex architecture. Proc Natl Acad Sci USA 106:4647–4652

    Article  Google Scholar 

  • Mayanagi K, Kiyonari S, Nishida H, Saito M, Kohda D, Ishino Y, Shirai T, Morikawa K (2011) Architecture of the DNA polymerase B-proliferating cell nuclear antigen (PCNA)-DNA ternary complex. Proc Natl Acad Sci USA 108:1845–1849

    Article  PubMed  CAS  Google Scholar 

  • Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129:665–679

    Article  PubMed  CAS  Google Scholar 

  • Naryzhny SN (2008) Proliferating cell nuclear antigen: a proteomics view. Cell Mol Life Sci 65:3789–3808

    Article  PubMed  CAS  Google Scholar 

  • Northam MR, Garg P, Baitin DM, Burgers PMJ, Shcherbakova PV (2006) A novel function of DNA polymerase ζ regulated by PCNA. EMBO J 25:4316–4325

    Article  PubMed  CAS  Google Scholar 

  • Papouli E, Chen SH, Davies AA, Huttner D, Krejci L, Sung P, Ulrich HD (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19:123–133

    Article  PubMed  CAS  Google Scholar 

  • Pascal JM, Tsodikov OV, Hura GL, Song W, Cotner EA, Classen S, Tomkinson AE, Tainer JA, Ellenberger T (2006) A flexible interface between DNA ligase and PCNA supports conformational switching and efficient ligation of DNA. Mol Cell 24:279–291

    Article  PubMed  CAS  Google Scholar 

  • Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436:428–433

    PubMed  CAS  Google Scholar 

  • Prakash S, Prakash L (2002) Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev 16:1872–1883

    Article  PubMed  CAS  Google Scholar 

  • Prakash S, Johnson RE, Prakash L (2005) Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 74:317–353

    Article  PubMed  CAS  Google Scholar 

  • Sakurai S, Kitano K, Yamaguchi H, Hamada K, Okada K, Fukuda K, Uchida M, Ohtsuka E, Morioka H, Hakoshima T (2005) Structural basis for recruitment of human flap endonuclease 1 to PCNA. EMBO J 24:683–693

    Article  PubMed  CAS  Google Scholar 

  • Scott MT, Morrice N, Ball KL (2000) Reversible phosphorylation at the C-terminal regulatory domain of p21Waf1/Cip1 modulates proliferating cell nuclear antigen binding. J Biol Chem 275:11529–11537

    Article  PubMed  CAS  Google Scholar 

  • Shaheen M, Shanmugam I, Hromas R (2010) The role of PCNA post-translational modifications in translesion synthesis. J Nucl Acids 2010:761217

    Google Scholar 

  • Shell SS, Putnam CD, Kolodner RD (2007) The N-terminus of Saccharomyces cerevisiae Msh6 is an unstructured tether to PCNA. Mol Cell 26:565–578

    Article  PubMed  CAS  Google Scholar 

  • Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425:188–191

    Article  PubMed  CAS  Google Scholar 

  • Tsurimoto T (1999) PCNA binding proteins. Front Biosci 4:d849–d858

    Article  PubMed  CAS  Google Scholar 

  • Ulrich HD (2009) Regulating post-translational modifications of the eukaryotic replication clamp PCNA. DNA Repair 8:461–469

    Article  PubMed  CAS  Google Scholar 

  • Ulrich HD, Walden H (2010) Ubiquitin signalling in DNA replication and repair. Nat Rev Mol Cell Biol 11:479–489

    Article  PubMed  CAS  Google Scholar 

  • Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F (2003) The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423:309–312

    Article  PubMed  CAS  Google Scholar 

  • Vijayakumar S, Chapados BR, Schmidt KH, Kolodner RD, Tainer JA, Tomkinson AE (2007) The C-terminal domain of yeast PCNA is required for physical and functional interactions with Cdc9 DNA ligase. Nucleic Acids Res 35:1624–1637

    Article  PubMed  CAS  Google Scholar 

  • Waga S, Hannon GJ, Beach D, Stillman B (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369:574–578

    Article  PubMed  CAS  Google Scholar 

  • Washington MT, Carlson KD, Freudenthal BD, Pryor JM (2009) Variations on a theme: eukaryotic Y-family DNA polymerases. Biochim Biophys Acta 1804:1113–1123

    PubMed  Google Scholar 

  • Watts FZ (2006) Sumoylation of PCNA: wrestling with recombination at stalled replication forks. DNA Repair 5:399–403

    Article  PubMed  CAS  Google Scholar 

  • Williams GJ, Johnson K, Rudolf J, McMahon SA, Carter L, Oke M, Liu HT, Taylor GL, White MF, Naismith JH (2006) Structure of the heterotrimeric PCNA from Sulfolobus solfataricus. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:944–948

    Article  PubMed  Google Scholar 

  • Zhang HS, Gibbs PEM, Lawrence CW (2006) The Saccharomyces cerevisiae rev6-1 mutation, which inhibits both the lesion bypass and the recombination mode of DNA damage tolerance, is an allele of POL30, encoding proliferating cell nuclear antigen. Genetics 173:1983–1989

    Article  PubMed  CAS  Google Scholar 

  • Zhuang ZH, Ai YX (2010) Processivity factor of DNA polymerase and its expanding role in normal and translesion DNA synthesis. Biochim Biophys Acta 1804:1081–1093

    Article  PubMed  CAS  Google Scholar 

  • Zhuang ZH, Johnson RE, Haracska L, Prakash L, Prakash S, Benkovic SJ (2008) Regulation of polymerase exchange between Pol η and Pol δ by monoubiquitination of PCNA and the movement of DNA polymerase holoenzyme. Proc Natl Acad Sci USA 105:5361–5366

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This article was supported by Award Number GM081433 from the National Institute of General Medical Sciences to M.T.W. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical sciences or the National Institutes of Health. We thank Christine Kondratick, John Pryor and Marc Wold for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Todd Washington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dieckman, L.M., Freudenthal, B.D., Washington, M.T. (2012). PCNA Structure and Function: Insights from Structures of PCNA Complexes and Post-translationally Modified PCNA. In: MacNeill, S. (eds) The Eukaryotic Replisome: a Guide to Protein Structure and Function. Subcellular Biochemistry, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4572-8_15

Download citation

Publish with us

Policies and ethics