Skip to main content

Composition and Dynamics of the Eukaryotic Replisome: A Brief Overview

  • Chapter
  • First Online:
The Eukaryotic Replisome: a Guide to Protein Structure and Function

Part of the book series: Subcellular Biochemistry ((SCBI,volume 62))

Abstract

High-fidelity chromosomal DNA replication is vital for maintaining the integrity of the genetic material in all forms of cellular life. In eukaryotic cells, around 40–50 distinct conserved polypeptides are essential for chromosome replication, the majority of which are themselves component parts of a series of elaborate molecular machines that comprise the replication apparatus or replisome. How these complexes are assembled, what structures they adopt, how they perform their functions, and how those functions are regulated, are key questions for understanding how genome duplication occurs. Here I present a brief overview of current knowledge of the composition of the replisome and the dynamic molecular events that underlie chromosomal DNA replication in eukaryotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya N, Klassen R, Johnson RE, Prakash L, Prakash S (2011) PCNA binding domains in all three subunits of yeast DNA polymerase δ modulate its function in DNA replication. Proc Natl Acad Sci USA 108:17927–17932

    PubMed  CAS  Google Scholar 

  • Aparicio OM, Stout AM, Bell SP (1999) Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication. Proc Natl Acad Sci USA 96:9130–9135

    PubMed  CAS  Google Scholar 

  • Baranovskiy AG, Babayeva ND, Liston VG, Rogozin IB, Koonin EV, Pavlov YI, Vassylyev DG, Tahirov TH (2008) X-ray structure of the complex of regulatory subunits of human DNA polymerase δ. Cell Cycle 7:3026–3036

    PubMed  CAS  Google Scholar 

  • Barnes DE, Tomkinson AE, Lehmann AR, Webster AD, Lindahl T (1992) Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA damaging agents. Cell 69:495–503

    PubMed  CAS  Google Scholar 

  • Barry ER, Bell SD (2006) DNA replication in the archaea. Microbiol Mol Biol Rev 70:876–887

    PubMed  CAS  Google Scholar 

  • Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374

    PubMed  CAS  Google Scholar 

  • Bentley D, Selfridge J, Millar JK, Samuel K, Hole N, Ansell JD, Melton DW (1996) DNA ligase I is required for fetal liver erythropoiesis but is not essential for mammalian cell viability. Nat Genet 13:489–491

    PubMed  CAS  Google Scholar 

  • Bentley DJ, Harrison C, Ketchen AM, Redhead NJ, Samuel K, Waterfall M, Ansell JD, Melton DW (2002) DNA ligase I null mouse cells show normal DNA repair activity but altered DNA replication and reduced genome stability. J Cell Sci 115:1551–1561

    PubMed  CAS  Google Scholar 

  • Bicknell LS, Bongers EM, Leitch A, Brown S, Schoots J, Harley ME, Aftimos S, Al-Aama JY, Bober M, Brown PA, van Bokhoven H, Dean J, Edrees AY, Feingold M, Fryer A, Hoefsloot LH, Kau N, Knoers NV, Mackenzie J, Opitz JM, Sarda P, Ross A, Temple IK, Toutain A, Wise CA, Wright M, Jackson AP (2011a) Mutations in the pre-replication complex cause Meier-Gorlin syndrome. Nat Genet 43:356–359

    PubMed  CAS  Google Scholar 

  • Bicknell LS, Walker S, Klingseisen A, Stiff T, Leitch A, Kerzendorfer C, Martin CA, Yeyati P, Al Sanna N, Bober M, Johnson D, Wise C, Jackson AP, O’Driscoll M, Jeggo PA (2011b) Mutations in ORC1, encoding the largest subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. Nat Genet 43:350–355

    PubMed  CAS  Google Scholar 

  • Blow JJ, Dutta A (2005) Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol 6:476–486

    PubMed  CAS  Google Scholar 

  • Blow JJ, Dilworth SM, Dingwall C, Mills AD, Laskey RA (1987) Chromosome replication in cell-free systems from Xenopus eggs. Philos Trans R Soc Lond B Biol Sci 317:483–494

    PubMed  CAS  Google Scholar 

  • Bowman GD, O’Donnell M, Kuriyan J (2004) Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature 429:724–730

    PubMed  CAS  Google Scholar 

  • Chang YP, Wang G, Bermudez V, Hurwitz J, Chen XS (2007) Crystal structure of the GINS complex and functional insights into its role in DNA replication. Proc Natl Acad Sci U S A 104:12685–12690

    PubMed  CAS  Google Scholar 

  • Chapados BR, Chai Q, Hosfield DJ, Qiu J, Shen B, Tainer JA (2001) Structural biochemistry of a type 2 RNase H: RNA primer recognition and removal during DNA replication. J Mol Biol 307:541–556

    PubMed  CAS  Google Scholar 

  • Chapados BR, Hosfield DJ, Han S, Qiu J, Yelent B, Shen B, Tainer JA (2004) Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair. Cell 116:39–50

    PubMed  CAS  Google Scholar 

  • Choi JM, Lim HS, Kim JJ, Song OK, Cho Y (2007) Crystal structure of the human GINS complex. Genes Dev 21:1316–1321

    PubMed  CAS  Google Scholar 

  • Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, Berger JM (2011) The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol 18:471–477

    PubMed  CAS  Google Scholar 

  • Cvetic C, Walter JC (2005) Eukaryotic origins of DNA replication: could you please be more specific? Semin Cell Dev Biol 16:343–353

    PubMed  CAS  Google Scholar 

  • Dang HQ, Li Z (2011) The Cdc45-Mcm2-7-GINS protein complex in trypanosomes regulates DNA replication and interacts with two Orc1-like proteins in the origin recognition complex. J Biol Chem 286:32424–32435

    PubMed  CAS  Google Scholar 

  • de Munnik SA, Bicknell LS, Aftimos S, Al-Aama JY, van Bever Y, Bober MB, Clayton-Smith J, Edrees AY, Feingold M, Fryer A, van Hagen JM, Hennekam RC, Jansweijer MC, Johnson D, Kant SG, Opitz JM, Ramadevi AR, Reardon W, Ross A, Sarda P, Schrander-Stumpel CT, Schoots J, Temple IK, Terhal PA, Toutain A, Wise CA, Wright M, Skidmore DL, Samuels ME, Hoefsloot LH, Knoers NV, Brunner HG, Jackson AP, Bongers EM (2012) Meier-Gorlin syndrome genotype-phenotype studies: 35 individuals with pre-replication complex gene mutations and 10 without molecular diagnosis. Eur J Hum Genet

    Google Scholar 

  • Donahue SL, Corner BE, Bordone L, Campbell C (2001) Mitochondrial DNA ligase function in Saccharomyces cerevisiae. Nucleic Acids Res 29:1582–1589

    PubMed  CAS  Google Scholar 

  • Duderstadt KE, Berger JM (2008) AAA+ ATPases in the initiation of DNA replication. Crit Rev Biochem Mol Biol 43:163–187

    PubMed  CAS  Google Scholar 

  • Duncker BP, Chesnokov IN, McConkey BJ (2009) The origin recognition complex protein family. Genome Biol 10:214

    PubMed  Google Scholar 

  • Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C (2009) A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci USA 106:20240–20245

    PubMed  CAS  Google Scholar 

  • Figiel M, Chon H, Cerritelli SM, Cybulska M, Crouch RJ, Nowotny M (2011) The structural and biochemical characterization of human RNase H2 complex reveals the molecular basis for substrate recognition and Aicardi-Goutières syndrome defects. J Biol Chem 286:10540–10550

    PubMed  CAS  Google Scholar 

  • Fu YV, Yardimci H, Long DT, Ho TV, Guainazzi A, Bermudez VP, Hurwitz J, van Oijen A, Scharer OD, Walter JC (2011) Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146:931–941

    PubMed  CAS  Google Scholar 

  • Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8:358–366

    PubMed  CAS  Google Scholar 

  • Gambus A, van Deursen F, Polychronopoulos D, Foltman M, Jones RC, Edmondson RD, Calzada A, Labib K (2009) A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase α within the eukaryotic replisome. EMBO J 28:2992–3004

    PubMed  CAS  Google Scholar 

  • Gambus A, Khoudoli GA, Jones RC, Blow JJ (2011) MCM2-7 form double hexamers at licensed origins in Xenopus egg extract. J Biol Chem 286:11855–11864

    PubMed  CAS  Google Scholar 

  • Guernsey DL, Matsuoka M, Jiang H, Evans S, Macgillivray C, Nightingale M, Perry S, Ferguson M, LeBlanc M, Paquette J, Patry L, Rideout AL, Thomas A, Orr A, McMaster CR, Michaud JL, Deal C, Langlois S, Superneau DW, Parkash S, Ludman M, Skidmore DL, Samuels ME (2011) Mutations in origin recognition complex gene ORC4 cause Meier-Gorlin syndrome. Nat Genet 43:360–364

    PubMed  CAS  Google Scholar 

  • Gulbis JM, Kelman Z, Hurwitz J, Odonnell M, Kuriyan J (1996) Structure of the C-terminal region of p21Waf1/Cip1 complexed with human PCNA. Cell 87:297–306

    PubMed  CAS  Google Scholar 

  • Hanson PI, Whiteheart SW (2005) AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol 6:519–529

    PubMed  CAS  Google Scholar 

  • Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell-cycle events. Science 246:629–634

    PubMed  CAS  Google Scholar 

  • Henry RA, Balakrishnan L, Ying-Lin ST, Campbell JL, Bambara RA (2010) Components of the secondary pathway stimulate the primary pathway of eukaryotic Okazaki fragment processing. J Biol Chem 285:28496–28505

    PubMed  CAS  Google Scholar 

  • Hosfield DJ, Mol CD, Shen B, Tainer JA (1998) Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: coupling DNA and PCNA binding to FEN-1 activity. Cell 95:135–146

    PubMed  CAS  Google Scholar 

  • Hou Z, Bernstein DA, Fox CA, Keck JL (2005) Structural basis of the Sir1-origin recognition complex interaction in transcriptional silencing. Proc Natl Acad Sci USA 102:8489–8494

    PubMed  CAS  Google Scholar 

  • Hsu HC, Stillman B, Xu RM (2005) Structural basis for origin recognition complex 1 protein-silence information regulator 1 protein interaction in epigenetic silencing. Proc Natl Acad Sci USA 102:8519–8524

    PubMed  CAS  Google Scholar 

  • Hwang KY, Baek K, Kim HY, Cho Y (1998) The crystal structure of flap endonuclease-1 from Methanococcus jannaschii. Nat Struct Biol 5:707–713

    PubMed  CAS  Google Scholar 

  • Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37:247–258

    PubMed  CAS  Google Scholar 

  • Johansson E, MacNeill SA (2010) The eukaryotic replicative DNA polymerases take shape. Trends Biochem Sci 35:339–347

    PubMed  CAS  Google Scholar 

  • Kamada K, Kubota Y, Arata T, Shindo Y, Hanaoka F (2007) Structure of the human GINS complex and its assembly and functional interface in replication initiation. Nat Struct Mol Biol 14:388–396

    PubMed  CAS  Google Scholar 

  • Kamimura Y, Tak YS, Sugino A, Araki H (2001) Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. EMBO J 20:2097–2107

    PubMed  CAS  Google Scholar 

  • Kesti T, Flick K, Keranen S, Syvaoja JE, Wittenberg C (1999) DNA polymerase ε catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell 3:679–685

    PubMed  CAS  Google Scholar 

  • Kim DJ, Kim O, Kim HW, Kim HS, Lee SJ, Suh SW (2009) ATP-dependent DNA ligase from Archaeoglobus fulgidus displays a tightly closed conformation. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:544–550

    PubMed  Google Scholar 

  • Klinge S, Nunez-Ramirez R, Llorca O, Pellegrini L (2009) 3D architecture of DNA Pol α reveals the functional core of multi-subunit replicative polymerases. EMBO J 28:1978–1987

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Figaroa F, Meeuwenoord N, Jansen LE, Siegal G (2006) Characterization of the DNA binding and structural properties of the BRCT region of human replication factor C p140 subunit. J Biol Chem 281:4308–4317

    PubMed  CAS  Google Scholar 

  • Krastanova I, Sannino V, Amenitsch H, Gileadi O, Pisani FM, Onesti S (2012) Structural and functional insights into the DNA replication factor Cdc45 reveal an evolutionary relationship to the DHH family of phosphoesterases. J Biol Chem 287:4121–4128

    PubMed  CAS  Google Scholar 

  • Kunkel TA, Burgers PM (2008) Dividing the workload at a eukaryotic replication fork. Trends Cell Biol 18:521–527

    PubMed  CAS  Google Scholar 

  • Kuo AJ, Song J, Cheung P, Ishibe-Murakami S, Yamazoe S, Chen JK, Patel DJ, Gozani O (2012) The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature. doi:10.1038/nature10956

  • Labib K (2011) Building a double hexamer of DNA helicase at eukaryotic replication origins. EMBO J 30:4853–4855

    PubMed  CAS  Google Scholar 

  • Labib K, De Piccoli G (2011) Surviving chromosome replication: the many roles of the S-phase checkpoint pathway. Philos Trans R Soc Lond B Biol Sci 366:3554–3561

    PubMed  CAS  Google Scholar 

  • Lai L, Yokota H, Hung LW, Kim R, Kim SH (2000) Crystal structure of archaeal RNase HII: a homologue of human major RNase H. Structure 8:897–904

    PubMed  CAS  Google Scholar 

  • Leigh JA, Albers SV, Atomi H, Allers T (2011) Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 35:577–608

    PubMed  CAS  Google Scholar 

  • Li Z, Pan M, Santangelo TJ, Chemnitz W, Yuan W, Edwards JL, Hurwitz J, Reeve JN, Kelman Z (2011) A novel DNA nuclease is stimulated by association with the GINS complex. Nucleic Acids Res 39:6114–6123

    PubMed  CAS  Google Scholar 

  • Liu S, Balasov M, Wang H, Wu L, Chesnokov IN, Liu Y (2011) Structural analysis of human Orc6 protein reveals a homology with transcription factor TFIIB. Proc Natl Acad Sci USA 108:7373–7378

    PubMed  CAS  Google Scholar 

  • Lucas IA, Raghuraman MK (2003) The dynamics of chromosome replication in yeast. Curr Top Dev Biol 55:1–73

    PubMed  CAS  Google Scholar 

  • Ludwig C, Walkinshaw M (2006) The structure of PCNA and its homologues. In: Lee H (ed) Proliferating cell nuclear antigen (PCNA). Research Signpost, Kerala, pp 1–24

    Google Scholar 

  • Lygeros J, Koutroumpas K, Dimopoulos S, Legouras I, Kouretas P, Heichinger C, Nurse P, Lygerou Z (2008) Stochastic hybrid modeling of DNA replication across a complete genome. Proc Natl Acad Sci USA 105:12295–12300

    PubMed  CAS  Google Scholar 

  • MacAlpine DM, Bell SP (2005) A genomic view of eukaryotic DNA replication. Chromosome Res 13:309–326

    PubMed  CAS  Google Scholar 

  • Majka J, Burgers PM (2004) The PCNA-RFC families of DNA clamps and clamp loaders. Prog Nucleic Acid Res Mol Biol 78:227–260

    PubMed  CAS  Google Scholar 

  • Makarova KS, Koonin EV, Kelman Z (2012) The archaeal CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes. Biol Direct 7:7

    PubMed  CAS  Google Scholar 

  • Mantiero D, Mackenzie A, Donaldson A, Zegerman P (2011) Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J 30:4805–4814

    PubMed  CAS  Google Scholar 

  • Martin IV, MacNeill SA (2004) Functional analysis of subcellular localization and protein-protein interaction sequences in the essential DNA ligase I protein of fission yeast. Nucleic Acids Res 32:632–642

    PubMed  CAS  Google Scholar 

  • Mechali M (2010) Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 11:728–738

    PubMed  CAS  Google Scholar 

  • Moyer SE, Lewis PW, Botchan MR (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci USA 103:10236–10241

    PubMed  CAS  Google Scholar 

  • Muramatsu S, Hirai K, Tak YS, Kamimura Y, Araki H (2010) CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol ε, and GINS in budding yeast. Genes Dev 24:602–612

    PubMed  CAS  Google Scholar 

  • Nick McElhinny SA, Gordenin DA, Stith CM, Burgers PM, Kunkel TA (2008) Division of labor at the eukaryotic replication fork. Mol Cell 30:137–144

    PubMed  CAS  Google Scholar 

  • Nishida H, Kiyonari S, Ishino Y, Morikawa K (2006) The closed structure of an archaeal DNA ligase from Pyrococcus furiosus. J Mol Biol 360:956–967

    PubMed  CAS  Google Scholar 

  • Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC (2006) Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell 21:581–587

    PubMed  CAS  Google Scholar 

  • Pascal JM, O’Brien PJ, Tomkinson AE, Ellenberger T (2004) Human DNA ligase I completely encircles and partially unwinds nicked DNA. Nature 432:473–478

    PubMed  CAS  Google Scholar 

  • Pascal JM, Tsodikov OV, Hura GL, Song W, Cotner EA, Classen S, Tomkinson AE, Tainer JA, Ellenberger T (2006) A flexible interface between DNA ligase and PCNA supports conformational switching and efficient ligation of DNA. Mol Cell 24:279–291

    PubMed  CAS  Google Scholar 

  • Petrini JHJ, Xiao YH, Weaver DT (1995) Dna ligase I mediates essential functions in mammalian-cells. Mol Cell Biol 15:4303–4308

    PubMed  CAS  Google Scholar 

  • Pike JE, Burgers PM, Campbell JL, Bambara RA (2009) Pif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway. J Biol Chem 284:25170–25180

    PubMed  CAS  Google Scholar 

  • Pike JE, Henry RA, Burgers PM, Campbell JL, Bambara RA (2010) An alternative pathway for Okazaki fragment processing: resolution of fold-back flaps by Pif1 helicase. J Biol Chem 285:41712–41723

    PubMed  CAS  Google Scholar 

  • Pursell ZF, Isoz I, Lundstrom EB, Johansson E, Kunkel TA (2007) Yeast DNA polymerase ε participates in leading-strand DNA replication. Science 317:127–130

    PubMed  CAS  Google Scholar 

  • Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF (2009) Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139:719–730

    PubMed  CAS  Google Scholar 

  • Sakurai S, Kitano K, Yamaguchi H, Hamada K, Okada K, Fukuda K, Uchida M, Ohtsuka E, Morioka H, Hakoshima T (2005) Structural basis for recruitment of human flap endonuclease 1 to PCNA. EMBO J 24:683–693

    PubMed  CAS  Google Scholar 

  • Sanchez-Pulido L, Ponting CP (2011) Cdc45: the missing RecJ ortholog in eukaryotes? Bioinformatics 27:1885–1888

    PubMed  CAS  Google Scholar 

  • Sauguet L, Klinge S, Perera RL, Maman JD, Pellegrini L (2010) Shared active site architecture between the large subunit of eukaryotic primase and DNA photolyase. PLoS One 5:e10083

    PubMed  Google Scholar 

  • Shaban NM, Harvey S, Perrino FW, Hollis T (2010) The structure of the mammalian RNase H2 complex provides insight into RNA-DNA hybrid processing to prevent immune dysfunction. J Biol Chem 285:3617–3624

    PubMed  CAS  Google Scholar 

  • Snider J, Thibault G, Houry WA (2008) The AAA+ superfamily of functionally diverse proteins. Genome Biol 9:216

    PubMed  Google Scholar 

  • Sonneville R, Querenet M, Craig A, Gartner A, Blow JJ (2012) The dynamics of replication licensing in live Caenorhabditis elegans embryos. J Cell Biol 196:233–246

    PubMed  CAS  Google Scholar 

  • Stewart JA, Miller AS, Campbell JL, Bambara RA (2008) Dynamic removal of replication protein A by Dna2 facilitates primer cleavage during Okazaki fragment processing in Saccharomyces cerevisiae. J Biol Chem 283:31356–31365

    PubMed  CAS  Google Scholar 

  • Stewart JA, Campbell JL, Bambara RA (2009) Significance of the dissociation of Dna2 by flap endonuclease 1 to Okazaki fragment processing in Saccharomyces cerevisiae. J Biol Chem 284:8283–8291

    PubMed  CAS  Google Scholar 

  • Stillman B (2008) DNA polymerases at the replication fork in eukaryotes. Mol Cell 30:259–260

    PubMed  CAS  Google Scholar 

  • Swan MK, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2009) Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase δ. Nat Struct Mol Biol 16:979–986

    PubMed  CAS  Google Scholar 

  • Takara TJ, Bell SP (2011) Multiple Cdt1 molecules act at each origin to load replication-competent Mcm2-7 helicases. EMBO J 30:4885–4896

    PubMed  CAS  Google Scholar 

  • Tanaka S, Araki H (2011) Multiple regulatory mechanisms to inhibit untimely initiation of DNA replication are important for stable genome maintenance. PLoS Genet 7:e1002136

    PubMed  CAS  Google Scholar 

  • Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H (2007) CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445:328–332

    PubMed  CAS  Google Scholar 

  • Tanaka S, Nakato R, Katou Y, Shirahige K, Araki H (2011) Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol 21:2055–2063

    PubMed  CAS  Google Scholar 

  • Tsurimoto T (2006) PCNA-interacting proteins. In: Lee H (ed) Proliferating cell nuclear antigen (PCNA). Research Signpost, Kerala, pp 25–49

    Google Scholar 

  • Tsutakawa SE, Classen S, Chapados BR, Arvai AS, Finger LD, Guenther G, Tomlinson CG, Thompson P, Sarker AH, Shen B, Cooper PK, Grasby JA, Tainer JA (2011) Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily. Cell 145:198–211

    PubMed  CAS  Google Scholar 

  • Vaithiyalingam S, Warren EM, Eichman BF, Chazin WJ (2010) Insights into eukaryotic DNA priming from the structure and functional interactions of the 4Fe-4 S cluster domain of human DNA primase. Proc Natl Acad Sci USA 107:13684–13689

    PubMed  CAS  Google Scholar 

  • Vijayakumar S, Dziegielewska B, Levin DS, Song W, Yin J, Yang A, Matsumoto Y, Bermudez VP, Hurwitz J, Tomkinson AE (2009) Phosphorylation of human DNA ligase I regulates its interaction with replication factor C and its participation in DNA replication and DNA repair. Mol Cell Biol 29:2042–2052

    PubMed  CAS  Google Scholar 

  • Waga S, Stillman B (1998) The DNA replication fork in eukaryotic cells. Annu Rev Biochem 67:721–751

    PubMed  CAS  Google Scholar 

  • Walter J, Sun L, Newport J (1998) Regulated chromosomal DNA replication in the absence of a nucleus. Mol Cell 1:519–529

    PubMed  CAS  Google Scholar 

  • Warbrick E (1998) PCNA binding through a conserved motif. Bioessays 20:195–199

    PubMed  CAS  Google Scholar 

  • Watase G, Takisawa H, Kanemaki MT (2012) Mcm10 plays a role in functioning of the eukaryotic replicative DNA helicase, Cdc45-Mcm-GINS. Curr Biol 22:343–349

    PubMed  CAS  Google Scholar 

  • Webster AD, Barnes DE, Arlett CF, Lehmann AR, Lindahl T (1992) Growth retardation and immunodeficiency in a patient with mutations in the DNA ligase I gene. Lancet 339:1508–1509

    PubMed  CAS  Google Scholar 

  • Willer M, Rainey M, Pullen T, Stirling CJ (1999) The yeast CDC9 gene encodes both a nuclear and a mitochondrial form of DNA ligase I. Curr Biol 9:1085–1094

    PubMed  CAS  Google Scholar 

  • Yardimci H, Loveland AB, Habuchi S, van Oijen AM, Walter JC (2010) Uncoupling of sister replisomes during eukaryotic DNA replication. Mol Cell 40:834–840

    PubMed  CAS  Google Scholar 

  • Zegerman P, Diffley JF (2007) Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445:281–285

    PubMed  CAS  Google Scholar 

  • Zhang Z, Hayashi MK, Merkel O, Stillman B, Xu RM (2002) Structure and function of the BAH-containing domain of Orc1p in epigenetic silencing. EMBO J 21:4600–4611

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to colleagues in St Andrews and elsewhere for comments on the manuscript. Replication research in my lab is funded by the Scottish Universities Life Sciences Alliance (SULSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart MacNeill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

MacNeill, S. (2012). Composition and Dynamics of the Eukaryotic Replisome: A Brief Overview. In: MacNeill, S. (eds) The Eukaryotic Replisome: a Guide to Protein Structure and Function. Subcellular Biochemistry, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4572-8_1

Download citation

Publish with us

Policies and ethics