Skip to main content

TLR Agonists as Vaccine Adjuvants

  • Chapter
  • First Online:
Innovation in Vaccinology

Abstract

Despite the development of numerous successful vaccines, there are many pathogens for which a vaccine does not exist. In addition, it is clear that cancer vaccines will require novel adjuvants. Currently a number of non-live vaccines are being evaluated in order to address adverse events associated with live vaccines, however many of these have been proven to be ineffective. The major problem with most protein, peptide, and DNA vaccines is that they are poorly immunogenic or elicit an inappropriate immune response, and don’t provide protection against the infectious agent or cancers. Therefore novel adjuvants that boost the immune responses will be required to make these vaccines effective. Many of the effects induced through activation of toll-like receptors (TLRs) can have significant effects on adaptive immune responses. Since ligands have been identified for many TLRs, and activation of TLRs results in stimulation of antigen presenting cells and enhanced B cell and T cell activation, TLR agonists are considered promising vaccine adjuvant candidates. This chapter will focus on TLR agonists that are in development for use as vaccine adjuvants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams S, O’Neill DW, Nonaka D, Hardin E, Chiriboga L, Siu K, Cruz CM, Angiulli A, Angiulli F, Ritter E, Holman RM, Shapiro RL, Berman RS, Berner N, Shao Y, Manches O, Pan L, Venhaus RR, Hoffman EW, Jungbluth A, Gnjatic S, Old L, Pavlick AC, Bhardwaj N (2008) Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J Immunol 181:776–784

    PubMed  CAS  Google Scholar 

  • Agrawal S, Agrawal A, Doughty B, Gerwitz A, Blenis J, Van Dyke T, Pulendran B (2003) Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J Immunol 171:4984–4989

    PubMed  CAS  Google Scholar 

  • Ahmad G, Zhang W, Torben W, Noor Z, Siddiqui AA (2010) Protective effects of Sm-p80 in the presence of resiquimod as an adjuvant against challenge infection with Schistosoma mansoni in mice. Int J Infect Dis 1:e781–e787

    Google Scholar 

  • Ahonen CL, Gibson SJ, Smith RM, Pederson LK, Lindh JM, Tomai MA, Vasilakos JP (1999) Dendritic cell maturation and subsequent enhanced T-cell stimulation induced with the novel synthetic immune response modifier R-848. Cell Immunol 197:62–72

    PubMed  CAS  Google Scholar 

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    PubMed  CAS  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-ÎşB by Toll-like receptor 3. Nature 413:732–738

    PubMed  CAS  Google Scholar 

  • Ballas ZK, Rasmussen WL, Krieg AM (1996) Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol 157:1840–1845

    PubMed  CAS  Google Scholar 

  • Bargieri DY, Leite JA, Lopes SC, Sbrogio-Almeida ME, Braga CJ, Ferreira LC, Soares IS, Costa FT, Rodrigues MM (2010) Immunogenic properties of a recombinant fusion protein containing the C-terminal 19 kDa of Plasmodium falciparum merozoite surface protein-1 and the innate immunity agonist FliC flagellin of Salmonella typhimurium. Vaccine 28:2818–2826

    PubMed  CAS  Google Scholar 

  • Ben-Yedidia T, Arnon R (2006) Flagella as a platform for epitope-based vaccines. Isr Med Assoc J 8:316–318

    PubMed  Google Scholar 

  • Blasius AL, Beutler B (2010) Intracellular toll-like receptors. Immunity 32:305–315

    PubMed  CAS  Google Scholar 

  • Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM (2011) CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 10:499–511

    PubMed  CAS  Google Scholar 

  • Bohnenkamp HR, Papazisis KT, Burchell JM, Taylor-Papadimitriou J (2007) Synergism of Toll-like receptor-induced interleukin-12p70 secretion by monocyte-derived dendritic cells is mediated through p38 MAPK and lowers the threshold of T-helper cell type 1 responses. Cell Immunol 247:72–84

    PubMed  CAS  Google Scholar 

  • Brugnolo F, Sampognaro S, Liotta F, Cosmi L, Annunziato F, Manuelli C, Campi P, Maggi E, Romagnani S, Parronchi P (2003) The novel synthetic immune response modifier R-848 (Resiquimod) shifts human allergen-specific CD4+ TH2 lymphocytes into IFN-gamma-producing cells. J Allergy Clin Immunol 111:380–388

    PubMed  CAS  Google Scholar 

  • Camacho AG, Teixeira LH, Bargieri DY, Boscardin SB, Soares Ida S, Nussenzweig RS, Nussenzweig V, Rodrigues MM (2011) TLR5-dependent immunogenicity of a recombinant fusion protein containing an immunodominant epitope of malarial circumsporozoite protein and the FliC flagellin of Salmonella Typhimurium. Mem Inst Oswaldo Cruz 106(Suppl 1):167–171

    PubMed  Google Scholar 

  • Carmichael JR, Pal S, Tifrea D, de la Maza LM (2011) Induction of protection against vaginal shedding and infertility by a recombinant Chlamydia vaccine. Vaccine 29:5276–5283

    PubMed  CAS  Google Scholar 

  • Chang BA, Cross JL, Najar HM, Dutz JP (2009) Topical resiquimod promotes priming of CTL to parenteral antigens. Vaccine 27:5791–5799

    PubMed  CAS  Google Scholar 

  • Cheng C, Jain P, Bettahi I, Pal S, Tifrea D, de la Maza LM (2011) A TLR2 agonist is a more effective adjuvant for a Chlamydia major outer membrane protein vaccine than ligands to other TLR and NOD receptors. Vaccine 29:6641–6649

    PubMed  CAS  Google Scholar 

  • Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity 33:492–503

    PubMed  CAS  Google Scholar 

  • Cooper C, Mackie D (2011) Hepatitis B surface antigen-1018 ISS adjuvant-containing vaccine: a review of HEPLISAV safety and efficacy. Expert Rev Vaccines 10:417–427

    PubMed  CAS  Google Scholar 

  • Cooper CL, Davis HL, Morris ML, Efler SM, Adhami MA, Krieg AM, Cameron DW, Heathcote J (2004) CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind phase I/II study. J Clin Immunol 24:693–701

    PubMed  CAS  Google Scholar 

  • Cui Z, Qiu F (2006) Synthetic double-stranded RNA poly(I:C) as a potent peptide vaccine adjuvant: therapeutic activity against human cervical cancer in a rodent model. Cancer Immunol Immunother 55:1267–1279

    PubMed  CAS  Google Scholar 

  • Daifalla NS, Bayih AG, Gedamu L (2011) Immunogenicity of Leishmania donovani iron superoxide dismutase B1 and peroxidoxin 4 in BALB/c mice: the contribution of Toll-like receptor agonists as adjuvant. Exp Parasitol 129:292–298

    PubMed  CAS  Google Scholar 

  • Davey GM, Wojtasiak M, Proietto AI, Carbone FR, Heath WR, Bedoui S (2010) Cutting edge: priming of CD8 T cell immunity to herpes simplex virus type 1 requires cognate TLR3 expression in vivo. J Immunol 184:2243–2246

    PubMed  CAS  Google Scholar 

  • Davis HL, Suparto II, Weeratna RR, Jumintarto IDD, Chamzah SS, Ma’ruf AA, Nente CC, Pawitri DD, Krieg AM, Heriyanto SW, Sajuthi DD (2000) CpG DNA overcomes hyporesponsiveness to hepatitis B vaccine in orangutans. Vaccine 18:1920–1924

    PubMed  CAS  Google Scholar 

  • Diebold SS (2008) Recognition of viral single-stranded RNA by Toll-like receptors. Adv Drug Deliv Rev 60:813–823

    PubMed  CAS  Google Scholar 

  • Diebold SS, Massacrier C, Akira S, Paturel C, Morel Y, Reis e Sousa C (2006) Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur J Immunol 36:3256–3267

    PubMed  CAS  Google Scholar 

  • Dory D, Beven V, Torche AM, Bougeard S, Cariolet R, Jestin A (2005) CpG motif in ATCGAT hexamer improves DNA-vaccine efficiency against lethal Pseudorabies virus infection in pigs. Vaccine 23:4532–4540

    PubMed  CAS  Google Scholar 

  • Du J, Wu Z, Ren S, Wei Y, Gao M, Randolph GJ, Qu C (2010) TLR8 agonists stimulate newly recruited monocyte-derived cells into potent APCs that enhance HBsAg immunogenicity. Vaccine 28:6273–6281

    PubMed  CAS  Google Scholar 

  • Durand V, Wong SY, Tough DF, Le Bon A (2004) Shaping of adaptive immune responses to soluble proteins by TLR agonists: a role for IFN-alpha/beta. Immunol Cell Biol 82:596–602

    PubMed  CAS  Google Scholar 

  • Duthie MS, Windish HP, Fox CB, Reed SG (2011) Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 239:178–196

    PubMed  CAS  Google Scholar 

  • Gautier G, Humbert M, Deauvieau F, Scuiller M, Hiscott J, Bates EE, Trinchieri G, Caux C, Garrone P (2005) A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J Exp Med 201:1435–1446

    PubMed  CAS  Google Scholar 

  • Gibson SJ, Lindh JM, Riter TR, Gleason RM, Rogers LM, Fuller AE, Oesterich JL, Gorden KB, Qiu X, McKane SW, Noelle RJ, Miller RL, Kedl RM, Fitzgerald-Bocarsly P, Tomai MA, Vasilakos JP (2002) Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, imiquimod and resiquimod. Cell Immunol 218:74–86

    PubMed  CAS  Google Scholar 

  • Gowen BB, Wong MH, Jung KH, Sanders AB, Mitchell WM, Alexopoulou L, Flavell RA, Sidwell RW (2007) TLR3 is essential for the induction of protective immunity against Punta Toro Virus infection by the double-stranded RNA (dsRNA), poly(I:C12U), but not Poly(I:C): differential recognition of synthetic dsRNA molecules. J Immunol 178:5200–5208

    PubMed  CAS  Google Scholar 

  • Gupta K, Cooper C (2008) A review of the role of CpG oligodeoxynucleotides as toll-like receptor 9 agonists in prophylactic and therapeutic vaccine development in infectious diseases. Drugs R&D 9:137–145

    CAS  Google Scholar 

  • Halperin SA, Van Nest G, Smith B, Abtahi S, Whiley H, Eiden JJ (2003) A phase I study of the safety and immunogenicity of recombinant hepatitis B surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide adjuvant. Vaccine 21:2461–2467

    PubMed  CAS  Google Scholar 

  • Hartmann G, Weeratna RD, Ballas ZK, Payette P, Blackwell S, Suparto I, Rasmussen WL, Waldschmidt M, Sajuthi D, Purcell RH, Davis HL, Krieg AM (2000) Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol 164:1617–1624

    PubMed  CAS  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103

    PubMed  CAS  Google Scholar 

  • Heil F, Ahmad-Nejad P, Hemmi H, Hochrein H, Ampenberger F, Gellert T, Dietrich H, Lipford G, Takeda K, Akira S, Wagner H, Bauer S (2003) The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol 33:2987–2997

    PubMed  CAS  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    PubMed  CAS  Google Scholar 

  • Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200

    PubMed  CAS  Google Scholar 

  • Hengge UR, Ruzicka T (2004) Topical immunomodulation in dermatology: potential of toll-like receptor agonists. Dermatol Surg 30:1101–1112

    PubMed  Google Scholar 

  • Hong SH, Byun YH, Nguyen CT, Kim SY, Seong BL, Park S, Woo GJ, Yoon Y, Koh JT, Fujihashi K, Rhee JH, Lee SE (2012) Intranasal administration of a flagellin-adjuvanted inactivated influenza vaccine enhances mucosal immune responses to protect mice against lethal infection. Vaccine 30:466–474

    PubMed  CAS  Google Scholar 

  • Honko AN, Sriranganathan N, Lees CJ, Mizel SB (2006) Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis. Infect Immun 74:1113–1120

    PubMed  CAS  Google Scholar 

  • Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168:4531–4537

    PubMed  CAS  Google Scholar 

  • Huleatt JW, Nakaar V, Desai P, Huang Y, Hewitt D, Jacobs A, Tang J, McDonald W, Song L, Evans RK, Umlauf S, Tussey L, Powell TJ (2008) Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine 26:201–214

    PubMed  CAS  Google Scholar 

  • Ichinohe T, Watanabe I, Ito S, Fujii H, Moriyama M, Tamura SI, Takahashi H, Sawa H, Chiba J, Kurata T, Sata T, Hasegawa H (2005) Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine protects against influenza virus infection. J Virol 79:2910–2919

    PubMed  CAS  Google Scholar 

  • Igartua M, Pedraz JL (2010) Topical resiquimod: a promising adjuvant for vaccine development? Expert Rev Vaccines 9:23–27

    PubMed  CAS  Google Scholar 

  • Imanishi T, Hara H, Suzuki S, Suzuki N, Akira S, Saito T (2007) Cutting edge: TLR2 directly triggers Th1 effector functions. J Immunol 178:6715–6719

    PubMed  CAS  Google Scholar 

  • Jarrossay D, Napolitani G, Colonna M, Sallusto F, Lanzavecchia A (2001) Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 31:3388–3393

    PubMed  CAS  Google Scholar 

  • Johnson AG, Gaines S, Landy M (1956) Studies on the O antigen of Salmonella typhosa. V. Enhancement of antibody response to protein antigens by the purified lipopolysaccharide. J Exp Med 103:225–246

    PubMed  CAS  Google Scholar 

  • Johnson TR, Rao S, Seder RA, Chen M, Graham BS (2009) TLR9 agonist, but not TLR7/8, functions as an adjuvant to diminish FI-RSV vaccine-enhanced disease, while either agonist used as therapy during primary RSV infection increases disease severity. Vaccine 27:3045–3052

    PubMed  CAS  Google Scholar 

  • Jones TR, Obaldia N 3rd, Gramzinski RA, Charoenvit Y, Kolodny N, Kitov S, Davis HL, Krieg AM, Hoffman SL (1999) Synthetic oligodeoxynucleotides containing CpG motifs enhance immunogenicity of a peptide malaria vaccine in Aotus monkeys. Vaccine 17:3065–3071

    PubMed  CAS  Google Scholar 

  • Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, Chen CJ, Dunbar PR, Wadley RB, Jeet V, Vulink AJ, Hart DN, Radford KJ (2010) Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 207:1247–1260

    PubMed  CAS  Google Scholar 

  • Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, Lipford G, Bauer S (2002) Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 3:499

    PubMed  CAS  Google Scholar 

  • Kadowaki N, Ho S, Antonenko S, De Waal MR, Kastelein RA, Bazan F, Liu YJ (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194:863–869

    PubMed  CAS  Google Scholar 

  • Kaisho T, Akira S (2003) Regulation of dendritic cell function through Toll-like receptors. Curr Mol Med 3:373–385

    PubMed  CAS  Google Scholar 

  • Kastenmuller K, Wille-Reece U, Lindsay RW, Trager LR, Darrah PA, Flynn BJ, Becker MR, Udey MC, Clausen BE, Igyarto BZ, Kaplan DH, Kastenmuller W, Germain RN, Seder RA (2011) Protective T cell immunity in mice following protein-TLR7/8 agonist-conjugate immunization requires aggregation, type I IFN, and multiple DC subsets. J Clin Invest 121:1782–1796

    PubMed  CAS  Google Scholar 

  • Klinman DM (2003) CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 2:305–315

    PubMed  CAS  Google Scholar 

  • Krieg AM (2006) Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 5:471–484

    PubMed  CAS  Google Scholar 

  • Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549

    PubMed  CAS  Google Scholar 

  • Krug A, Rothenfusser S, Hornung V, Jahrsdorfer B, Blackwell S, Ballas ZK, Endres S, Krieg AM, Hartmann G (2001) Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur J Immunol 31:2154–2163

    PubMed  CAS  Google Scholar 

  • Lai Z, Schreiber JR (2011) Outer membrane protein complex of meningococcus enhances the antipolysaccharide antibody response to pneumococcal polysaccharide-CRM197 conjugate vaccine. Clin Vaccine Immunol 18:724–729

    PubMed  CAS  Google Scholar 

  • Le Bon A, Etchart N, Rossmann C, Ashton M, Hou S, Gewert D, Borrow P, Tough DF (2003) Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat Immunol 4:1009–1015

    PubMed  Google Scholar 

  • Lee JW, Lin YM, Yen TY, Yang WJ, Chu CY (2010) CpG oligodeoxynucleotides containing GACGTT motifs enhance the immune responses elicited by a goose parvovirus vaccine in ducks. Vaccine 28:7956–7962

    PubMed  CAS  Google Scholar 

  • Leelawongtawon R, Somroop S, Chaisri U, Tongtawe P, Chongsa-nguan M, Kalambaheti T, Tapchaisri P, Pichyangkul S, Sakolvaree Y, Kurazono H, Hayashi H, Chaicumpa W (2003) CpG DNA, liposome and refined antigen oral cholera vaccine. Asian Pac J Allergy Immunol 21:231–239

    PubMed  CAS  Google Scholar 

  • Liang S, Hosur KB, Nawar HF, Russell MW, Connell TD, Hajishengallis G (2009) In vivo and in vitro adjuvant activities of the B subunit of Type IIb heat-labile enterotoxin (LT-IIb-B5) from Escherichia coli. Vaccine 27:4302–4308

    PubMed  CAS  Google Scholar 

  • Linghua Z, Xingshan T, Fengzhen Z (2006) The efficacy of CpG oligodinucleotides, in combination with conventional adjuvants, as immunological adjuvants to swine streptococcic septicemia vaccine in piglets in vivo. Int Immunopharmacol 6:1267–1276

    PubMed  Google Scholar 

  • Lipford GB, Bauer M, Blank C, Reiter R, Wagner H, Heeg K (1997) CpG-containing synthetic oligonucleotides promote B and cytotoxic T cell responses to protein antigen: a new class of vaccine adjuvants. Eur J Immunol 27:2340–2344

    PubMed  CAS  Google Scholar 

  • Liu G, Tarbet B, Song L, Reiserova L, Weaver B, Chen Y, Li H, Hou F, Liu X, Parent J, Umlauf S, Shaw A, Tussey L (2011) Immunogenicity and efficacy of flagellin-fused vaccine candidates targeting 2009 pandemic H1N1 influenza in mice. PLoS One 6:e20928

    PubMed  CAS  Google Scholar 

  • Longhi MP, Trumpfheller C, Idoyaga J, Caskey M, Matos I, Kluger C, Salazar AM, Colonna M, Steinman RM (2009) Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J Exp Med 206:1589–1602

    PubMed  CAS  Google Scholar 

  • Lore K, Betts MR, Brenchley JM, Kuruppu J, Khojasteh S, Perfetto S, Roederer M, Seder RA, Koup RA (2003) Toll-like receptor ligands modulate dendritic cells to augment cytomegalovirus- and HIV-1-specific T cell responses. J Immunol 171:4320–4328

    PubMed  CAS  Google Scholar 

  • Lousada-Dietrich S, Jogdand PS, Jepsen S, Pinto VV, Ditlev SB, Christiansen M, Larsen SO, Fox CB, Raman VS, Howard RF, Vedvick TS, Ireton G, Carter D, Reed SG, Theisen M (2011) A synthetic TLR4 agonist formulated in an emulsion enhances humoral and Type 1 cellular immune responses against GMZ2 – A GLURP-MSP3 fusion protein malaria vaccine candidate. Vaccine 29:3284–3292

    PubMed  CAS  Google Scholar 

  • Ma R, Du JL, Huang J, Wu CY (2007) Additive effects of CpG ODN and R-848 as adjuvants on augmenting immune responses to HBsAg vaccination. Biochem Biophys Res Commun 361:537–542

    PubMed  CAS  Google Scholar 

  • Mailliard RB, Wankowicz-Kalinska A, Cai Q, Wesa A, Hilkens CM, Kapsenberg ML, Kirkwood JM, Storkus WJ, Kalinski P (2004) Alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 64:5934–5937

    PubMed  CAS  Google Scholar 

  • Marshall-Clarke S, Downes JE, Haga IR, Bowie AG, Borrow P, Pennock JL, Grencis RK, Rothwell P (2007) Polyinosinic acid is a ligand for toll-like receptor 3. J Biol Chem 282:24759–24766

    PubMed  CAS  Google Scholar 

  • McSorley SJ, Ehst BD, Yu Y, Gewirtz AT (2002) Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J Immunol 169:3914–3919

    PubMed  CAS  Google Scholar 

  • Medvedev AE, Flo T, Ingalls RR, Golenbock DT, Teti G, Vogel SN, Espevik T (1998) Involvement of CD14 and complement receptors CR3 and CR4 in nuclear factor-kappaB activation and TNF production induced by lipopolysaccharide and group B streptococcal cell walls. J Immunol 160:4535–4542

    PubMed  CAS  Google Scholar 

  • Miller RL, Meng TC, Tomai MA (2008) The antiviral activity of Toll-like receptor 7 and 7/8 agonists. Drug News Perspect 21:69–87

    PubMed  CAS  Google Scholar 

  • Mitchell MS (2003) Immunotherapy as part of combinations for the treatment of cancer. Int Immunopharmacol 3:1051–1059

    PubMed  CAS  Google Scholar 

  • Moisan J, Camateros P, Thuraisingam T, Marion D, Koohsari H, Martin P, Boghdady ML, Ding A, Gaestel M, Guiot MC, Martin JG, Radzioch D (2006) TLR7 ligand prevents allergen-induced airway hyperresponsiveness and eosinophilia in allergic asthma by a MYD88-dependent and MK2-independent pathway. Am J Physiol Lung Cell Mol Physiol 290:L987–L995

    PubMed  CAS  Google Scholar 

  • Morse MA, Chapman R, Powderly J, Blackwell KL, Keler T, Green J, Riggs R, He L-Z, Ramakrishna V, Vitale L, Zhao B, Hobeika A, Osada T, Davis TA, Clay TM, Lyerly HK (2011) Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with Toll-like receptor stimulation to induce immunity to self antigens in cancer patients. Clin Cancer Res 17:4844–4853

    PubMed  CAS  Google Scholar 

  • Moyle PM, Olive C, Ho MF, Good MF, Toth I (2006) Synthesis of a highly pure lipid core peptide based self-adjuvanting triepitopic group A streptococcal vaccine, and subsequent immunological evaluation. J Med Chem 49:6364–6370

    PubMed  CAS  Google Scholar 

  • Mullen GE, Ellis RD, Miura K, Malkin E, Nolan C, Hay M, Fay MP, Saul A, Zhu D, Rausch K, Moretz S, Zhou H, Long CA, Miller LH, Treanor J (2008) Phase 1 trial of AMA1-C1/Alhydrogel plus CPG 7909: an asexual blood-stage vaccine for Plasmodium falciparum malaria. PLoS One 3:e2940

    PubMed  Google Scholar 

  • Mutwiri G, Gerdts V, van Drunen Littel-van den Hurk S, Auray G, Eng N, Garlapati S, Babiuk LA, Potter A (2011) Combination adjuvants: the next generation of adjuvants? Expert Rev Vaccines 10:95–107

    PubMed  CAS  Google Scholar 

  • Nair S, McLaughlin C, Weizer A, Su Z, Boczkowski D, Dannull J, Vieweg J, Gilboa E (2003) Injection of immature dendritic cells into adjuvant-treated skin obviates the need for ex vivo maturation. J Immunol 171:6275–6282

    PubMed  CAS  Google Scholar 

  • Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A (2005) Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 6:769–776

    PubMed  CAS  Google Scholar 

  • Nguyen CT, Kim SY, Kim MS, Lee SE, Rhee JH (2011) Intranasal immunization with recombinant PspA fused with a flagellin enhances cross-protective immunity against Streptococcus pneumoniae infection in mice. Vaccine 29:5731–5739

    PubMed  CAS  Google Scholar 

  • Nyirenda MH, Sanvito L, Darlington PJ, O’Brien K, Zhang GX, Constantinescu CS, Bar-Or A, Gran B (2011) TLR2 stimulation drives human naive and effector regulatory T cells into a Th17-like phenotype with reduced suppressive function. J Immunol 187:2278–2290

    PubMed  CAS  Google Scholar 

  • Otero M, Calarota SA, Felber B, Laddy D, Pavlakis G, Boyer JD, Weiner DB (2004) Resiquimod is a modest adjuvant for HIV-1 gag-based genetic immunization in a mouse model. Vaccine 22:1782–1790

    PubMed  CAS  Google Scholar 

  • Ott G, Barchfeld GL, Chernoff D, Radhakrishnan R, van Hoogevest P, Van Nest G (1995) MF59. Design and evaluation of a safe and potent adjuvant for human vaccines. Pharm Biotechnol 6:277–296

    PubMed  CAS  Google Scholar 

  • Pantel A, Cheong C, Dandamudi D, Shrestha E, Mehandru S, Brane L, Ruane D, Teixeira A, Bozzacco L, Steinman RM, Longhi MP (2012) A new synthetic TLR4 agonist, GLA, allows dendritic cells targeted with antigen to elicit Th1 T-cell immunity in vivo. Eur J Immunol 42:101–109

    PubMed  CAS  Google Scholar 

  • Payette PJ, Ma X, Weeratna RD, McCluskie MJ, Shapiro M, Engle RE, Davis HL, Purcell RH (2006) Testing of CpG-optimized protein and DNA vaccines against the hepatitis B virus in chimpanzees for immunogenicity and protection from challenge. Intervirology 49:144–151

    PubMed  CAS  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    PubMed  CAS  Google Scholar 

  • Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, Keller AM, Joffre O, Zelenay S, Nye E, Le Moine A, Faure F, Donckier V, Sancho D, Cerundolo V, Bonnet D, Reis e Sousa C (2010) Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med 207:1261–1271

    PubMed  CAS  Google Scholar 

  • Prins RM, Craft N, Bruhn KW, Khan-Farooqi H, Koya RC, Stripecke R, Miller JF, Liau LM (2006) The TLR-7 agonist, imiquimod, enhances dendritic cell survival and promotes tumor antigen-specific T cell priming: relation to central nervous system antitumor immunity. J Immunol 176:157–164

    PubMed  CAS  Google Scholar 

  • Quarcoo D, Weixler S, Joachim RA, Stock P, Kallinich T, Ahrens B, Hamelmann E (2004) Resiquimod, a new immune response modifier from the family of imidazoquinolinamines, inhibits allergen-induced Th2 responses, airway inflammation and airway hyper-reactivity in mice. Clin Exp Allergy 34:1314–1320

    PubMed  CAS  Google Scholar 

  • Rajagopal D, Paturel C, Morel Y, Uematsu S, Akira S, Diebold SS (2010) Plasmacytoid dendritic cell-derived type I interferon is crucial for the adjuvant activity of Toll-like receptor 7 agonists. Blood 115:1949–1957

    PubMed  CAS  Google Scholar 

  • Ramakrishna V, Vasilakos JP, Tario JD Jr, Berger MA, Wallace PK, Keler T (2007) Toll-like receptor activation enhances cell-mediated immunity induced by an antibody vaccine targeting human dendritic cells. J Transl Med 5:5

    PubMed  Google Scholar 

  • Ren J, Sun L, Yang L, Wang H, Wan M, Zhang P, Yu H, Guo Y, Yu Y, Wang L (2010) A novel canine favored CpG oligodeoxynucleotide capable of enhancing the efficacy of an inactivated aluminum-adjuvanted rabies vaccine of dog use. Vaccine 28:2458–2464

    PubMed  CAS  Google Scholar 

  • Roh HJ, Sung HW, Kwon HM (2006) Effects of DDA, CpG-ODN, and plasmid-encoded chicken IFN-gamma on protective immunity by a DNA vaccine against IBDV in chickens. J Vet Sci 7:361–368

    PubMed  Google Scholar 

  • Sagara I, Ellis RD, Dicko A, Niambele MB, Kamate B, Guindo O, Sissoko MS, Fay MP, Guindo MA, Kante O, Saye R, Miura K, Long C, Mullen GE, Pierce M, Martin LB, Rausch K, Dolo A, Diallo DA, Miller LH, Doumbo OK (2009) A randomized and controlled Phase 1 study of the safety and immunogenicity of the AMA1-C1/Alhydrogel + CPG 7909 vaccine for Plasmodium falciparum malaria in semi-immune Malian adults. Vaccine 27:7292–7298

    PubMed  CAS  Google Scholar 

  • Salaun B, Greutert M, Romero P (2009) Toll-like receptor 3 is necessary for dsRNA adjuvant effects. Vaccine 27:1841–1847

    PubMed  CAS  Google Scholar 

  • Salem ML, Kadima AN, Cole DJ, Gillanders WE (2005) Defining the antigen-specific T-cell response to vaccination and poly(I:C)/TLR3 signaling: evidence of enhanced primary and memory CD8 T-cell responses and antitumor immunity. J Immunother 28:220–228

    PubMed  CAS  Google Scholar 

  • Salem ML, El-Naggar SA, Kadima A, Gillanders WE, Cole DJ (2006) The adjuvant effects of the toll-like receptor 3 ligand polyinosinic-cytidylic acid poly (I:C) on antigen-specific CD8+ T cell responses are partially dependent on NK cells with the induction of a beneficial cytokine milieu. Vaccine 24:5119–5132

    PubMed  CAS  Google Scholar 

  • Samulowitz U, Weber M, Weeratna R, Uhlmann E, Noll B, Krieg AM, Vollmer J (2010) A novel class of immune-stimulatory CpG oligodeoxynucleotides unifies high potency in type I interferon induction with preferred structural properties. Oligonucleotides 20:93–101

    PubMed  CAS  Google Scholar 

  • Sauder DN, Smith MH, Senta-McMillian T, Soria I, Meng TC (2003) Randomized, single-blind, placebo-controlled study of topical application of the immune response modulator resiquimod in healthy adults. Antimicrob Agents Chemother 47:3846–3852

    PubMed  CAS  Google Scholar 

  • Schulke S, Burggraf M, Waibler Z, Wangorsch A, Wolfheimer S, Kalinke U, Vieths S, Toda M, Scheurer S (2011) A fusion protein of flagellin and ovalbumin suppresses the T(H)2 response and prevents murine intestinal allergy. J Allergy Clin Immunol 128:1340–1348 e1312

    PubMed  Google Scholar 

  • Schulz O, Diebold SS, Chen M, Näslund TI, Nolte MA, Alexopoulou L, Azuma YT, Flavell RA, Liljeström P, Reis E, Sousa C (2005) Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433:887–892

    PubMed  CAS  Google Scholar 

  • Siegrist CA, Pihlgren M, Tougne C, Efler SM, Morris ML, AlAdhami MJ, Cameron DW, Cooper CL, Heathcote J, Davis HL, Lambert PH (2004) Co-administration of CpG oligonucleotides enhances the late affinity maturation process of human anti-hepatitis B vaccine response. Vaccine 23:615–622

    PubMed  CAS  Google Scholar 

  • Singh M, Ugozzoli M, Kazzaz J, Chesko J, Soenawan E, Mannucci D, Titta F, Contorni M, Volpini G, Del Guidice G, O’Hagan DT (2006) A preliminary evaluation of alternative adjuvants to alum using a range of established and new generation vaccine antigens. Vaccine 24:1680–1686

    PubMed  CAS  Google Scholar 

  • Slutter B, Bal SM, Ding Z, Jiskoot W, Bouwstra JA (2011) Adjuvant effect of cationic liposomes and CpG depends on administration route. J Control Release 154:123–130

    PubMed  Google Scholar 

  • Smirnov D, Schmidt JJ, Capecchi JT, Wightman PD (2011) Vaccine adjuvant activity of 3M-052: an imidazoquinoline designed for local activity without systemic cytokine induction. Vaccine 29:5434–5442

    PubMed  CAS  Google Scholar 

  • Sogaard OS, Lohse N, Harboe ZB, Offersen R, Bukh AR, Davis HL, Schonheyder HC, Ostergaard L (2010) Improving the immunogenicity of pneumococcal conjugate vaccine in HIV-infected adults with a toll-like receptor 9 agonist adjuvant: a randomized, controlled trial. Clin Infect Dis 51:42–50

    PubMed  Google Scholar 

  • Speiser DE, Lienard D, Rufer N, Rubio-Godoy V, Rimoldi D, Lejeune F, Krieg AM, Cerottini JC, Romero P (2005) Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest 115:739–746

    PubMed  CAS  Google Scholar 

  • Stahl-Hennig C, Eisenblätter M, Jasny E, Rzehak T, Tenner-Racz K, Trumpfheller C, Salazar AM, Ăśberla K, Nieto K, Kleinschmidt J, Schulte R, Gissmann LM, MĂĽller M, Sacher A, Racz P, Steinman RM, Uguccioni M, Ignatius R (2009) Synthetic double-stranded RNAs are adjuvants for the induction of t helper 1 and humoral immune responses to human papillomavirus in rhesus macaques. PLoS Pathog 5(4)

    Google Scholar 

  • Suzuki H, Wang B, Shivji GM, Toto P, Amerio P, Tomai MA, Miller RL, Sauder DN (2000) Imiquimod, a topical immune response modifier, induces migxration of Langerhans cells. J Invest Dermatol 114:135–141

    PubMed  CAS  Google Scholar 

  • Taylor DN, Treanor JJ, Strout C, Johnson C, Fitzgerald T, Kavita U, Ozer K, Tussey L, Shaw A (2011) Induction of a potent immune response in the elderly using the TLR-5 agonist, flagellin, with a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125, STF2.HA1 SI). Vaccine 29:4897–4902

    PubMed  CAS  Google Scholar 

  • Thomann JS, Heurtault B, Weidner S, Braye M, Beyrath J, Fournel S, Schuber F, Frisch B (2011) Antitumor activity of liposomal ErbB2/HER2 epitope peptide-based vaccine constructs incorporating TLR agonists and mannose receptor targeting. Biomaterials 32:4574–4583

    PubMed  CAS  Google Scholar 

  • Thomas LJ, Hammond RA, Forsberg EM, Geoghegan-Barek KM, Karalius BH, Marsh HC Jr, Rittershaus CW (2008) Co-administration of a CpG adjuvant (VaxImmune(trade mark), CPG 7909) with CETP vaccines increased immunogenicity in rabbits and mice. Hum Vaccin 5:79–84

    Google Scholar 

  • Thomsen LL, Topley P, Daly MG, Brett SJ, Tite JP (2004) Imiquimod and resiquimod in a mouse model: adjuvants for DNA vaccination by particle-mediated immunotherapeutic delivery. Vaccine 22:1799–1809

    PubMed  CAS  Google Scholar 

  • Tokunaga T, Yamamoto T, Yamamoto S (1999) How BCG led to the discovery of immunostimulatory DNA. Jpn J Infect Dis 52:1–11

    PubMed  CAS  Google Scholar 

  • Tomai MA, Solem LE, Johnson AG, Ribi E (1987) The adjuvant properties of a nontoxic monophosphoryl lipid A in hyporesponsive and aging mice. J Biol Response Mod 6:99–107

    PubMed  CAS  Google Scholar 

  • Tomai MA, Imbertson LM, Stanczak TL, Tygrett LT, Waldschmidt TJ (2000) The immune response modifiers imiquimod and R-848 are potent activators of B lymphocytes. Cell Immunol 203:55–65

    PubMed  CAS  Google Scholar 

  • Treanor JJ, Taylor DN, Tussey L, Hay C, Nolan C, Fitzgerald T, Liu G, Kavita U, Song L, Dark I, Shaw A (2010) Safety and immunogenicity of a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125) in healthy young adults. Vaccine 28:8268–8274

    PubMed  CAS  Google Scholar 

  • Trumpfheller C, Caskey M, Nchinda G, Longhi MP, Mizenina O, Huang Y, Schlesinger SJ, Colonna M, Steinman RM (2008) The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc Natl Acad Sci USA 105:2574–2579

    PubMed  CAS  Google Scholar 

  • Turley CB, Rupp RE, Johnson C, Taylor DN, Wolfson J, Tussey L, Kavita U, Stanberry L, Shaw A (2011) Safety and immunogenicity of a recombinant M2e-flagellin influenza vaccine (STF2.4xM2e) in healthy adults. Vaccine 29:5145–5152

    PubMed  CAS  Google Scholar 

  • Valmori D, Souleimanian NE, Tosello V, Bhardwaj N, Adams S, O’Neill D, Pavlick A, Escalon JB, Cruz CM, Angiulli A, Angiulli F, Mears G, Vogel SM, Pan L, Jungbluth AA, Hoffmann EW, Venhaus R, Ritter G, Old LJ, Ayyoub M (2007) Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proc Natl Acad Sci USA 104:8947–8952

    PubMed  CAS  Google Scholar 

  • Vasilakos JP, Smith RM, Gibson SJ, Lindh JM, Pederson LK, Reiter MJ, Smith MH, Tomai MA (2000) Adjuvant activities of immune response modifier R-848: comparison with CpG ODN. Cell Immunol 204:64–74

    PubMed  CAS  Google Scholar 

  • Velasquez LS, Hjelm BE, Arntzen CJ, Herbst-Kralovetz MM (2010) An intranasally delivered Toll-like receptor 7 agonist elicits robust systemic and mucosal responses to Norwalk virus-like particles. Clin Vaccine Immunol 17:1850–1858

    PubMed  CAS  Google Scholar 

  • Verthelyi D (2006) Adjuvant properties of CpG oligonucleotides in primates. Methods Mol Med 127:139–158

    PubMed  CAS  Google Scholar 

  • Verthelyi D, Klinman DM (2003) Immunoregulatory activity of CpG oligonucleotides in humans and nonhuman primates. Clin Immunol 109:64–71

    PubMed  CAS  Google Scholar 

  • Verthelyi D, Ishii KJ, Gursel M, Takeshita F, Klinman DM (2001) Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. J Immunol 166:2372–2377

    PubMed  CAS  Google Scholar 

  • Verthelyi D, Kenney RT, Seder RA, Gam AA, Friedag B, Klinman DM (2002) CpG oligodeoxynucleotides as vaccine adjuvants in primates. J Immunol 168:1659–1663

    PubMed  CAS  Google Scholar 

  • Vollmer J, Weeratna R, Payette P, Jurk M, Schetter C, Laucht M, Wader T, Tluk S, Liu M, Davis HL, Krieg AM (2004) Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol 34:251–262

    PubMed  CAS  Google Scholar 

  • Warger T, Osterloh P, Rechtsteiner G, Fassbender M, Heib V, Schmid B, Schmitt E, Schild H, Radsak MP (2006) Synergistic activation of dendritic cells by combined Toll-like receptor ligation induces superior CTL responses in vivo. Blood 108:544–550

    PubMed  CAS  Google Scholar 

  • Wedlock DN, Denis M, Skinner MA, Koach J, de Lisle GW, Vordermeier HM, Hewinson RG, van Drunen Littel-van den Hurk S, Babiuk LA, Hecker R, Buddle BM (2005) Vaccination of cattle with a CpG oligodeoxynucleotide-formulated mycobacterial protein vaccine and Mycobacterium bovis BCG induces levels of protection against bovine tuberculosis superior to those induced by vaccination with BCG alone. Infect Immun 73:3540–3546

    PubMed  CAS  Google Scholar 

  • Weeratna RD, Makinen SR, McCluskie MJ, Davis HL (2005) TLR agonists as vaccine adjuvants: comparison of CpG ODN and Resiquimod (R-848). Vaccine 23:5263–5270

    PubMed  CAS  Google Scholar 

  • Wetzler LM (2010) Innate immune function of the neisserial porins and the relationship to vaccine adjuvant activity. Future Microbiol 5:749–758

    PubMed  CAS  Google Scholar 

  • Wille-Reece U, Flynn BJ, Lore K, Koup RA, Kedl RM, Mattapallil JJ, Weiss WR, Roederer M, Seder RA (2005a) HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates. Proc Natl Acad Sci USA 102:15190–15194

    PubMed  CAS  Google Scholar 

  • Wille-Reece U, Wu CY, Flynn BJ, Kedl RM, Seder RA (2005b) Immunization with HIV-1 Gag protein conjugated to a TLR7/8 agonist results in the generation of HIV-1 Gag-specific Th1 and CD8+ T cell responses. J Immunol 174:7676–7683

    PubMed  CAS  Google Scholar 

  • Wille-Reece U, Flynn BJ, Lore K, Koup RA, Miles AP, Saul A, Kedl RM, Mattapallil JJ, Weiss WR, Roederer M, Seder RA (2006) Toll-like receptor agonists influence the magnitude and quality of memory T cell responses after prime-boost immunization in nonhuman primates. J Exp Med 203:1249–1258

    PubMed  CAS  Google Scholar 

  • Windish HP, Duthie MS, Ireton G, Lucas E, Laurance JD, Bailor RH, Coler RN, Reed SG (2011) Protection of mice from Mycobacterium tuberculosis by ID87/GLA-SE, a novel tuberculosis subunit vaccine candidate. Vaccine 29:7842–7848

    PubMed  CAS  Google Scholar 

  • Wu CC, Hayashi T, Takabayashi K, Sabet M, Smee DF, Guiney DD, Cottam HB, Carson DA (2007) Immunotherapeutic activity of a conjugate of a Toll-like receptor 7 ligand. Proc Natl Acad Sci USA 104:3990–3995

    PubMed  CAS  Google Scholar 

  • Wysocka M, Newton S, Benoit BM, Introcaso C, Hancock AS, Chehimi J, Richardson SK, Gelfand JM, Montaner LJ, Rook AH (2007) Synthetic imidazoquinolines potently and broadly activate the cellular immune response of patients with cutaneous T-cell lymphoma: synergy with interferon-gamma enhances production of interleukin-12. Clin Lymphoma Myeloma 7:524–534

    PubMed  CAS  Google Scholar 

  • Yamazaki S, Okada K, Maruyama A, Matsumoto M, Yagita H, Seya T (2011) TLR2-dependent induction of IL-10 and Foxp3+ CD25+ CD4+ regulatory T cells prevents effective anti-tumor immunity induced by Pam2 lipopeptides in vivo. PLoS One 6:e18833

    PubMed  CAS  Google Scholar 

  • Zhang WW, Matlashewski G (2008) Immunization with a Toll-like receptor 7 and/or 8 agonist vaccine adjuvant increases protective immunity against Leishmania major in BALB/c mice. Infect Immun 76:3777–3783

    PubMed  CAS  Google Scholar 

  • Zhang L, Tian X, Zhou F (2007) Intranasal administration of CpG oligonucleotides induces mucosal and systemic Type 1 immune responses and adjuvant activity to porcine reproductive and respiratory syndrome killed virus vaccine in piglets in vivo. Int Immunopharmacol 7:1732–1740

    PubMed  CAS  Google Scholar 

  • Zhang X, Chentoufi AA, Dasgupta G, Nesburn AB, Wu M, Zhu X, Carpenter D, Wechsler SL, You S, BenMohamed L (2009) A genital tract peptide epitope vaccine targeting TLR-2 efficiently induces local and systemic CD8+ T cells and protects against herpes simplex virus type 2 challenge. Mucosal Immunol 2:129–143

    PubMed  CAS  Google Scholar 

  • Zhang H, Liu L, Wen K, Huang J, Geng S, Shen J, Pan Z, Jiao X (2011) Chimeric flagellin expressed by Salmonella typhimurium induces an ESAT-6-specific Th1-type immune response and CTL effects following intranasal immunization. Cell Mol Immunol 8:496–501

    PubMed  CAS  Google Scholar 

  • Zhu X, Nishimura F, Sasaki K, Fujita M, Dusak JE, Eguchi J, Fellows-Mayle W, Storkus WJ, Walker PR, Salazar AM, Okada H (2007) Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J Transl Med 5:10

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Paul Wightman and David Brandwein for 3M-052 vaccine adjuvant data and for formulation and characterization of 3M-052 vaccine formulations and pharmacokinetic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Tomai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tomai, M.A., Vasilakos, J.P. (2012). TLR Agonists as Vaccine Adjuvants. In: Baschieri, S. (eds) Innovation in Vaccinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4543-8_9

Download citation

Publish with us

Policies and ethics