Skip to main content

Plant-Based Vaccine Delivery Strategies

  • Chapter
  • First Online:

Abstract

Subunit vaccine formulations were prepared in the near past by purifying antigenic components known to activate protective immune responses directly from the pathogen. Nowadays, thanks to the development of high performance gene engineering and biochemical procedures, subunit vaccines commence to be formulated with recombinant versions of protective antigens. These molecules can be synthesized using heterologous hosts such as bacteria, yeast, insect and mammalian cells. To this aim, the alternative use of plants is growing out of advances in methods for foreign gene expression. Plants represent an opportunity in the field of vaccine technology in that this expression system ensures rapidity, low costs, easy scaling up and intrinsic bio-safety of the final product. Nonetheless, the exploitation of plants only as mere “biofactories” of antigens thwarts many of their potentialities.

After a short introduction designed to initiate the reader to the most commonly used methods to engineer plant “biofactories”, the chapter will focus on how plants can be used by themselves as “vaccines” or as source of recombinant antigens with immunologic added value.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad A, Pereira EO, Conley AJ, Richman AS, Menassa R (2010) Green biofactories: recombinant protein production in plants. Recent Patents Biotechnol 4:242–259

    CAS  Google Scholar 

  • Alvarez ML, Topal E, Martin F, Cardineau GA (2010) Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation. Plant Mol Biol 72:75–89

    PubMed  CAS  Google Scholar 

  • Arlen PA, Singleton M, Adamovicz JJ, Ding Y, Davoodi-Semiromi A, Daniell H (2008) Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts. Infect Immun 76:3640–3650

    PubMed  CAS  Google Scholar 

  • Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10:787–796

    PubMed  CAS  Google Scholar 

  • Banilas G, Daras G, Rigas S, Moloney MM, Hatzopoulos P (2011) Oleosin di-or tri-meric fusions with GFP undergo correct targeting and provide advantages for recombinant protein production. Plant Physiol Biochem 49:216–222

    PubMed  CAS  Google Scholar 

  • Baratova LA, Grebenshchikov NI, Dobrov EN, Gedrovich AV, Kashirin IA, Shishkov AV, Efimov AV, Jarvekulg L, Radavsky YL, Saarma M (1992a) The organization of potato virus X coat proteins in virus particles studied by tritium planigraphy and model building. Virology 188:175–180

    PubMed  CAS  Google Scholar 

  • Baratova LA, Grebenshchikov NI, Shishkov AV, Kashirin IA, Radavsky JL, Jarvekulg L, Saarma M (1992b) The topography of the surface of potato virus X: tritium planigraphy and immunological analysis. J Gen Virol 73:229–235

    PubMed  CAS  Google Scholar 

  • Basu S, Matsutake T (2004) Heat shock protein-antigen presenting cell interactions. Methods 32:38–41

    PubMed  CAS  Google Scholar 

  • Betti C, Lico C, Maffi D, D’Angeli S, Altamura MM, Benvenuto E, Faoro F, Baschieri S (2012) Potato virus X movement in Nicotiana benthamiana: new details revealed by chimeric coat protein variants. Mol Plant Pathol 13:198–203

    PubMed  CAS  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    PubMed  CAS  Google Scholar 

  • Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S, Udono H, Srivastava PK (1997) Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 186:1315–1323

    PubMed  CAS  Google Scholar 

  • Bock R, Warzecha H (2010) Solar-powered factories for new vaccines and antibiotics. Trends Biotechnol 28:246–252

    PubMed  CAS  Google Scholar 

  • Brennan FR, Bellaby T, Helliwell SM, Jones TD, Kamstrup S, Dalsgaard K, Flock JI, Hamilton WD (1999a) Chimeric plant virus particles administered nasally or orally induce systemic and mucosal immune responses in mice. J Virol 73:930–938

    PubMed  CAS  Google Scholar 

  • Brennan FR, Gilleland LB, Staczek J, Bendig MM, Hamilton WD, Gilleland HE Jr (1999b) A chimeric plant virus vaccine protects mice against a bacterial infection. Microbiology 145:2061–2067

    PubMed  CAS  Google Scholar 

  • Brennan FR, Jones TD, Longstaff M, Chapman S, Bellaby T, Smith H, Xu F, Hamilton WD, Flock JI (1999c) Immunogenicity of peptides derived from a fibronectin-binding protein of S. aureus expressed on two different plant viruses. Vaccine 17:1846–1857

    PubMed  CAS  Google Scholar 

  • Buriani G, Mancini C, Benvenuto E, Baschieri S (2011) Plant heat shock protein 70 as carrier for immunization against a plant-expressed reporter antigen. Transgenic Res 20:331–344

    PubMed  CAS  Google Scholar 

  • Buriani G, Mancini C, Benvenuto E, Baschieri S (2012) Heat-shock protein 70 from plant biofactories of recombinant antigens activate multiepitope-targeted immune responses. Plant Biotechnol J. doi:10.1111/j.1467-7652.2011.00673.x

  • Calderwood SK, Theriault JR, Gong J (2005) Message in a bottle: role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur J Immunol 35:2518–2527

    PubMed  CAS  Google Scholar 

  • Calderwood SK, Mambula SS, Gray PJ Jr (2007) Extracellular heat shock proteins in cell signaling and immunity. Ann N Y Acad Sci 1113:28–39

    PubMed  CAS  Google Scholar 

  • Capuano F, Beaudoin F, Napier JA, Shewry PR (2007) Properties and exploitation of oleosins. Biotechnol Adv 25:203–206

    PubMed  CAS  Google Scholar 

  • Capuano F, Bond NJ, Gatto L, Beaudoin F, Napier JA, Benvenuto E, Lilley KS, Baschieri S (2011) LC-MS/MS methods for absolute quantification and identification of proteins associated with chimeric plant oil bodies. Anal Chem 83:9267–9272

    PubMed  CAS  Google Scholar 

  • Chen HY, Zhang J, Gao Y, Du HL, Ma Y, Zheng WZ, Xia NS (2002) Transforming HBsAg into peanut and detection of its immunogenicity. Lett Biotechnol 3:245–251

    Google Scholar 

  • Cho EK, Hong CB (2004) Molecular cloning and expression pattern analysis of heat shock protein 70 genes from Nicotiana tabacum. J Plant Biol 47:149–159

    CAS  Google Scholar 

  • Cruz SS, Chapman S, Roberts AG, Roberts IM, Prior DA, Oparka KJ (1996) Assembly and movement of a plant virus carrying a green fluorescent protein overcoat. Proc Natl Acad Sci USA 93:6286–6290

    PubMed  CAS  Google Scholar 

  • D’Aoust M-A, Couture MM-J, Charland N, Trépanier S, Landry N, Ors F, Vézina L-P (2010) The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol J 8:1–13

    Google Scholar 

  • Dalsgaard K, Uttenthal A, Jones TD, Xu F, Merryweather A, Hamilton WD, Langeveld JP, Boshuizen RS, Kamstrup S, Lomonossoff GP, Porta C, Vela C, Casal JI, Meloen RH, Rodgers PB (1997) Plant-derived vaccine protects target animals against a viral disease. Nat Biotechnol 15:248–252

    PubMed  CAS  Google Scholar 

  • Daniell H, Kumar S, Dufourmantel N (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23:238–245

    PubMed  CAS  Google Scholar 

  • Daniell H, Singh ND, Mason H, Streatfield SJ (2009) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14:669–679

    PubMed  CAS  Google Scholar 

  • Dauvillee D, Delhaye S, Gruyer S, Slomianny C, Moretz SE, D’Hulst C, Long CA, Ball SG, Tomavo S (2010) Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules. PLoS One 5:e15424

    PubMed  CAS  Google Scholar 

  • Davoodi-Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh ND, Banks RK, Chakrabarti D, Daniell H (2010) Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol J 8:223–242

    PubMed  CAS  Google Scholar 

  • de Felipe P, Hughes LE, Ryan MD, Brown JD (2003) Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. J Biol Chem 278:11441–11448

    PubMed  Google Scholar 

  • Deckers HM, van Rooijen G, Boothe J, Moloney MM, Schryvers AB, Hutchins WA (2004) Patent US6761914 B2

    Google Scholar 

  • Denis J, Majeau N, Acosta-Ramirez E, Savard C, Bedard MC, Simard S, Lecours K, Bolduc M, Pare C, Willems B, Shoukry N, Tessier P, Lacasse P, Lamarre A, Lapointe R, Lopez Macias C, Leclerc D (2007) Immunogenicity of papaya mosaic virus-like particles fused to a hepatitis C virus epitope: evidence for the critical function of multimerization. Virology 363:59–68

    PubMed  CAS  Google Scholar 

  • Denis J, Acosta-Ramirez E, Zhao Y, Hamelin ME, Koukavica I, Baz M, Abed Y, Savard C, Pare C, Lopez Macias C, Boivin G, Leclerc D (2008) Development of a universal influenza A vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform. Vaccine 26:3395–3403

    PubMed  CAS  Google Scholar 

  • Di Sansebastiano GP, Paris N, Marc-Martin S, Neuhaus JM (1998) Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway. Plant J 15:449–457

    PubMed  Google Scholar 

  • Donnelly ML, Luke G, Mehrotra A, Li X, Hughes LE, Gani D, Ryan MD (2001) Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J Gen Virol 82:1013–1025

    PubMed  CAS  Google Scholar 

  • Elkholy SF, Ismail RM, Bahieldin A, Sadik AS, Madkour MA (2009) Expression of hepatitis B surface antigen (HBsAg) gene in transgenic banana (Musa Sp.). Arab J Biotechnol 12:291–302

    Google Scholar 

  • Fauser F, Roth N, Ilg G, Sanchez-Fernandez R, Biesgen C, Puchta N (2012) In planta gene targeting. Proc Natl Acad Sci USA 109:7353–7540

    Google Scholar 

  • Gao Y, Ma Y, Li M, Cheng T, Li SW, Zhang J, Xia NS (2003) Oral immunization of animals with transgenic cherry tomatillo expressing HBsAg. World J Gastroenterol 9:996–1002

    PubMed  CAS  Google Scholar 

  • Gelvin SB (2010) Finding a way to the nucleus. Curr Opin Microbiol 13:53–58

    PubMed  CAS  Google Scholar 

  • Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:35–42

    Google Scholar 

  • Gleba Y, Klimyuk V, Marillonet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18:134–141

    PubMed  CAS  Google Scholar 

  • Goloubinoff P, De Los RP (2007) The mechanism of HSP70 chaperones: (entropic) pulling the models together. Trends Biochem Sci 32:372–380

    PubMed  CAS  Google Scholar 

  • Hammond RW, Hammond J (2010) Maize rayado fino virus capsid proteins assemble into virus-like particles in Escherichia coli. Virus Res 147:208–215

    PubMed  CAS  Google Scholar 

  • Hao HY, Wei YH, Zhu JG (2007) Expression of oral hepatitis B vaccine in transgenic tomato. Food Sci 28:201–204

    CAS  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581

    PubMed  CAS  Google Scholar 

  • Howard JA (2004) Commercialization of plant-based vaccines from research and development to manufacturing. Anim Health Res Rev 5:243–245

    PubMed  Google Scholar 

  • Hsu C, Singh P, Ochoa W, Manayani DJ, Manchester M, Schneemann A, Reddy VS (2006) Characterization of polymorphism displayed by the coat protein mutants of tomato bushy stunt virus. Virology 349:222–229

    PubMed  CAS  Google Scholar 

  • Imani J, Berting A, Nitsche S, Schaefer S, GerlichWH NKH (2002) The integration of a major hepatitis B virus gene into cell-cycle synchronized carrot cell suspension cultures and its expression in regenerated carrot plants. Plant Cell Tissue Organ Cult 71:157–164

    CAS  Google Scholar 

  • Ishii-Katsuno R, Nakajima A, Katsuno T, Nojima J, Futai E, Sasagawa N, Yoshida T, Watanabe Y, Ishiura S (2010) Reduction of amyloid beta-peptide accumulation in Tg2576 transgenic mice by oral vaccination. Biochem Biophys Res Commun 399:593–599

    PubMed  CAS  Google Scholar 

  • Jennings GT, Bachmann MF (2008) The coming of age of virus-like particle vaccines. Biol Chem 389:521–536

    PubMed  CAS  Google Scholar 

  • Jiang J, Lafer EM, Sousa R (2006) Crystallization of a functionally intact HSC70 chaperone. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:39–43

    PubMed  Google Scholar 

  • Joung YH, Youm JW, Jeon JH, Lee BC, Ryu CJ, Hong HJ, Kim HC, Joung H, Kim HS (2004) Expression of the hepatitis B surface S and preS2 antigens in tubers of Solanum tuberosum. Plant Cell Rep 22:925–930

    PubMed  CAS  Google Scholar 

  • Kalnciema I, Skrastina D, Ose V, Pumpens P, Zeltins A (2011) Potato virus Y-like particles as a new carrier for the presentation of foreign protein stretches. Mol Biotechnol. doi:10.1007/s12033-011-9480-

  • Kapusta J, Modelska A, Figlerowicz M, Pniewski T, Letellier M, Lisowa O, Yusibov V, Koprowski H, Plucienniczak A, Legocki AB (1999) A plant-derived edible vaccine against hepatitis B virus. FASEB J 13:1796–1799

    PubMed  CAS  Google Scholar 

  • Kapusta J, Modelska A, Pniewski T, Figlerowicz M, Jankowski K, Lisowa O, Plucienniczak A, Koprowski H, Legocki AB (2001) Oral immunization of human with transgenic lettuce expressing hepatitis B surface antigen. Adv Exp Med Biol 495:299–303

    PubMed  CAS  Google Scholar 

  • Kazaks A, Voronkova T (2009) Papilloma-virus derived virus-like particles. In: Khudyakov Y (ed) Medicinal protein engineering. CRC Press/Taylor & Francis Group, Boca Raton/London/New York, pp 277–297

    Google Scholar 

  • Kendall A, McDonald M, Bian W, Bowles T, Baumgarten SC, Shi J, Stewart PL, Bullitt E, Gore D, Irving TC, Havens WM, Ghabrial SA, Wall JS, Stubbs G (2008) Structure of flexible filamentous plant viruses. J Virol 82:9546–9554

    PubMed  CAS  Google Scholar 

  • Khandelwal A, Renukaradhya GJ, Rajasekharb M, Sitaa GL, Shaila MS (2011) Immune responses to hemagglutinin-neuraminidase protein of peste des petits ruminants virus expressed in transgenic peanut plants in sheep. Vet Immuno Immunopathol 140:291–296

    CAS  Google Scholar 

  • Kirk DD, Webb SR (2005) The next 15 years: taking plant-made vaccines beyond proof of concept. Immunol Cell Biol 83:248–256

    PubMed  Google Scholar 

  • Komarova TV, Baschieri S, Donini M, Marusic C, Benvenuto E, Dorokhov YL (2010) Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines 9:859–876

    PubMed  CAS  Google Scholar 

  • Kong Q, Richter L, Yang YF, Arntzen CJ, Mason HS, Thanavala Y (2001) Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc Natl Acad Sci USA 98:11539–11544

    PubMed  CAS  Google Scholar 

  • Kotton CN, Hohmann EL (2004) Enteric pathogens as vaccine vectors for foreign antigen delivery. Infect Immun 72:5535–5547

    PubMed  CAS  Google Scholar 

  • Kumar S, Ochoa W, Singh P, Hsu C, Schneemann A, Manchester M, Olson M, Reddy V (2009) Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design. Virology 388:185–190

    PubMed  CAS  Google Scholar 

  • Lamphear BJ, Jilka JM, Kesl L, Welter M, Howard JA, Streatfield SJ (2004) A corn-based delivery system for animal vaccines: an oral transmissible gastroenteritis virus vaccine boosts lactogenic immunity in swine. Vaccine 22:2420–2424

    PubMed  CAS  Google Scholar 

  • Lauterslager TG, Florack DE, Wal TJ (2001) Oral immunization of naïve and primed animals with transgenic potato tubers expression LT-B. Vaccine 19:2749–2755

    PubMed  CAS  Google Scholar 

  • Leclerc D, Beauseigle D, Denis J, Morin H, Paré C, Lamarre A, Lapointe R (2007) Proteasome-independent major histocompatibility complex class I cross-presentation mediated by papaya mosaic virus-like particles leads to expansion of specific human T cells. J Virol 81:1319–1326

    PubMed  CAS  Google Scholar 

  • Lico C, Capuano F, Renzone G, Donini M, Marusic C, Scaloni A, Benvenuto E, Baschieri S (2006) Peptide display on Potato virus X: molecular features of the coat protein-fused peptide affecting cell-to-cell and phloem movement of chimeric virus particles. J Gen Virol 87:3103–3112

    PubMed  CAS  Google Scholar 

  • Lico C, Chen Q, Santi L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216:366–377

    PubMed  CAS  Google Scholar 

  • Lico C, Mancini C, Italiani P, Betti C, Boraschi D, Benvenuto E, Baschieri S (2009) Plant-produced potato virus X chimeric particles displaying an influenza virus-derived peptide activate specific CD8+ T cells in mice. Vaccine 27:5069–5076

    PubMed  CAS  Google Scholar 

  • Lico C, Santi L, Twyman RM, Pezzotti M, Avesani L (2012) The use of plants for the production of therapeutic human peptides. Plant Cell Rep 31:439–451

    PubMed  CAS  Google Scholar 

  • Limaye A, Koya V, Samsam M, Daniell H (2006) Receptor-mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system. FASEB J 20:959–961

    PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–756

    PubMed  CAS  Google Scholar 

  • Lomonossoff GP, Evans DJ (2011) Applications of plant viruses in bionanotechnology. Curr Top Microbiol Immunol [Epub ahead of print] PMID:22038411

    Google Scholar 

  • Lou XM, Zhang Z, Yao HQ, Xiong AS, Wang HK, Peng RH, Li X (2005) Expression of human hepatitis B virus large surface antigen gene PRS-S1S2S in transgenic apples. J Fruit Sci 22:601–605

    CAS  Google Scholar 

  • Mann JF, Acevedo R, Campo JD, Perez O, Ferro VA (2009) Delivery systems: a vaccine strategy for overcoming mucosal tolerance? Expert Rev Vaccines 8:103–112

    PubMed  Google Scholar 

  • Marcondes J, Hansen E (2008) Transgenic lettuce seedlings carrying hepatitis B virus antigen HBsAg. Braz J Infect Dis 12:469–471

    PubMed  CAS  Google Scholar 

  • Marconi G, Albertini E, Barone P, De Marchis F, Lico C, Marusic C, Rutili D, Veronesi F, Porceddu A (2006) In planta production of two peptides of the Classical Swine Fever Virus (CSFV) E2 glycoprotein fused to the coat protein of potato virus X. BMC Biotechnol 6:29

    PubMed  Google Scholar 

  • Marusic C, Rizza P, Lattanzi L, Mancini C, Spada M, Belardelli F, Benvenuto E, Capone I (2001) Chimeric plant virus particles as immunogens for inducing murine and human immune responses against human immunodeficiency virus type 1. J Virol 75:8434–8439

    PubMed  CAS  Google Scholar 

  • Mason HS, Herbst-Kralovetz MM (2012) Plant-derived antigens as mucosal vaccines. Curr Top Microbiol Immunol 354:101–120

    PubMed  CAS  Google Scholar 

  • Matsui T, Takita E, Sato T, Aizawa M, Ki M, Kadoyama Y, Hirano K, Kinjo S, Asao H, Kawamoto K, Kariya H, Makino S-I, Hamabata T, Sawada K, Kato K (2011) Production of double repeated B subunit of Shiga toxin 2e at high levels in transgenic lettuce plants as vaccine material for porcine edema disease. Transgenic Res 20:735–748

    PubMed  CAS  Google Scholar 

  • Mayer MP, Bukau B (2005) HSP70 chaperones: cellular functions and molecular mechanisms. Cell Mol Life Sci 62:670–684

    PubMed  CAS  Google Scholar 

  • McCormick AA, Corbo TA, Wykoff-Clary S, Palmer KE, Pogue GP (2006) Chemical conjugate TMV-peptide bivalent fusion vaccines improve cellular immunity and tumor protection. Bioconjug Chem 17:1330–1338

    PubMed  CAS  Google Scholar 

  • McGarvey PB, Hammond J, Dienelt MM, Hooper DC, Fu ZF, Dietzschold B, Koprowski H, Michaels FH (1995) Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology (NY) 13:1484–1487

    CAS  Google Scholar 

  • Mihailova M, Boos M, Petrovskis I, Ose V, Skrastina D, Fiedler M, Sominskaya I, Ross S, Pumpens P, Roggendorf M, Viazov S (2006) Recombinant virus-like particles as a carrier of B- and T-cell epitopes of hepatitis C virus (HCV). Vaccine 24:4369–4377

    PubMed  CAS  Google Scholar 

  • Monger W, Alamillo JM, Sola I, Perrin Y, Bestagno M, Burrone OR, Sabella P, Plana-Duran J, Enjuanes L, Garcia JA, Lomonossoff GP (2006) An antibody derivative expressed from viral vectors passively immunizes pigs against transmissible gastroenteritis virus infection when supplied orally in crude plant extracts. Plant Biotechnol J 4:623–631

    PubMed  CAS  Google Scholar 

  • Montero-Barrientos M, Hermosa R, Cardoza RE, Gutiérrez S, Nicolás C, Monte E (2010) Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol 167:659–665

    PubMed  CAS  Google Scholar 

  • Murphy DJ (1991) Storage lipid bodies in plants and other organisms. Prog Lipid Res 29:299–324

    Google Scholar 

  • Natilla A, Hammond RW (2011) Maize rayado fino virus virus-like particles expressed in tobacco plants: a new platform for cysteine selective bioconjugation peptide display. J Virol Methods 178:209–215

    PubMed  CAS  Google Scholar 

  • Natilla A, Nemchinov LG (2008) Improvement of PVX/CMV CP expression tool for display of short foreign antigens. Protein Expr Purif 59:117–121

    PubMed  CAS  Google Scholar 

  • Natilla A, Hammond RW, Nemchinov LG (2006) Epitope presentation system based on cucumber mosaic virus coat protein expressed from a potato virus X-based vector. Arch Virol 151:1373–1386

    PubMed  CAS  Google Scholar 

  • Neutra MR, Kozlowski PA (2006) Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 6:148–158

    PubMed  CAS  Google Scholar 

  • Nochi T, Yuki Y, Katakai Y, Shibata H, Tokuhara D, Mejima M, Kurokawa S, Takahashi Y, Nakanishi U, Ono F, Mimuro H, Sasakawa C, Takaiwa F, Terao K, Kiyono H (2009) A rice-based oral cholera vaccine induces macaque-specific systemic neutralizing antibodies but does not influence pre-existing intestinal immunity. J Immunol 183:6538–6544

    PubMed  CAS  Google Scholar 

  • Nojima J, Ishii-Katsuno R, Futai E, Sasagawa N, Watanabe Y, Yoshida T, Ishiura S (2011) Production of anti-amyloid β antibodies in mice fed rice expressing amyloid β. Biosci Biotechnol Biochem 75:396–400

    PubMed  CAS  Google Scholar 

  • Nozoye T, Takaiwa F, Tsuji N, Yamakawa T, Arakawa T, Hayashi Y, Matsumoto Y (2009) Production of Ascaris suum As14 protein and its fusion protein with cholera toxin B subunit in rice seeds. J Vet Med Sci 71:995–1000

    PubMed  CAS  Google Scholar 

  • Nykiforuk LC, Boothe JG, Murray EW, Keon RG, Goren HJ, Markley NA, Moloney MM (2006) Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnol J 4:77–85

    PubMed  CAS  Google Scholar 

  • O’Brien GJ, Bryant CJ, Voogd C, Greenberg HB, Gardner RC, Bellamy AR (2000) Rotavirus VP6 expressed by PVX vectors in Nicotiana benthamiana coats PVX rods and also assembles into virus like particles. Virology 270:444–453

    PubMed  Google Scholar 

  • Parmenter DL, Boothe JG, van Rooijen GJH, Yeung EC, Moloney MM (1995) Production of biologically active hirudin in plant seeds using oleosin partitioning. Plant Mol Biol 29:1167–1180

    PubMed  CAS  Google Scholar 

  • Paul M, Ma JK (2011) Plant-made pharmaceuticals: leading products and production platforms. Biotechnol Appl Biochem 58:58–67

    PubMed  CAS  Google Scholar 

  • Penney CA, Thomas DR, Deen SS, Walmsley AM (2011) Plant-made vaccines in support of the Millennium Development Goals. Plant Cell Rep 30:789–798

    PubMed  CAS  Google Scholar 

  • Pniewski T, Kapusta J, Plucienniczak A (2006) Agrobacterium-mediated transformation of yellow lupin to generate callus tissue producing HBV surface antigen in a long-term culture. J Appl Genet 47:309–318

    PubMed  Google Scholar 

  • Pniewski T, Kapusta J, Bociąg P, Wojciechowicz J, Kostrzak A, Gdula M, Fedorowicz-Strońska O, Wójcik P, Otta H, Samardakiewicz S, Wolko B, Płucienniczak A (2011) Low-dose oral immunization with lyophilized tissue of herbicide-resistant lettuce expressing hepatitis B surface antigen for prototype plant-derived vaccine tablet formulation. J Appl Genet 52:125–136

    PubMed  CAS  Google Scholar 

  • Pogue GP, Lindbo JA, Garger SJ, Fitzmaurice WP (2002) Making an ally form an enemy: plant virology and the new agriculture. Annu Rev Phytopathol 40:45–74

    PubMed  CAS  Google Scholar 

  • Purcell AW, McCluskey J, Rossjohn J (2007) More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 6:404–414

    PubMed  CAS  Google Scholar 

  • Purkrtova Z, Jolivet P, Miquel M, Chardot T (2008) Structure and function of seed lipid-body-associated proteins. CR Biol 331:746–754

    CAS  Google Scholar 

  • Richter LJ, Thanavala Y, Arntzen GJ, Mason HS (2000) Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat Biotechnol 18:1167–1171

    PubMed  CAS  Google Scholar 

  • Roberts NJ, Scott RW, Tzen JTC (2008) Recent biotechnological applications using oleosins. Open Biotechnol J 2:13–21

    CAS  Google Scholar 

  • Rosales-Mendoza S, Alpuche-Solis AG, Soria-Guerra RE, Moreno-Fierros L, Martinez-Gonzalez L, Herrera-Diaz A, Korban SS (2009) Expression of an Escherichia coli antigenic fusion protein comprising the heat labile toxin B subunit and the heat stable toxin, and its assembly as a functional oligomer in transplastomic tobacco plants. Plant J 57:45–54

    PubMed  CAS  Google Scholar 

  • Rybicki EP (2010) Plant-made vaccines for humans and animals. Plant Biotechnol J 8:620–637

    PubMed  CAS  Google Scholar 

  • Sandhu JS, Krasnyanski SF, Domier LL, Korban SS, Osadjan MD, Buetow DE (2000) Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Res 9:127–135

    PubMed  CAS  Google Scholar 

  • Savard C, Guérin A, Drouin K, Bolduc M, Laliberté-Gagné ME, Dumas MC, Majeau N, Leclerc D (2011) Improvement of the trivalent inactivated flu vaccine using PapMV nanoparticles. PLoS One 6:e21522

    PubMed  CAS  Google Scholar 

  • Shin M-K, Jung MH, Lee W-J, Choi PS, Jang Y-S, Yoo HS (2011) Generation of transgenic corn-derived Actinobacillus pleuropneumoniae ApxIIA fused with the cholera toxin B subunit as a vaccine candidate. J Vet Sci 12:401–403

    PubMed  Google Scholar 

  • Smith ML, Lindbo JA, Dillard-Telm S, Brosio PM, Lasnik AB, McCormick AA, Nguyen LV, Palmer KE (2006) Modified tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications. Virology 348:475–488

    PubMed  CAS  Google Scholar 

  • Srivastava RM, Khar A (2009) Dendritic cells and their receptors in antitumor immune response. Curr Mol Med 6:708–724

    Google Scholar 

  • Srivastava P, De Leo AB, Old LJ (1986) Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci USA 83:3407–3411

    PubMed  CAS  Google Scholar 

  • Stevenson CL (2009) Advances in peptide pharmaceuticals. Curr Pharm Biotechnol 10:122–137

    PubMed  CAS  Google Scholar 

  • Sun HX, Xie Y, Ye YP (2009) ISCOMs and ISCOMATRIX. Vaccine 27:4388–4401

    PubMed  CAS  Google Scholar 

  • Sunil-Kumar GB, Ganapathi TR, Revathi CJ, Srinivas L, Bapat VA (2005) Expression of hepatitis B surface antigen in transgenic banana plants. Planta 222:484–493

    Google Scholar 

  • Tacket CO, Mason HS, Losonsky G, Clements JD, Levine MM, Arntzen CJ (1998) Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat Med 4:607–609

    PubMed  CAS  Google Scholar 

  • Tacket CO, Mason HS, Losonsky G, Estes MK, Levine MM, Arntzen CJ (2000) Human immune responses to a novel norwalk virus vaccine delivered in transgenic potatoes. J Infect Dis 182:302–305

    PubMed  CAS  Google Scholar 

  • Tacket CO, Pasetti MF, Edelman R, Howard JA, Streatfield S (2004) Immunogenicity of recombinant LT-B delivered orally to humans in transgenic corn. Vaccine 22:4385–4389

    PubMed  CAS  Google Scholar 

  • Tang YC, Chang HC, Hayer-Hartl M, Hartl FU (2007) Snapshot: molecular chaperones, part II. Cell Transgenic Res 128:412

    CAS  Google Scholar 

  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71:391–411

    PubMed  CAS  Google Scholar 

  • Uhde-Holzem K, Schlosser V, Viazov S, Fischer R, Commandeur U (2010) Immunogenic properties of chimeric potato virus X particles displaying the hepatitis C virus hypervariable region I peptide R9. J Virol Methods 166:12–20

    PubMed  CAS  Google Scholar 

  • van Rooijen GJ, Moloney MM (1995) Plant seed oil-bodies as carriers for foreign proteins. Biotechnology 13:72–77

    PubMed  Google Scholar 

  • Vierling E (1991) The role of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    CAS  Google Scholar 

  • Vitale A, Pedrazzini E (2005) Recombinant pharmaceuticals from plants: the plant endomembrane system as bioreactor. Mol Interv 5:216–225

    PubMed  CAS  Google Scholar 

  • Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15:40–56

    PubMed  CAS  Google Scholar 

  • Webster DE, Smith SD, Pickering RJ, Strugnell RA, Dry IB, Wesselingh SL (2006) Measles virus hemagglutinin protein expressed in transgenic lettuce induces neutralising antibodies in mice following mucosal vaccination. Vaccine 24:3538–3544

    PubMed  CAS  Google Scholar 

  • Weiner HL, da Cunha AP, Quintana F, Wu H (2011) Oral tolerance. Immunol Rev 241:241–259

    PubMed  CAS  Google Scholar 

  • Wigdorovitz A, Perez Filgueira DM, Robertson N, Carrillo C, Sadir AM, Morris TJ, Borca MV (1999) Protection of mice against challenge with foot and mouth disease virus (FMDV) by immunization with foliar extracts from plants infected with recombinant tobacco mosaic virus expressing the FMDV structural protein VP1. Virology 264:85–91

    PubMed  CAS  Google Scholar 

  • Wu YZ, Li JT, Mou ZR, Fei L, Ni B, Geng M, Jia ZC, Wei Z, Zou L-Y, Tang Y (2003) Oral immunization with rotavirus VP7 expressed in transgenic potatoes induced high titers of mucosal neutralizing IgA. Virology 313:337–342

    PubMed  CAS  Google Scholar 

  • Wu H, Singh NK, Locy RD, Scissum-Gunn K, Giambrone JJ (2004) Immunization of chickens with VP2 protein of infectious bursal disease virus expressed in Arabidopsis thaliana. Avian Dis 48:663–668

    PubMed  CAS  Google Scholar 

  • Wu J, Yu L, Li L, Hu J, Zhou J, Zhou X (2007) Oral immunization with transgenic rice seeds expressing VP2 protein of infectious bursal disease virus induces protective immune responses in chickens. Plant Biotechnol J 5:570–578

    PubMed  CAS  Google Scholar 

  • Yan H, Yan H, Li G, Gong W, Jiao H, Chen H, Ji M (2010) Expression of human cytomegalovirus pp 150 gene in transgenic Vicia faba L. and immunogenicity of pp150 protein in mice. Biologicals 38:265–272

    PubMed  CAS  Google Scholar 

  • Yang CY, Chen SY, Duan GC (2011) Transgenic peanut (Arachis hypogaea L.) expressing the urease subunit B gene of Helicobacter pylori. Curr Microbiol 63:387–391

    PubMed  CAS  Google Scholar 

  • Yildiz I, Shukla S, Steinmetz NF (2011) Applications of viral nanoparticles in medicine. Curr Opin Biotechnol 22:901–908

    PubMed  CAS  Google Scholar 

  • Yoshida T, Kimura E, Koike S, Nojima J, Futai E, Sasagawa N, Watanabe Y, Ishiura S (2011) Transgenic rice expressing amyloid β-peptide for oral immunization. Int J Biol Sci 7:301–307

    PubMed  CAS  Google Scholar 

  • Young M, Willits D, Uchida M, Douglas T (2008) Plant viruses as biotemplates for materials and their use in nanotechnology. Annu Rev Phytopathol 46:361–384

    PubMed  CAS  Google Scholar 

  • Yuki Y, Tokuhara D, Nochi T, Yasuda H, Mejima M, Kurokawa S, Takahashi Y, Kataoka N, Nakanishi U, Hagiwara Y, Fujihashi K, Takaiwa F, Kiyono H (2009) Oral MucoRice expressing double-mutant cholera toxin A and B subunits induces toxin-specific neutralising immunity. Vaccine 27:5982–5988

    PubMed  CAS  Google Scholar 

  • Yusibov V, Hooper DC, Spitsin SV, Fleysh N, Kean RB, Mikheeva T, Deka D, Karasev A, Cox S, Randall J, Koprowski H (2002) Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine 20:3155–3164

    PubMed  CAS  Google Scholar 

  • Yusibov V, Mett V, Davidson C, Musiychuk K, Gilliam S, Farese A, Macvittie T, Mann D (2005) Peptide-based candidate vaccine against respiratory syncytial virus. Vaccine 23:2261–2265

    PubMed  CAS  Google Scholar 

  • Zelada AM, Calamante G, de la Paz SM, Bigi F, Verna F, Mentaberry A, Cataldi A (2006) Expression of tuberculosis antigen ESAT-6 in Nicotiana tabacum using a potato virus X-based vector. Tuberculosis (Edinb) 86:263–267

    CAS  Google Scholar 

  • Zhang H, Liu M, Li Y, Zhao Y, He H, Yang G, Zheng C (2010) Oral immunogenicity and protective efficacy in mice of a carrot-derived vaccine candidate expressing UreB subunit against Helicobacter pylori. Protein Expr Purif 69:127–131

    PubMed  CAS  Google Scholar 

  • Zhao XY, Zhang XD, Zhang T, Yan HP, Luo CX, Yang FP (2002) Cloning and expression of the hepatitis B surface antigen in carrots. Prog Microbiol Immunol 30:1–4

    CAS  Google Scholar 

  • Zhu JG, Wei YH, Guo ZG (2006) The transformation and expression of HBsAg gene in Arachis hypogaea. Chin Bull Bot 23:665–669

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selene Baschieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lico, C., Marusic, C., Capuano, F., Buriani, G., Benvenuto, E., Baschieri, S. (2012). Plant-Based Vaccine Delivery Strategies. In: Baschieri, S. (eds) Innovation in Vaccinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4543-8_8

Download citation

Publish with us

Policies and ethics