Skip to main content

Simulation models in Farming Systems Research: potential and challenges

  • Chapter
  • First Online:
Farming Systems Research into the 21st Century: The New Dynamic

Abstract

Integrated simulation models can be useful tools in farming system research. This chapter reviews three commonly used approaches, i.e. linear programming, system dynamics and agent-based models. Applications of each approach are presented and strengths and drawbacks discussed. We argue that, despite some challenges, mainly related to the integration of different approaches, model validation and the representation of human agents, integrated simulation models contribute important insights to the analysis of farming systems. They help unravelling the complex and dynamic interactions and feedbacks among bio-physical, socio-economic, and institutional components across scales and levels in farming systems. In addition, they can provide a platform for integrative research, and can support transdisciplinary research by functioning as learning platforms in participatory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam, M. S., Bala, B. K., & Huq, A. M. Z. (1997). Simulation of integrated rural energy system for farming in Bangladesh. Energy, 22, 591–599.

    Article  CAS  Google Scholar 

  • Amede, T., & Delve, R. J. (2008). Modelling crop-livestock systems for achieving food security and increasing production efficiencies in the Ethiopian Highlands. Experimental Agriculture, 44, 441–452.

    Article  Google Scholar 

  • Andersen, D. F., & Richardson, G. P. (1997). Scripts for group model building. System Dynamics Review, 13, 107–129.

    Article  Google Scholar 

  • Arquitt, S., & Honggang, X. (2005). A system dynamics analysis of boom and bust in the shrimp aquaculture industry. System Dynamics Review, 21, 305–324.

    Article  Google Scholar 

  • Bach, N. L., & Saeed, K. (1992). Food self-sufficiency in Vietnam: A search for a viable solution. System Dynamics Review, 8, 129–148.

    Article  Google Scholar 

  • Bala, B. K. (1997). Computer modelling of the rural energy system and CO2 emissions for Bangladesh. Energy, 22, 999–1003.

    Article  CAS  Google Scholar 

  • Bala, B. K., & Satter, M. A. (1989). System dynamics simulation and optimization of aquacultural systems. Aquacultural Engineering, 8, 381–191.

    Article  Google Scholar 

  • Bala, B. K., Satter, M. A., Halim, M. A., & Talukdar, M. S. U. (1988). Simulation of crop-irrigation systems. Agricultural Systems, 27, 51–65.

    Article  Google Scholar 

  • Barlas, Y. (1996). Formal aspects of model validity and validation in system dynamics. System Dynamics Review, 12, 183–210.

    Article  Google Scholar 

  • Barlas, Y. (2002). System dynamics: Systemic feedback modelling for policy analysis. In Knowledge for sustainable development – An insight into the encyclopedia of life support systems (pp. 1131–1175). Paris: UNESCO Publishing-Eolss Publishers.

    Google Scholar 

  • Barlas, Y. (2007). Structure and behavior software demonstration: SiS and BTS II. 25th international conference of the System Dynamics Society, Boston, MA.

    Google Scholar 

  • Barnaud, C., Bousquet, F., & Trebuil, G. (2008). Multi-agent simulations to explore rules for rural credit in a highland farming community of Northern Thailand. Ecological Economics, 66, 615–627.

    Article  Google Scholar 

  • Bartolini, F., Bazzani, G. M., Gallerani, V., Raggi, M., & Viaggi, D. (2007). The impact of water and agriculture policy scenarios on irrigated farming systems in Italy: An analysis based on farm level multi-attribute linear programming models. Agricultural Systems, 93, 90–114.

    Article  Google Scholar 

  • Bawden, R. (1995). On the system dynamics in FSR. Journal of Farming Systems Research and Extension, 5, 1–18.

    Google Scholar 

  • Belcher, K. W., Boehm, M. M., & Fulton, M. E. (2004). Agroecosystem sustainability: A system simulation model approach. Agricultural Systems, 79, 225–241.

    Article  Google Scholar 

  • Berger, T., Schreinemachers, P., & Woelcke, J. (2006). Multi-agent simulation for the targeting of development policies in less-favored areas. Agricultural Systems, 88, 28–43.

    Article  Google Scholar 

  • Bertomeu, M., Bertomeu, M., & Gimenez, J. C. (2006). Improving adoptability of farm forestry in the Philippine uplands: A linear programming model. Agroforestry Systems, 68, 81–91.

    Article  Google Scholar 

  • Blackmore, C., Cerf, M., Ison, R., & Paine, M. (2012). The role of action-oriented learning theories for change in agriculture and rural networks. In I. Darnhofer, D. Gibbon, & B. Dedieu (Eds.), Farming Systems Research into the 21st century: The new dynamic (pp. 159–177). Dordrecht: Springer.

    Google Scholar 

  • Bonabeau, E. (2002). Agent-based modelling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99(suppl. 3), 7280–7287.

    Article  CAS  Google Scholar 

  • Bontkes, T. E. S. (1993). Dynamics of rural development in southern Sudan. System Dynamics Review, 9, 1–21.

    Article  Google Scholar 

  • Borschev, A., & Filippov, A. (2004). From system dynamics and discrete event to practical agent based modelling: Reasons, techniques, tools. 22nd international conference of the System Dynamics Society, Oxford, UK. Retrieved on 12 April 2012 from www.systemdynamics.org/conferences/2004/SDS_2004/PAPERS/381BORSH.pdf

  • Bousquet, F., & Le Page, C. (2004). Multi-agent simulations and ecosystem management: A review. Ecological Modelling, 176, 313–332.

    Article  Google Scholar 

  • Camarena, E. A., Gracia, C., & Sixto, J. M. C. (2004). A mixed integer linear programming machinery selection model for multifarm systems. Biosystems Engineering, 87, 145–154.

    Article  Google Scholar 

  • Chardon, X., Raison, C., Le Gall, A., Morvan, T., & Faverdin, P. (2008). Fumigene: A model to study the impact of management rules and constraints on agricultural waste allocation at the farm level. Journal of Agricultural Science, 146, 521–539.

    Google Scholar 

  • Danzig, G. B., & Thapa, M. N. (1997). Linear programming. 1. Introduction. Berlin: Springer.

    Google Scholar 

  • Darnhofer, I., Bellon, S., Dedieu, B., & Milestad, R. (2010). Adaptiveness to enhance the sustainability of farming systems. A review. Agronomy for Sustainable Development, 30, 545–555.

    Article  Google Scholar 

  • Darnhofer, I., Gibbon, D., & Dedieu, B. (2012). Farming Systems Research: An approach to inquiry. In I. Darnhofer, D. Gibbon, & B. Dedieu (Eds.), Farming Systems Research into the 21st century: The new dynamic (pp. 3–31). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Davidsen, P. I., & Asheim, L. J. (1993). A system dynamics approach to the structure and economy of fur farming and trading. System Dynamics Review, 9, 265–285.

    Article  Google Scholar 

  • Day, R. H. (1963). On aggregating linear programming models of production. Journal of Farm Economics, 45, 797–813.

    Article  Google Scholar 

  • De Cara, S., Houze, M., & Jayet, P. A. (2005). Methane and nitrous oxide emissions from agriculture in the EU: A spatial assessment of sources and abatement costs. Environmental & Resource Economics, 32, 551–583.

    Article  Google Scholar 

  • Deffuant, G. (2001). Improving agri-environmental policies: A simulation approach to the cognitive properties of farmers and institutions (IAGES final report). Retrieved on 12 April 2012 from http://wwwlisc.clermont.cemagref.fr/ImagesProject/freport.pdf

  • Demirel, G. (2006). Aggregated and disaggregated modelling approaches to multiple agent dynamics. 24th international conference of the System Dynamics Society, Nijmagen, The Netherlands. Retrieved on 12 April 2012 from http://www.systemdynamics.org/conferences/2006/proceed/papers/DEMIR270.pdf

  • Dent, J. B., Edwards-Jones, G., & McGregor, M. J. (1995). Simulation of ecological, social and economic factors in agricultural systems. Agricultural Systems, 49, 337–351.

    Article  Google Scholar 

  • Dogliotti, S., van Ittersum, M. K., & Rossing, W. A. H. (2005). A method for exploring sustainable development options at farm scale: A case study for vegetable farms in South Uruguay. Agricultural Systems, 86, 29–51.

    Article  Google Scholar 

  • Doppler, W. (2000). Farming and rural systems – State of the art in research and development. In W. Doppler & J. Calatrava (Eds.), Technical and social systems approaches for sustainable rural development (pp. 3–21). Weikersheim: Markgraf.

    Google Scholar 

  • Dudley, R. (2004). Modelling the effects of a log export ban in Indonesia. System Dynamics Review, 20, 99–116.

    Article  Google Scholar 

  • Etienne, M. (Ed.). (2011). Companion modelling. A participatory approach to support sustainable development. Versailles: Edition Quae.

    Google Scholar 

  • Etienne, M., Le Page, C., & Cohen, M. (2003). A Step-by-step approach to building land management scenarios based on multiple viewpoints on multi-agent system simulations. Journal of Artificial Societies and Social Simulation, 6(2). Retrieved on 12 April 2012 from http://jasss.soc.surrey.ac.uk/6/2/2.html

  • Feola, G., & Binder, C. R. (2010). Towards an improved understanding of farmers’ behaviour: The integrative agent-centred (IAC) framework. Ecological Economics, 69, 2323–2333.

    Article  Google Scholar 

  • Feola, G., Gallati, J., & Binder, C. R. (2012). Exploring behavioural change through an agent-oriented system dynamics model. The use of personal protective equipment among pesticide applicators in Colombia. System Dynamics Review, 28, 68–93.

    Google Scholar 

  • Fernandez, J. M., & Selma, M. A. E. (2004). The dynamics of water scarcity on irrigated landscapes: Mazzaron Aguilas in South-Eastern Spain. System Dynamics Review, 20, 117–137.

    Article  Google Scholar 

  • Fokkens, B., & Puylaert, M. (1981). A linear-programming model for daily harvesting operations at the large-scale grain farm of the Ijsselmeerpolders Development Authority. Journal of the Operational Research Society, 32, 535–547.

    Google Scholar 

  • Ford, A. (2010). Modelling the environment. Washington, DC: Island Press.

    Google Scholar 

  • Forrester, J. W. (1971). World dynamics. Cambridge: Wright-Allen Press.

    Google Scholar 

  • Freeman, T., Nolan, J., & Schoney, R. (2009). An agent-based simulation model of structural change in Canadian prairie agriculture, 1960–2000. Canadian Journal of Agricultural Economics, 57, 537–554.

    Article  Google Scholar 

  • Georgiadis, P., Vlachos, D., & Iakovou, E. (2005). A system dynamics modelling framework for the strategic supply chain management of food chains. Journal of Food Engineering, 70, 351–364.

    Article  Google Scholar 

  • Gibbon, D. (2012). Methodological themes in Farming Systems Research and implications for learning in higher education. In I. Darnhofer, D. Gibbon, & B. Dedieu (Eds.), Farming Systems Research into the 21st century: The new dynamic (pp. 95–115). Dordrecht: Springer.

    Google Scholar 

  • Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221, 2760–2768.

    Article  Google Scholar 

  • Happe, K., Kellermann, K., & Balmann, A. (2006). Agent-based analysis of agricultural policies: An illustration of the agricultural policy simulator AgriPoliS, its adaptation and behavior. Ecology and Society, 11, 49. Retrieved on 12 April 2012 from http://www.ecologyandsociety.org/vol11/iss1/art49/

  • Heady, E. O. (1954). Simplified presentation and logical aspects of linear programming technique. Journal of Farm Economics, 36, 1035–1048.

    Article  Google Scholar 

  • Heckelei, T. (2002). Calibration and estimation of programming models for agricultural supply analysis. Habilitation thesis, University of Bonn, Germany.

    Google Scholar 

  • Hubert, B., Ison, R., Sriskandarajah, N., Blackmore, C., Cerf, M., Avelange, I., Barbier, M., & Steyaert, P. (2012). Learning in European agricultural and rural networks: Building a systemic research agenda. In I. Darnhofer, D. Gibbon, & B. Dedieu (Eds.), Farming Systems Research into the 21st century: The new dynamic (pp. 179–200). Dordrecht: Springer.

    Google Scholar 

  • Janssen, M., & Ostrom, E. (2006). Empirically-based, agent-based models. Ecology and Society, 11, 37. Retrieved on 12 April 2012 from http://www.ecologyandsociety.org/vol11/iss2/art37/

  • Janssen, S., & van Ittersum, M. K. (2007). Assessing farm innovations and responses to policies: A review of bio-economic farm models. Agricultural Systems, 94, 622–636.

    Article  Google Scholar 

  • Jatoe, J. B. D., Yiridoe, E. K., Weersink, A., & Clark, J. S. (2008). Economic and environmental impacts of introducing land use policies and rotations on Prince Edward Island potato farms. Land Use Policy, 25, 309–319.

    Article  Google Scholar 

  • John, M., Pannell, D., & Kingwell, R. (2005). Climate change and the economics of farm management in the face of land degradation: Dryland salinity in Western Australia. Canadian Journal of Agricultural Economics, 53, 443–459.

    Article  Google Scholar 

  • Jones, A., Seville, D., & Meadows, D. (2002). Resource sustainability in commodity systems: The sawmill industry. System Dynamics Review, 18, 171–204.

    Article  Google Scholar 

  • Kerselaers, E., De Cock, L., Lauwers, L., & van Huylenbroeck, G. (2007). Modelling farm-level economic potential for conversion to organic farming. Agricultural Systems, 94, 671–682.

    Article  Google Scholar 

  • Kojima, M., Megiddo, N., Noma, T., & Yoshise, A. (2008). A unified approach to interior algorithms for linear complemantarity problems. Berlin: Springer.

    Google Scholar 

  • Le Page, C., Abrami, G., Barreteau, O., Becu, N., Bommel, P., Botta, A., Dray, A., Monteil, C., & Souchère, V. (2011). Models for sharing representations. In M. Etienne (Ed.), Companion modelling. A participatory approach to support sustainable development (pp. 69–96). Versailles: Edition Quae.

    Google Scholar 

  • Leigh, A. O., Wilton, J. W., & Jenson, A. E. (1974). Linear-programming model for beef farm planning. Canadian Journal of Animal Science, 54, 261–262.

    Google Scholar 

  • Lobianco, A., & Esposti, R. (2010). The regional multi-agent simulator (RegMAS): An open-source spatially explicit model to assess the impact of agricultural policies. Computers and Electronics in Agriculture, 72, 14–26.

    Article  Google Scholar 

  • Mashayekhi, A. N. (1990). Rangelands destruction under population growth: The case of Iran. System Dynamics Review, 6, 167–193.

    Article  Google Scholar 

  • Mathevet, R. (2003). Agent-based simulations of interactions between duck population, farming decisions and leasing of hunting rights in the Camargue (Southern France). Ecological Modelling, 165, 107–126.

    Article  Google Scholar 

  • Matthews, R. (2006). The people and landscape model (PALM): Towards full integration of human decision-making and biophysical simulation models. Ecological Modelling, 194, 329–343.

    Article  Google Scholar 

  • Meadows, D. H., Randers, J., & Meadows, D. L. (2004). The limits to growth: The 30-year update. White River Junction: Chelsea Green Publishing.

    Google Scholar 

  • Milestad, R., Dedieu, B., Darnhofer, I., & Bellon, S. (2012). Farms and farmers facing change – The adaptive approach. In I. Darnhofer, D. Gibbon, & B. Dedieu (Eds.), Farming Systems Research into the 21st century: The new dynamic (pp. 365–385). Dordrecht: Springer.

    Google Scholar 

  • Nolan, J., Parker, D., Van Kooten, G. C., & Berger, T. (2009). An overview of computational modelling in agricultural and resource economics. Canadian Journal of Agricultural Economics, 57, 417–429.

    Article  Google Scholar 

  • Oriade, C. A., & Dillon, C. R. (1997). Developments in biophysical and bioeconomic simulation of agricultural systems: A review. Agricultural Economics, 17, 45–58.

    Article  Google Scholar 

  • Osgathorpe, L. M., Park, K., Goulson, D., Acs, S., & Hanley, N. (2011). The trade-off between agriculture and biodiversity in marginal areas: Can crofting and bumblebee conservation be reconciled? Ecological Economics, 70, 1162–1169.

    Article  Google Scholar 

  • Pannell, D. J. (1997). Introduction to practical linear programming. New York: Wiley.

    Google Scholar 

  • Pannell, D. J., & Nordblom, T. L. (1998). Impacts of risk aversion on whole-farm management in Syria. Australian Journal of Agricultural and Resource Economics, 42, 227–247.

    Article  Google Scholar 

  • Papajorgji, P. J., & Pardalos, P. M. (Eds.). (2009). Advances in modelling agricultural systems. New York: Springer.

    Google Scholar 

  • Paris, Q. (1991). An economic interpretation of linear programming. Ames: Iowa State University Press.

    Google Scholar 

  • Parker, D. C., Berger, T., & Manson, S. M. (2001). Agent-based models of land-use and land-cover change (LUCC Report Series No. 6). Bloomington: Indiana University.

    Google Scholar 

  • Ramsden, S., Gibbons, J., & Wilson, P. (1999). Impacts of changing relative prices on farm level dairy production in the UK. Agricultural Systems, 62, 201–215.

    Article  Google Scholar 

  • Rich, K. M. (2008). An interregional system dynamics model of animal disease control: Applications to foot-and-mouth disease in the southern cone of South America. System Dynamics Review, 24, 67–96.

    Article  Google Scholar 

  • Röling, N. (1997). The soft side of land: Socio-economic sustainability of land use systems. ITC Journal, 3, 248–262.

    Google Scholar 

  • Rossing, W., Zander, P., Josien, E., Groot, J., Meyer, B., & Knierim, A. (2007). Integrative modelling approaches for analysis of impact of multifunctional agriculture: A review for France, Germany and The Netherlands. Agriculture, Ecosystems & Environment, 120, 41–57.

    Article  Google Scholar 

  • Saqalli, M., Bielders, C. L., Gerard, B., & Defourny, P. (2010). Simulating rural environmentally and socio-economically constrained multi-activity and multi-decision societies in a low-data context: A challenge through empirical agent-based modelling. Journal of Artificial Societies and Social Simulation, 13, 1. From: http://jasss.soc.surrey.ac.uk/13/2/1.html

    Google Scholar 

  • Sattler, C. (2008). Ökologische Bewertung und Akzeptanzanalyse pflanzenbaulicher Produktionsverfahren. Ph.D. thesis, Humboldt Universität zu Berlin, Germany.

    Google Scholar 

  • Sattler, C., Schuler, J., & Zander, P. (2006). Determination of trade-off functions to analyse the provision of agricultural non-commodities. International Journal of Agricultural Resources, Governance & Ecology, 5, 309–325.

    Google Scholar 

  • Saysel, A. K., & Barlas, Y. (2001). A dynamic model of salinization on irrigated lands. Ecological Modelling, 139, 177–199.

    Article  CAS  Google Scholar 

  • Saysel, A. K., & Barlas, Y. (2006). Model simplification and validation with indirect structure validity tests. System Dynamics Review, 22, 241–262.

    Article  Google Scholar 

  • Saysel, A. K., Barlas, Y., & Yenigün, O. (2002). Environmental sustainability in an agricultural development project: A system dynamics approach. Journal of Environmental Management, 64, 247–260.

    Article  PubMed  Google Scholar 

  • Schiere, J. B., Lyklema, J., Schakel, J., & Rickert, K. G. (1999). Evolution of farming systems and system philosophy. Systems Research and Behavioral Science, 16, 375–390.

    Article  Google Scholar 

  • Schiere, J. B., Darnhofer, I., & Duru, M. (2012). Dynamics in farming systems: Of changes and choices. In I. Darnhofer, D. Gibbon, & B. Dedieu (Eds.), Farming Systems Research into the 21st century: The new dynamic (pp. 337–363). Dordrecht: Springer.

    Google Scholar 

  • Scholl, H. J. (2001). Agent based and system dynamics modelling: A call for cross study and joint research. Presentation at the 34th Hawaii international conference on system sciences, Maui, HI.

    Google Scholar 

  • Schreinemachers, P., & Berger, T. (2011). An agent-based simulation model of human–environment interactions in agricultural systems. Environmental Modelling & Software, 26, 845–859.

    Article  Google Scholar 

  • Schuler, J. (2008). An economic analysis of the implementation options of soil conservation policies. Ph.D. thesis, University of Hohenheim, Germany.

    Google Scholar 

  • Schuler, J., & Sattler, C. (2010). The estimation of agricultural policy effects on soil erosion. An application for the bio-economic model MODAM. Land Use Policy, 27, 61–69.

    Article  Google Scholar 

  • Sherrington, C., & Moran, D. (2010). Modelling farmer uptake of perennial energy crops in the UK. Energy Policy, 38, 3567–3578.

    Article  Google Scholar 

  • Shi, T., & Gill, R. (2005). Developing effective policies for the sustainable development of ecological agriculture in China: The case study of Jinshan County with a systems dynamics model. Ecological Economics, 53, 223–246.

    Article  Google Scholar 

  • Simon, H. (1982). Models of bounded rationality. Cambridge: MIT Press.

    Google Scholar 

  • Simon, C., & Etienne, M. (2010). A companion modelling approach applied to forest management planning. Environmental Modelling & Software, 25, 1371–1384.

    Article  Google Scholar 

  • Souchère, V., Millair, L., Echeverria, J., Bousquet, F., Le Page, C., & Etienne, M. (2010). Co-constructing with stakeholders a role-playing game to initiate collective management of erosive runoff risks at the watershed scale. Environmental Modelling & Software, 25, 1359–1370.

    Article  Google Scholar 

  • Stave, K. A. (2002). Using system dynamics to improve public participation in environmental decisions. System Dynamics Review, 18, 139–167.

    Article  Google Scholar 

  • Sterman, J. D. (2000). Business dynamics: Systems thinking and modelling for a complex world. Boston: McGraw-Hill.

    Google Scholar 

  • Stoorvogel, J. (2004). The trade-off analysis model: Integrated bio-physical and economic modelling of agricultural production systems. Agricultural Systems, 80, 43–66.

    Article  Google Scholar 

  • Stott, A. W., Lloyd, J., Humphry, R. W., & Gunn, G. J. (2003). A linear programming approach to estimate the economic impact of bovine viral diarrhoea (BVD) at the whole-farm level in Scotland. Preventive Veterinary Medicine, 59, 51–66.

    Article  PubMed  CAS  Google Scholar 

  • Topp, C. F. E., & Mitchell, M. (2003). Forecasting the environmental and socioeconomic consequences of changes in the common agricultural policy. Agricultural Systems, 76, 227–252.

    Article  Google Scholar 

  • Uthes, S. (2010). Developing a spatially explicit decision support tool for agri-environmental programs. Ph.D. thesis, Humboldt University of Berlin, Germany.

    Google Scholar 

  • Valeeva, N. I., Huirne, R. B., Meuwissen, M. P., & Lansink, A. G. (2007). Modelling farm-level strategies in the dairy for improving food safety chain. Agricultural Systems, 94, 528–540.

    Article  Google Scholar 

  • van Calker, K. J., Berentsen, P. B., Giesen, G. W., & Huirne, R. B. (2008). Maximising sustainability of Dutch dairy farming systems for different stakeholders: A modelling approach. Ecological Economics, 65, 407–419.

    Article  Google Scholar 

  • van de Fliert, E., Hermann, S., & Olsson, J. A. (Eds.). (2011). Integrated assessment of agricultural sustainability. Exploring the use of models in stakeholder processes. Oxford: Earthscan.

    Google Scholar 

  • van den Belt, M. (2004). Mediated modelling: A system dynamics approach to environmental consensus building. Washington, DC: Island Press.

    Google Scholar 

  • Vayssières, J., Vigne, M., Alary, V., & Lecomte, P. (2011). Integrated participatory modelling of actual farms to support policy making on sustainable intensification. Agricultural Systems, 104, 146–161.

    Article  Google Scholar 

  • Vennix, J. A. (1996). Group model building: Facilitating team learning using system dynamics. Chichester: Wiley.

    Google Scholar 

  • Voinov, A., & Bousquet, F. (2010). Modelling with stakeholders. Environmental Modelling & Software, 25, 1268–1281.

    Article  Google Scholar 

  • Weber, M., & Schwaninger, M. (2002). Transforming an agricultural trade organization: A system dynamics based intervention. System Dynamics Review, 18, 381–401.

    Article  Google Scholar 

  • Yin, X. Y., & Struik, P. C. (2010). Modelling the crop: From system dynamics to systems biology. Journal of Experimental Botany, 61, 2171–2183.

    Article  PubMed  CAS  Google Scholar 

  • Zander, P. (2003). Agricultural land use and conservation options – A modelling approach. Ph.D. thesis, Wageningen University, The Netherlands.

    Google Scholar 

  • Zander, P., & Kächele, H. (1999). Modelling multiple objectives of land use for sustainable development. Agricultural Systems, 59, 311–325.

    Article  Google Scholar 

  • Zimmermann, A. (2008). Optimization of sustainable dairy-cow feeding systems with an economic-ecological LP farm model using various optimization processes. Journal of Sustainable Agriculture, 32, 77–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Feola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Feola, G., Sattler, C., Saysel, A.K. (2012). Simulation models in Farming Systems Research: potential and challenges. In: Darnhofer, I., Gibbon, D., Dedieu, B. (eds) Farming Systems Research into the 21st Century: The New Dynamic. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4503-2_13

Download citation

Publish with us

Policies and ethics