Skip to main content

Optical Manipulations: An Advance Approach for Reducing Sucking Insect Pests

  • Chapter
  • First Online:

Abstract

Insects use optical cues for host finding, flight orientation and navigation. Therefore, manipulation of these optical cues can interfere with host finding and dispersal of insect pests. Sucking insect pests, such as aphids, whiteflies and thrips, cause great economic losses for growers of agricultural crops worldwide. These pests cause direct feeding damages and often transmit viruses to crop plants. These insects have receptors for UV light (peak sensitivity at 360 nm) and for green-yellow light (peak sensitivity at 520–540 nm). The absence of UV deters these pests and decreases their dispersal rate. Green-yellow color induces landing and favors settling (arresting) of these insects. High level of reflected sunlight (above 25% of sun radiation) also deters landing of these insects. Thus, optical cues can be used to divert pests away from crop plants. This can be achieved by incorporating optical additives to mulches (below plants), to cladding materials (plastic sheets, nets and screens above plants) or to other objects elsewhere in the growing environment. The optical properties such as size, shape, and contrast of the color cue greatly affect the response of the insect. Non-persistent viruses can be transmitted only within minutes to a few hours after aphids acquired them. Thus, a delay of the viruliferous aphids with an arresting color can reduce the efficacy of viral transmission. Results of many studies indicate that optical manipulation can reduce infestation levels of sucking pests and the incidence of viral diseases they transmit. Future development of this technology must be compatible with the requirements for plant production and biocontrol. Optical manipulations can be a part of integrated pest management (IPM) programs for both open field and protected crops. This chapter includes a review of the published literature, results of our studies, and suggestions for future research and development of this technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • A’Brook J (1968) The effect of plant spacing on the numbers of aphids trapped over the groundnut crop. Ann Appl Biol 61:289–294

    Article  Google Scholar 

  • Antignus Y (2000) Manipulation of wavelength-dependent behavior of insects: an IPM tool to impede insects and restrict epidemics of insect-borne viruses. Virus Res 71:213–220

    Article  PubMed  CAS  Google Scholar 

  • Antignus Y, Ben-Yakir D (2004) Ultraviolet-absorbing barriers, an efficient integrated pest management tool to protect greenhouses from insects and virus diseases. In: Horowitz AR, Ishaaya I (eds) Insect pest management. Springer, Berlin, pp 319–335

    Google Scholar 

  • Antignus Y, Lapidot M, Hadar D, Messika Y, Cohen S (1998) Ultraviolet-absorbing screens serve as optical barriers to protect crops from virus and insect pests. J Econ Entomol 91:1401–1405

    Google Scholar 

  • Ben-Yakir D, Chen M (2008) Studies of thrips migratory flights in Israel. Acta Phytopathol Entomol Hung 43:243–248

    Article  Google Scholar 

  • Ben-Yakir D, Hadar MD, Offir Y, Chen M, Tregerman M (2008a) Protecting crops from pests using OptiNet (R) screens and ChromatiNet (R) shading nets. Acta Hortic 770:205–212

    Google Scholar 

  • Ben-Yakir D, Teitel M, Tanny J, Chen M, Barak M (2008b) Optimizing ventilation of protected crops while minimizing invasion by whiteflies and thrips. Acta Hortic 797:217–222

    Google Scholar 

  • Ben-Yakir D, Antignus Y, Offir Y, Shahak Y (2012) Colored shading nets impede insect invasion and decrease the incidences of insect born-transmitted viral diseases in vegetable crops. Entomol Exp Appl (in press)

    Google Scholar 

  • Berlinger MJ, Taylor RAJ, Lebiush-Mordechi S, Shalhevet S, Spharim I (2002) Efficiency of insect exclusion screens for preventing whitefly transmission of tomato yellow leaf curl virus of tomatoes in Israel. Bull Entomol Res 92:367–373

    Article  PubMed  CAS  Google Scholar 

  • Björn LO (2008) The nature of light and its interaction with matter. In: Björn LO (ed) Photobiology: the science of light and life. Springer, New York, pp 1–39

    Google Scholar 

  • Bottenberg H, Irwin ME (1992) Canopy structure in soybean monocultures and soybean-sorghum mixtures: impact on aphid (Homoptera: Aphididae) landing rates. Environ Entomol 21:542–548

    Google Scholar 

  • Bukovinszky T, Potting RPJ, Clough Y, Van Lenteren JC, Vet LEM (2005) The role of pre- and post- alighting detection mechanisms in the responses to patch size by specialist herbivores. Oikos 109:435–446

    Article  Google Scholar 

  • Byrne DN (1999) Migration and dispersal by the sweet potato whitefly, Bemisia tabaci. Agric For Meteorol 97:309–316

    Article  Google Scholar 

  • Carrizo P (2008) Effects of yellow trap size on sampling efficiency for western flower thrips (Frankliniella occidentalis) from pepper plants (Capsicum annum) grown in greenhouses. Cienc Investig Agrar 35:155–160

    Google Scholar 

  • Chapman RF, Bernays EA, Simpson SJ (1981) Attraction and repulsion of the aphid, Cavariella aegopodii, by plant odors. J Chem Ecol 7:881–888

    Article  Google Scholar 

  • Chen TY, Chu CC, Fitzgerald G, Natwick ET, Henneberry TJ (2004a) Trap evaluations for thrips (Thysanoptera: Thripidae) and hoverflies (Diptera: Syrphidae). Environ Entomol 33:1416–1420

    Article  Google Scholar 

  • Chen TY, Chu CC, Henneberry TJ, Umeda K (2004b) Monitoring and trapping insects on poinsettia with yellow sticky card traps equipped with light-emitting diodes. Horttechnol 14:337–341

    CAS  Google Scholar 

  • Chu CC, Chen TY, Natwick ET, Fitzgerald G, Tuck S, Alexander P, Henneberry TJ (2005) Light response by Frankliniella occidentalis to white fluorescent light filtered through color films and ultraviolet- and blue light-emitting diodes. SW Entomol 30:149–154

    Google Scholar 

  • Chu CC, Ciomperlik MA, Chang NT, Richards M, Henneberry TJ (2006) Developing and evaluating traps for monitoring Scirtothrips dorsalis (Thysanoptera: Thripidae). Fla Entomol 89(1):47–55

    Article  Google Scholar 

  • Cohen S (1981) Reducing the spread of aphid-transmitted viruses in peppers by coarse-net cover. Phytoparasitica 9:69–76

    Article  Google Scholar 

  • Cohen S, Berlinger MJ (1986) Transmission and cultural control of whitefly-borne viruses. Agric Ecosyst Environ 17:89–97

    Article  Google Scholar 

  • Coombe PE (1981) Wavelength specific behaviour of the whitefly Trialeurodes vaporariorum (Homoptera: Aleyrodidae). J Comp Physiol 144:83–90

    Article  Google Scholar 

  • Coombe PE (1982) Visual behaviour of the greenhouse whitefly, Trialeurodes vaporariorum. Physiol Entomol 7:243–251

    Article  Google Scholar 

  • Cradock KR, da Graca JV, Laing MD (2002) Studies on the cultural control of virus diseases in zucchini crops. S Afr J Sci 98:225–227

    Google Scholar 

  • Csizinszky AA, Schuster DJ, Kring JB (1995) Color mulches influence yield and insect pest populations in tomatoes. J Am Soc Hortic Sci 120:778–784

    Google Scholar 

  • Davidson MM, Butler RC, Teulon DAJ (2006) Starvation period and age affect the response of female Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) to odor and visual cues. J Insect Physiol 52:729–736

    Article  PubMed  CAS  Google Scholar 

  • Davis RF, Shifriss O (1983) Natural virus infection in silvery and non-silvery lines of Cucurbita pepo L. Plant Dis 67:379–380

    Article  Google Scholar 

  • Diaz BM, Fereres A (2007) Ultraviolet-blocking materials as a physical barrier to control insect pests and plant pathogens in protected crops. Pest Technol 1:85–95

    Google Scholar 

  • Diaz-Montano J, Fuchs M, Nault BA, Shelton AM (2010) Evaluation of onion cultivars for resistance to onion thrips (Thysanoptera: Thripidae) and iris yellow spot virus. J Econ Entomol 103:925–937

    Article  PubMed  Google Scholar 

  • Doring TF, Chittka L (2007) Visual ecology of aphids-a critical review on the role of colours in host finding. Arthropod-Plant Interact 1:3–16

    Article  Google Scholar 

  • Doring TF, Kirchner SM, Kuhne S, Saucke H (2004) Response of alate aphids to green targets on coloured backgrounds. Entomol Exp Appl 113:53–61

    Article  Google Scholar 

  • Fail J, Zana J, Pénzes B (2008) The role of plant characteristics in the resistance of white cabbage to onion thrips: preliminary results. Acta Phytopathol Entomol Hung 43:267–275

    Article  Google Scholar 

  • Fereres A, Kampmeier GE, Irwin ME (1999) Aphid attraction and preference for soybean and pepper plants infected with potyviridae. Ann Entomol Soc Am 92:542–548

    Google Scholar 

  • Greer L, Dole JM (2003) Aluminum foil, aluminium-painted plastic, and degradable mulches increase yields and decrease insect-vectored viral diseases of vegetables. Hort Technol 13:276–284

    Google Scholar 

  • Hardie J (1989) Spectral specificity for targeted flight in the black bean aphid, Aphis fabae. J Insect Physiol 35:619–626

    Article  Google Scholar 

  • Hiljea L, Stansly PA (2008) Living ground covers for management of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and tomato yellow mottle virus (ToYMoV) in Costa Rica. Crop Prot 27:10–16

    Article  Google Scholar 

  • Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359

    Article  PubMed  CAS  Google Scholar 

  • Horváth G, Varju D (2004) Polarized light in animal vision: polarization patterns in nature. Springer, Berlin

    Google Scholar 

  • Isaacs R, Willis MA, Byrne DN (1999) Modulation of whitefly take-off and flight orientation by wind speed and visual cues. Physiol Entomol 24:311–318

    Article  Google Scholar 

  • Johansen NS, Vanninen I, Pinto DM, Nissinen AI, Shipp L (2011) In the light of new greenhouse technologies: 2. Direct effects of artificial lighting on arthropods and integrated pest management in greenhouse crops. Ann Appl Biol 159:1–27

    Article  Google Scholar 

  • Kennedy JS, Booth CO, Kershaw WJS (1961) Host finding by aphids in the field. Ann Appl Biol 49:1–21

    Article  Google Scholar 

  • Kim S, Lim UT (2011) Evaluation of a modified sticky card to attract Bemisia tabaci (Hemiptera: Aleyrodidae) and a behavioural study on their visual response. Crop Prot 30:508–511

    Article  Google Scholar 

  • Kirchner SM, Doring TF, Saucke H (2005) Evidence for trichromacy in the green peach aphid, Myzus persicae (Sulz.) (Hemiptera: Aphididae). J Insect Physiol 51:1255–1260

    Article  PubMed  CAS  Google Scholar 

  • Klingauf FA (1987) Host plant finding and acceptance. In: Minks AK, Harrewijn P (eds) Aphids: their biology, natural enemies and control, vol A. Elsevier, Amsterdam, pp 209–223

    Google Scholar 

  • Kring JB (1972) Flight behavior of aphids. Annu Rev Entomol 17:461–492

    Article  Google Scholar 

  • Kumar P, Poehling HM (2006) UV-blocking plastic films and nets influence vectors and virus transmission on greenhouse tomatoes in the humid tropics. Environ Entomol 35:1069–1082

    Article  Google Scholar 

  • Legarrea S, Karnieli A, Fereres A, Weintraub PG (2010) Comparison of UV-absorbing nets in pepper crops: spectral properties, effects on plants and pest control. Photochem Photobiol 86:324–330

    Article  PubMed  CAS  Google Scholar 

  • Legarrea S, Betancourt M, Plaza M, Fraile A, García-Arenal F, Fereres A (2012) Dynamics of nonpersistent aphid-borne viruses in lettuce crops covered with UV-absorbing nets. Virus Res 165:1–8

    Article  PubMed  CAS  Google Scholar 

  • Lewis T (1997) Flight and dispersal. In: Lewis T (ed) Thrips as crop pests. CAB International, Wallingford, pp 175–196

    Google Scholar 

  • Mainali BP, Lim UT (2010) Circular yellow sticky trap with black background enhances attraction of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Appl Entomol Zoolog 45:207–213

    Article  Google Scholar 

  • Mainali BP, Lim UT (2011) Behavioral response of Western flower thrips to visual and olfactory cues. J Insect Behav 24(6):436–446. doi:10.1007/s10905-011-9267-7

    Article  Google Scholar 

  • Manes A, Tietelman A, Fruehling I (1970) Solar radiation and radiation balance. Ministry of Transport Publications, Bet Dagan

    Google Scholar 

  • Matteson N, Terry I, Ascolichristensen A, Gilbert C (1992) Spectral efficiency of the western flower thrips, Frankliniella occidentalis. J Insect Physiol 38:453–459

    Article  Google Scholar 

  • Mellor HE, Bellingham J, Anderson M (1997) Spectral efficiency of the glasshouse whitefly Trialeurodes vaporariorum and Encarsia formosa its hymenopteran parasitoid. Entomol Exp Appl 83:11–20

    Article  Google Scholar 

  • Mensah RK, Madden JL (1992) Field studies on color preferences of Ctenarytaina thysanura in Tasmanian Boronia farms. Entomol Exp Appl 64:111–115

    Article  Google Scholar 

  • Natwick ET, Byers JA, Chu CC, Lopez M, Henneberry TJ (2007) Early detection and mass trapping of Frankliniella occidentalis and thrips tabaci in vegetable crops. SW Entomol 32:229–238

    Google Scholar 

  • Ng JCK, Falk BW (2006) Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu Rev Phytopathol 44:183–212

    Article  PubMed  CAS  Google Scholar 

  • Nissinen A, Kristoffersen L, Anderbrant O (2008) Physiological state of female and light intensity affect the host-plant selection of carrot psyllid, Trioza apicalis (Hemiptera: Triozidae). Eur J Entomol 105:227–232

    Google Scholar 

  • Perring TM, Royalty RN, Farrar CA (1989) Floating row covers for the exclusion of virus vectors and the effect on disease incidence and yield of cantaloupe. J Econ Entomol 82:1709–1715

    Google Scholar 

  • Prokopy RJ, Collier RH, Finch S (1983) Leaf color used by cabbage root flies to distinguish among host plants. Science 221:190–192

    Article  PubMed  CAS  Google Scholar 

  • Qureshi MS, Midmore DJ, Syeda SS, Playford CL (2007) Floating row covers and pyriproxyfen help control silverleaf whitefly Bemisia tabaci (Gennadius) Biotype B (Homoptera: Aleyrodidae) in zucchini. Austr J Entomol 46:313–319

    Article  Google Scholar 

  • Raccah B, Fereres A (2009) Plant virus transmission by insects. In: Encyclopedia of life sciences. Wiley, Chichester

    Google Scholar 

  • Rajapakse NC, Shahak Y (2007) Light quality manipulation by horticulture industry. In: Whitelam GC, Halliday KJ (eds) Light and plant development. Blackwell Publishing, Oxford, pp 290–312

    Chapter  Google Scholar 

  • Reynolds AM, Reynolds DR (2009) Aphid aerial density profiles are consistent with turbulent advection amplifying flight behaviours: abandoning the epithet ‘passive’. Proc R Soc B-Biol Sci 276:137–143

    Article  Google Scholar 

  • Robert Y (1987) Aphids and their environment. In: Minks AK, Harrewijn P (eds) Aphids: their biology, natural enemies, and control, vol A. Elsevier, Amsterdam, pp 299–313

    Google Scholar 

  • Shahak Y, Gussakovsky EE, Cohen Y, Lurie S, Stern R, Kfir S, Naor A, Atzmon I, Doron I (2004) ColorNets: a new approach for light manipulation in fruit trees. Acta Hortic 636:609–616

    Google Scholar 

  • Shahak Y, Gal E, Offir Y, Ben-Yakir D (2008) Photoselective shade netting integrated with greenhouse technologies for improved performance of vegetable and ornamental crops. Acta Hortic 797:75–80

    Google Scholar 

  • Shahak Y, Ratner K, Zur N, Offir Y, Matan E, Yehezkel H, Messika Y, Posalski I, Ben-Yakir D (2009) Photoselective netting: an emerging approach in protected agriculture. Acta Hortic 807:79–84

    Google Scholar 

  • Simmons AM, Kousik CS, Levi A (2010) Combining reflective mulch and host plant resistance for sweet potato whitefly (Hemiptera: Aleyrodidae) management in watermelon. Crop Prot 29:898–902

    Article  Google Scholar 

  • Smith JG (1976) Influence of crop background on aphids and other phytophagous insects on Brussels sprouts. Ann Appl Biol 83:1–13

    Article  Google Scholar 

  • Straw NA, Williams DT, Green G (2011) Influence of sticky trap color and height above ground on capture of alate Elatobium abietinum (Hemiptera: Aphididae) in Sitka spruce plantations. Environ Entomol 40:120–125

    Article  PubMed  Google Scholar 

  • Summers CG, Mitchell JP, Stapleton JJ (2004) Management of aphid-borne viruses and Bemisia argentifolii (Homoptera: Aleyrodidae) in zucchini squash by using UV reflective plastic and wheat straw mulches. Environ Entomol 33:1447–1457

    Article  Google Scholar 

  • Tansey JA, Dosdall LM, Keddie BA, Noble SD (2010) Contributions of visual cues to cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae), resistance in novel host genotypes. Crop Prot 29:476–481

    Article  Google Scholar 

  • Teitel M (2007) The effect of screened openings on greenhouse microclimate. Agric For Meteorol 143:159–175

    Article  Google Scholar 

  • Teulon DAJ, Hollister B, Butler RC, Cameron EA (1999) Colour and odour responses of flying western flower thrips: wind tunnel and greenhouse experiments. Entomol Exp Appl 93:9–19

    Article  Google Scholar 

  • Trevor L (1997) Flight and dispersal. In: Lewis T (ed) Thrips as crop pests. CAB International, New York, pp 175–192

    Google Scholar 

  • Tsuchiya M, Masui S, Kuboyama N (1995) Reduction of population-density of yellow tea thrips (Scirtothrips dorsalis Hood) on mandarin orange (Citrus unshiu Marc.) trees by application of white solution with or without reflective sheet mulching. Jpn J Appl Entomol Zool 39:305–312

    Article  Google Scholar 

  • Vaishampayan SM, Waldbauer GP, Kogan M (1975) Visual and olfactory responses in orientation to plants by the greenhouse whitefly, Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Entomol Exp Appl 18:412–422

    Article  Google Scholar 

  • Vanninen I, Pinto DM, Nissinen AI, Johansen NS, Shipp L (2010) In the light of new greenhouse technologies: 1. Plant-mediated effects of artificial lighting on arthropods and tritrophic interactions. Ann Appl Biol 157:393–414

    Article  Google Scholar 

  • Vernon RS, Gillespie DR (1990) Spectral responsiveness of Frankliniella occidentalis (Thys­anoptera, Thripidae) determined by trap catches in greenhouses. Environ Entomol 19:1229–1241

    Google Scholar 

  • Vernon RS, Gillespie DR (1995) Influence of trap shape, size, and background color on captures of Frankliniella occidentalis (Thysanoptera, Thripidae) in a cucumber greenhouse. J Econ Entomol 88:288–293

    Google Scholar 

  • Yaku A, Walter GH, Najar-Rodriguez AJ (2007) Thrips see red flower colour and the host relationships of a polyphagous anthophilic thrips. Ecol Entomol 32:527–535

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ben-Yakir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ben-Yakir, D., Antignus, Y., Offir, Y., Shahak, Y. (2013). Optical Manipulations: An Advance Approach for Reducing Sucking Insect Pests. In: Ishaaya, I., Palli, S., Horowitz, A. (eds) Advanced Technologies for Managing Insect Pests. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4497-4_12

Download citation

Publish with us

Policies and ethics