Skip to main content

Insights from Paleohistory Illuminate Future Climate Change Effects on Wetlands

  • Chapter
  • First Online:

Part of the book series: Global Change Ecology and Wetlands ((GCEW,volume 1))

Abstract

Climate change could have profound impacts on world wetland environments, which can be better understood through the examination of ancient wetlands when the world was warmer. These impacts may directly alter the critical role of wetlands in ecosystem function and human services. Here we present a framework for the study of wetland fossils and deposits to understand the potential effects of future climate change on wetlands. We review the methods and assumptions associated with the use of plant macro- and microfossils to reconstruct ancient wetland ecosystems and their associated paleoenvironments. We then present case studies of paleo-wetland ecosystems under global climate conditions that were very different from the present time. Our case study of extinct Arctic forested-wetlands reveals insights about high-productivity wetlands that flourished in the highest latitudes during the ice-free global warmth of the Paleogene (ca. 45 million years ago) and how these wetlands might have been instrumental in keeping the polar regions warm. We then evaluate climate-induced changes in tropical wetlands by focusing on the Pleistocene and Holocene (2.588 Myr ago to the present) of Africa. These past ecosystems demonstrate that subtle changes in the global energy balance had significant impacts on global hydrology and climate, which ultimately determine the composition and function of wetland ecosystems. Moreover, the history of these regions demonstrates the inter-connectedness of the low and high latitudes, and the global nature of the Earth’s hydrologic cycle. Our case studies provide glimpses of wetland ecosystems, which expanded and ultimately declined under a suite of global climate conditions with which humanity has little if any experience. Thus, these paleoecology studies paint a picture of future wetland function under projected global climate change.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ågren GI, Bosatta E (1987) Theoretical analysis of the long-term dynamics of carbon and nitrogen in soils. Ecology 68:1181–1189

    Article  Google Scholar 

  • Ågren GI, Bosatta E (1996) Quality: a bridge between theory and experiment in soil organic matter studies. Oikos 76:522–528

    Article  Google Scholar 

  • Akkemk Ü, Türkoğlu N, Poole I, Çiçek İ, Köse N, Gürgen G (2009) Woods of a Miocene petrified forest near Ankara, Turkey. Turk J Agric For 33:89–97

    Google Scholar 

  • Anisimov OA, Vaughan DG, Callaghan TV, Furgal C, Marchant H, Prowse TD, Vilhjálmsson H, Walsh JE (2007) Polar regions (Arctic and Antarctic). In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge, pp 653–685

    Google Scholar 

  • Arctic Climate Impact Assessment (2005) Arctic climate impact assessment. 2005. Cambridge University Press, Cambridge, 1020pp

    Google Scholar 

  • Arens NC, Jahren AH (2000) Carbon isotopic excursions in atmospheric CO2 at the Cretaceous-Tertiary boundary. Evidence from terrestrial sediments. Palaios 15:314–322

    Google Scholar 

  • Arthur MA, Hamburg SP, Siccama TG (2001) Validating allometric estimates of aboveground living biomass and nutrient contents of a northern hardwood forest. Can J For Res 31:11–17

    Article  CAS  Google Scholar 

  • Aubréville A (1962) Savanisation tropicale et glaciations quaternaires. Adansonia 2:16–84

    Google Scholar 

  • Axelrod DI (1984) An interpretation of Cretaceous and Tertiary biota in polar regions. Palaeogeogr Palaeoclimatol Palaeoecol 45:105–147

    Article  Google Scholar 

  • Bailey IW, Sinnott EW (1915) A botanical index of Cretaceous and Tertiary climates. Science 41:831–834

    Article  PubMed  CAS  Google Scholar 

  • Bailey IW, Sinnott EW (1916) The climatic distribution of certain types of angiosperm leaves. Am J Bot 3:24–39

    Article  Google Scholar 

  • Barker S, Diz P, Vautravers MJ, Pike J, Knorr G, Hall IR, Broecker WS (2009) Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457:1097–1102

    Article  PubMed  CAS  Google Scholar 

  • Basinger JF (1991) The fossil forests of the Buchanan Lake Formation (early Tertiary), Axel Heiberg Island, Canadian Arctic Archipelago: preliminary floristics and paleoclimate. Geol Surv of Can Bull 403:39–65

    Google Scholar 

  • Basinger JF, Greenwood DG, Sweda T (1994) Early Tertiary vegetation of Arctic Canada and its relevance to paleoclimatic interpretation. NATO Adv Sci Inst Ser 127:175–198

    Google Scholar 

  • Battles JJ, Armesto JJ, Vann DR, Zarin DJ, Aravena JC, Pérez C, Johnson AH (2002) Vegetation composition, structure and biomass of two unpolluted watersheds in the Cordillera de Piuchué, Chiloé Island, Chile. Plant Ecol 158:5–19

    Article  Google Scholar 

  • Behrensmeyer AK, Hook RW (1992) Paleoenvironmental contexts and taphonomic modes. In: Behrensmeyer AK, Damuth JD, DiMichele WA, Potts R, Sues H-D, Wing SL (eds) Terrestrial ecosystems through time: evolutionary paleoecology of terrestrial plants and animals. The University of Chicago Press, Chicago, pp 15–136

    Google Scholar 

  • Behrensmeyer AK, Kidwell SM, Gastaldo RA (2000) Taphonomy and paleobiology. Paleobiology 26:103–147

    Article  Google Scholar 

  • Bennett KD, Willis KJ (2001) Pollen. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3, Terrestrial, algal, and siliceous indicators. Kluwer Academic Publishers, Dordrecht, pp 5–32

    Chapter  Google Scholar 

  • Bennington JB, DiMichele WA, Badgley C, Bambach RK, Barrett PM, Behrensmeyer AK, Bobe R, Burnham RJ, Daeschler EB, Dam JV, Eronen JT, Erwin DH, Finnegan S, Holland SM, Hunt G, Jablonski D, Jackson ST, Jacobs BF, Kidwell SM, Koch PL, Kowalewski MJ, Labandeira CC, Looy CV, Lyons SK, Novack-Gottshall PM, Potts R, Roopnarine PD, Stromberg CA, Sues H, Wagner PJ, Wilf P, Wing SL (2009) Critical issues of scale in paleoecology. Palaios 24:1–4

    Article  Google Scholar 

  • Berg B, Tamm CO (1991) Decomposition and nutrient dynamics of litter in long-term optimum nutrition experiments. I. Organic matter decomposition in Norway spruce (Picea abies) needle litter. Scand J For Res 6:305–321

    Article  Google Scholar 

  • Berger A, Loutre MF (2002) An exceptionally long interglacial ahead? Science 297:1287–1288

    Article  PubMed  CAS  Google Scholar 

  • Berner RA (1990) Atmospheric carbon dioxide levels over Phanerozoic time. Science 249:1382–1386

    Article  PubMed  CAS  Google Scholar 

  • Beuning KA, Zimmerman KA, Ivory SJ, Cohen AS (2011) Vegetation response to glacial–interglacial climate variability near Lake Malawi in the southern African tropics. Palaeogeogr Palaeoclimatol Palaeoecol 303:81–92

    Article  Google Scholar 

  • Boulter MC, Kvaček Z (1989) The Palaeocene flora of the Isle of Mull. Spec Pap Palaeontol 42:1–149

    Google Scholar 

  • Boyd A (1990) The Thyra Ø flora: towards an understanding of the climate and vegetation during the early Tertiary in the high Arctic. Rev Palaeobot Palynol 62:189–203

    Article  Google Scholar 

  • Bradley RS (1999) Paleoclimatology: reconstructing climates of the Quaternary, 2nd edn. Academic, San Diego, 613pp

    Google Scholar 

  • Brown ET (2011) Lake Malawi’s response to “megadrought” terminations: sedimentary records of flooding, weathering and erosion. Palaeogeogr Palaeoclimatol Palaeoecol 303:120–125

    Article  Google Scholar 

  • Bryant DM, Holland EA, Seastedt TR, Walker MD (1998) Analysis of litter decomposition in alpine tundra. Can J Bot 76:1295–1304

    Google Scholar 

  • Burnett AP, Soreghan MJ, Scholz CA, Brown ET (2011) Tropical East African climate change and its relation to global climate: a record from Lake Tanganyika, tropical East Africa, over the past 90+ kyr. Palaeogeogr Palaeoclimatol Palaeoecol 303:155–167

    Article  Google Scholar 

  • Burnham RJ (1989) Relationships between standing vegetation and leaf litter in a paratropical forest: implications for paleobotany. Rev Palaeobot Palynol 58:5–32

    Article  Google Scholar 

  • Burnham RJ (1990) Paleobotanical implications of drifted seeds and fruits from modern mangrove litter, Twin Cays, Belize. Palaios 5:364–370

    Article  Google Scholar 

  • Burnham RJ (1997) Stand characteristics and leaf litter composition of a dry forest hectare in Santa Rosa National Park, Costa Rica. Biotropica 29:384–395

    Article  Google Scholar 

  • Burnham RJ, Pitman NCA, Johnson KJ, Wilf P (2001) Habitat-related error estimating temperatures from leaf margins in a humid tropical forest. Am J Bot 88:1096–1102

    Article  PubMed  CAS  Google Scholar 

  • Burnham RJ, Ellis B, Johnson KR (2005) Modern tropical forest taphonomy: does high biodiversity affect paleoclimatic interpretations? Palaios 20:439–451

    Article  Google Scholar 

  • Burr GS, Jull AJT (2009) Accelerator mass spectrometry for radiocarbon research. In: Gross ML, Caprioli R (eds) Encyclopedia of mass spectrometry, vol 5. Elsevier, Amsterdam, pp 656–669

    Google Scholar 

  • Bustin RM (1981) Tertiary coal resources, eastern Arctic Archipelago. Arctic 33:38–49

    Google Scholar 

  • Bustin RM, Miall AD (1991) Coal resources, Arctic islands. In: Trettin HP (ed) Geology of the innuitian orogen and Arctic platform of Canada and Greenland. Geology of Canada 3. Geological Survey of Canada, Ottawa, pp 529–532

    Google Scholar 

  • Cao M, Gregson K, Marshall SJ (1998) Global methane emission from wetlands and its sensitivity to climate change. Atmos Environ 32:3293–3299

    Article  CAS  Google Scholar 

  • Casteñada IS, Werne JP, Johnson TC (2007) Wet and arid phases in the southeast African tropics since the last glacial maximum. Geology 35:823–826

    Article  CAS  Google Scholar 

  • Christophel DC, Greenwood DG (1987) A megafossil flora from the Eocene of Golden Grove, South Australia. Trans R Soc S Aust 111:155–162

    Google Scholar 

  • Christophel DC, Lys SD (1986) Mummified leaves of two new species of Myrtaceae from the Eocene of Victoria, Australia. Aust J Bot 34:649–662

    Article  Google Scholar 

  • Clement AC, Hall A, Broccoli AJ (2004) The importance of precessional signals in the tropical climate. Clim Dyn 22:327–341

    Article  Google Scholar 

  • Cohen AS, Stone JR, Beuning KRM, Park LE, Reinthal PN, Dettman D, Scholz CA, Johnson TC, King JW, Talbot MR, Brown SJ Ivory ET (2007) Ecological consequences of early Late Pleistocene megadroughts in tropical Africa. Proc Natl Acad Sci USA 104:16422–16427

    Article  PubMed  CAS  Google Scholar 

  • Creber GT (1990) The south polar forest ecosystem. In: Taylor TN, Taylor EL (eds) Antarctic paleobiology: its role in the reconstruction of Gondwana. Springer, New York, pp 37–41

    Google Scholar 

  • Creber GT, Ash SR (2004) Late Triassic Schilderia adamanica and Woodworthia arizonica trees of the Petrified Forest National Park, Arizona, USA. Palaeontology 47:21–38

    Article  Google Scholar 

  • Creber GT, Chaloner WG (1985) Tree growth in the Mesozoic and early Tertiary and the reconstruction of paleoclimates. Palaeogeogr Palaeoclimatol Palaeoecol 52:35–60

    Article  Google Scholar 

  • Csank AZ, Tripati AK, Patterson WP, Eagle RA, Rybczynski N, Ballantyne AP, Eiler JM (2011) Estimates of Arctic land surface temperatures during the early Pliocene from two novel proxies. Earth Planet Sci Lett 304:291–299

    Article  CAS  Google Scholar 

  • Daley TJ, Barber KE, Street-Perrott FA, Loader NJ, Marshall JD, Crowley SF, Fisher EH (2010) Holocene climate variability revealed by oxygen isotope analysis of Sphagnum cellulose from Walton Moss, northern England. Quat Sci Rev 29:1590–1601

    Article  Google Scholar 

  • Davies-Vollum KS, Wing SL (1998) Sedimentological, taphonomic, and climatic aspects of Eocene swamp deposits (Willwood Formation, Bighorn Basin, Wyoming). Palaios 13:28–40

    Article  Google Scholar 

  • de Menocal P, Ortiz J, Guilderson T, Adkins J, Sarnthein M, Baker L, Yarusinsky M (2000) Abrupt onset and termination of the African humid period: rapid climate responses to gradual insolation forcing. Quat Sci Rev 19:347–361

    Google Scholar 

  • Denton GH, Anderson RF, Toggweiler JR, Edwards RL, Schaefer JM, Putnam AE (2010) The last glacial termination. Science 328:1652–1656

    Article  PubMed  CAS  Google Scholar 

  • DiMichele WA, Gastaldo RA (2008) Plant paleoecology in deep time. Ann Mo Bot Gard 95:144–198

    Article  Google Scholar 

  • Dorf E (1960) Tertiary fossil forests of Yellowstone National Park, Wyoming. In: 11th annual field conference guidebook. Billings Geological Society, Billings, pp 253–260

    Google Scholar 

  • Doria G, Royer DL, Wolfe AP, Fox A, Westgate JA, Beerling DJ (2011) Declining atmospheric CO2 during the late middle Eocene climate transition. Am J Sci 311:63–75

    Article  CAS  Google Scholar 

  • Downs RJ (1962) Photocontrol of growth and dormancy in woody plants. In: Kozlowski TZ (ed) Tree growth. Ronald, New York, pp 133–148

    Google Scholar 

  • Dupont LM (2003) Pleistocene vegetation change in Central Africa recorded off the Congo River. Geophys Res Abstr 5:01008

    Google Scholar 

  • Dupont LM, Jahns S, Marret F, Ning S (2000) Vegetation change in equatorial West Africa: time-slices for the last 150 ka. Palaeogeogr Palaeoclimatol Palaeoecol 155:95–122

    Article  Google Scholar 

  • Dupont LM, Behling H, Kim J-H (2008) Thirty thousand years of vegetation development and climate change in Angola (Ocean Drilling Program Site 1078). Clim Past Discuss 4:111–147

    Article  Google Scholar 

  • Dyke AS, Andrews JT, Clark PU, England JH, Miller GH, Shaw J, Veillette JJ (2002) The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quat Sci Rev 21:9–31

    Article  Google Scholar 

  • Eberle JJ, Storer JE (1999) Northernmost record of brontotheres, Axel Heiberg Island, Canada – implications for age of the Buchanan Lake Formation and brontothere paleobiology. J Paleontology 73:979–983

    Google Scholar 

  • Eberle JJ, Fricke HC, Humphrey JD, Hackett L, Newbrey MG, Hutchison JH (2010) Seasonal variability in Arctic temperatures during early Eocene time. Earth Planet Sci Lett 296:481–486

    Article  CAS  Google Scholar 

  • Edwards EJ, Osborne CP, Strömberg CAE, Smith SA, C4 Grasses Consortium (2010) The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:587–591

    Article  PubMed  CAS  Google Scholar 

  • Elenga H, Schwartz D, Vincens A (1994) Pollen evidence of late Quaternary vegetation and inferred climate changes in Congo. Palaeogeogr Palaeoclimatol Palaeoecol 109:345–356

    Article  Google Scholar 

  • Erdei B, Dolezych M, Hably L (2001) The buried Miocene forest at Bükkábrány, Hungary. Rev Paleobot Palynol 155:69–79

    Article  Google Scholar 

  • Estes R, Hutchison JH (1980) Eocene vertebrates from Ellesmere Island, Canadian Arctic Archipelago. Palaeogeogr Palaeoclimatol Palaeoecol 30:325–347

    Article  Google Scholar 

  • Falcon-Lang HJ, Cantrill DJ (2000) Cretaceous (Late Albian) coniferales of Alexander Island, Antarctica. 1: wood taxonomy: a quantitative approach. Rev Palaeobot Palynol 111:1–17

    Article  PubMed  Google Scholar 

  • Ferguson DK (1993) Plant taphonomic studies with special reference to Messel. Kaupia 2:117–126

    Google Scholar 

  • Francis JE (1984) The seasonal environment of the Purbeck (Upper Jurassic) fossil forests. Palaeogeogr Palaeoclimatol Palaeoecol 48:285–307

    Article  Google Scholar 

  • Francis JE (1987) Fossil forests in the far north. Geos 16:6–9

    Google Scholar 

  • Francis JE (1988) A 50-million-year-old fossil forest from Strathcona Fiord, Ellesmere Island, Arctic Canada: evidence for a warm polar climate. Arctic 41:314–318

    Google Scholar 

  • Francis JE (1991) The dynamics of polar fossil forests: Tertiary fossil forests of Axel Heiberg Island, Canadian Arctic Archipelago. Geol Sur Can Bull 403:29–38

    Google Scholar 

  • Gasse F (2000) Hydrological changes in the African tropics since the Last Glacial Maximum. Quat Sci Rev 19:189–211

    Article  Google Scholar 

  • Gastaldo RA, Ferguson DK (1998) Reconstructing Tertiary plant communities: introductory remarks. Rev Paleobot Palynol 101:3–6

    Article  Google Scholar 

  • Gastaldo RA, Riegel W, Püttmann W, Linnemann UG, Zetter R (1998) A multidisciplinary approach to reconstruct the late Oligocene vegetation in central Europe. Rev Paleobot Palynol 101:71–94

    Article  Google Scholar 

  • Gee CT, Gastaldo RA (2005) Sticks and mud, fruit and nuts, leaves and climate: plant taphonomy comes of age. Palaios 20:415–417

    Article  Google Scholar 

  • Gholz HL (1982) Environmental limits on aboveground net primary production, leaf area, and biomass in vegetation zones of the Pacific Northwest. Ecology 63:469–481

    Article  Google Scholar 

  • Gibbard PL, Head MJ, Walker MJC (2009) Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma. J Quat Sci 25:96–102

    Article  Google Scholar 

  • Greenwood DG, Basinger JF (1993) Stratigraphy and floristics of Eocene swamp forests from Axel Heiberg Island, Canadian Arctic Archipelago. Can J Earth Sci 30:1914–1923

    Article  Google Scholar 

  • Greenwood DG, Basinger JF (1994) The paleoecology of high-latitude Eocene swamp forests from Axel Heiberg Island, Canadian High Arctic. Rev Palaeobot Palynol 81:83–97

    Article  Google Scholar 

  • Greenwood DG, Wing SL (1995) Eocene continental climates and latitudinal temperature gradients. Geology 23:1044–1048

    Article  Google Scholar 

  • Greenwood DR, Basinger JF, Smith RY (2010) How wet was the Arctic Eocene rain-forest? Precipitation estimates from Arctic Paleogene macrofloras. Geology 38:15–18

    Article  CAS  Google Scholar 

  • Grier CC, Logan RS (1977) Old-growth Pseudotsuga menziesii communities of a western Oregon watershed: biomass distribution and production budgets. Ecol Monogr 47:373–400

    Article  Google Scholar 

  • Griffiths JF (1972) Mozambique. In: Griffiths JF (ed) Climate of Africa, vol 10, World surveys of climatology. Elsevier Scientific Publishing Company, New York, 404pp

    Google Scholar 

  • Haberyan K, Hecky RE (1987) The Late Pleistocene and Holocene stratigraphy and paleolimnology of Lakes Kivu and Tanganyika. Palaeogeogr Palaeoclimatol Palaeoecol 61:169–197

    Article  CAS  Google Scholar 

  • Hall JB, Swaine MD (1981) Distribution and ecology of vascular plants in a tropical rainforest. Forest vegetation in Ghana (Geobotany). Springer, New York, 398pp

    Google Scholar 

  • Harrison JC, Mayr U, DH McNeil, McIntyre DJ, Eberle JJ, Harington CR, Chalmers JA, Dam G, Nøhr-Hansen H (1999) Correlation of Cenozoic sequences of the Canadian Arctic region and Greenland; implications for the tectonic history of northern North America. Bull Can Pet Geol 47:223–254

    Google Scholar 

  • Haworth M, Heath J, McElwain JC (2010) Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers. Ann Bot 105:411–418

    Article  PubMed  CAS  Google Scholar 

  • Hayashi R, Takahara H, Yoshikawa S, Inouchi Y (2010) Orbital-scale vegetation variability during MIS 6, 5, 4, and 4 based on a pollen record from the Takashima-oki core in Lake Biwa, western Japan. Jpn J Palynol 56:5–12

    Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194:1121–1132

    Article  PubMed  CAS  Google Scholar 

  • Heer O (1868–1883) Flora fossilis arctica, volumes 1–7. Druck and Verlag von Friedrich Schulthess/Verlag von J. Wurster & Comp, Winterthur/Zürich

    Google Scholar 

  • Heinrich H (1988) Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quat Res 29:142–152

    Article  Google Scholar 

  • Hickey LJ (1977) Stratigraphy and paleobotany of the Golden Valley Formation (early Tertiary) of western North Dakota. Geol Soc Am Bull 150:1–181

    Google Scholar 

  • Hickey LJ, West RM, Dawson MR, Choi DK (1983) Arctic terrestrial biota: paleomagnetic evidence of age disparity with mid-northern latitudes during the Late Cretaceous and early Tertiary. Science 221:1153–1156

    Article  PubMed  CAS  Google Scholar 

  • Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232

    Article  Google Scholar 

  • Hopley PJ, Weedon GP, Marshall JD, Herries AIR, Latham AG, Kuykendall KL (2007) High- and low-latitude orbital forcing of early hominin habitats in South Africa. Earth Planet Sci Lett 256:419–432

    Article  CAS  Google Scholar 

  • Huber M (2008) A hotter greenhouse? Science 321:353–354

    Article  PubMed  CAS  Google Scholar 

  • Huber M, Caballero R (2011) The early Eocene equable climate problem revisited. Clim Past 7:603–633

    Article  Google Scholar 

  • Huybers P (2011) Combined obliquity and precession pacing of late Pleistocene deglaciations. Nature 480:229–232

    Article  PubMed  CAS  Google Scholar 

  • Huybers P, Wunsch C (2003) Rectification and precession signals in the climate system. Geophys Res Lett 30. doi:10.1029/2003GL017875

  • International Commission on Stratigraphy (2010) International stratigraphic charts. http://www.stratigraphy.org/column.php?id=Chart/Time%20Scale

  • Irving E, Wynne PJ (1991) The paleolatitude of the Eocene fossil forests of Arctic Canada. Geol Sur Can Bull 403:209–211

    Google Scholar 

  • Jackson ST, Booth RK (2002) The role of late Holocene climate variability in the expansion of yellow birch in the western Great Lake region. Divers Distrib 8:275–284

    Article  Google Scholar 

  • Jacobs BF (1999) Estimation of rainfall variables from leaf characters in tropical Africa. Palaeogeogr Palaeoclimatol Palaeoecol 145:231–250

    Article  Google Scholar 

  • Jacobs BF (2002) Estimation of low latitude paleoclimates using fossil angiosperm leaves: examples from the Miocene Tugen Hills, Kenya. Paleobiology 28:399–421

    Article  Google Scholar 

  • Jacobs BF, Winkler DA (1992) Taphonomy of a middle Miocene autochthonous forest assemblage, Ngorora Formation, central Kenya. Palaeogeogr Palaeoclimatol Palaeoecol 99:31–40

    Article  Google Scholar 

  • Jagels R, Day ME (2003) The adaptive physiology of Metasequoia to Eocene high-latitude environments. In: Hemsley AR, Poole I (eds) The evolution of plant physiology: from whole plants to ecosystems. Elsevier Academic Press, New York, pp 401–425

    Google Scholar 

  • Jagels R, LePage BA, Jiang M (2001) Definitive identification of Larix wood based on anatomy from the Eocene of Axel Heiberg Island, Canadian High Arctic. Int Assoc Wood Anat J 22:73–83

    Google Scholar 

  • Jagels R, Visscher GE, Wheeler EA (2005) An Eocene high Arctic angiosperm wood. Int Assoc Wood Anat J 26:387–392

    Google Scholar 

  • Jahren AH, Sternberg LSL (2008) Annual patterns within tree rings of the Arctic middle Eocene (45 Ma): isotopic signatures of precipitation, relative humidity and deciduousness. Geology 36:99–102

    Article  CAS  Google Scholar 

  • Jefferson TH (1982) Fossil forests from then Lower Cretaceous of Alexander Island, Antarctica. Palaeontology 25:681–708

    Google Scholar 

  • Johnson DW, Lindberg SE (1992) Atmospheric deposition and forest nutrient cycling: a synthesis of the integrated forest study. Springer, New York, 707pp

    Book  Google Scholar 

  • Johnson TC, Scholz CA, Talbot MR, Kelts K, Ricketts RD, Ngobi G, Beuning K, Semmanda I, McGill JW (1996) Late Pleistocene desiccation of Lake Victoria and rapid evolution of cichlid fishes. Science 273:1091–1093

    Article  PubMed  CAS  Google Scholar 

  • Johnson CM, Zarin DJ, Johnson AH (2000) Post-disturbance aboveground biomass accumulation in global secondary forests. Ecology 81:1395–1401

    Article  Google Scholar 

  • Johnson TC, Brown ET, Shi J (2011) Biogenic silica deposition in Lake Malawi, East Africa over the past 150,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 303:103–109

    Article  Google Scholar 

  • Jones MC, Peteet DM, Sambrotto R (2010) Late-glacial and Holocene δ15N and δ13C variation from a Kenai Peninsula, Alaska peatland. Palaeogeogr Palaeoclimatol Palaeoecol 293:132–143

    Article  Google Scholar 

  • Kalkreuth W, McIntyre DJ, Richardson RJH (1993) The geology, petrography and palynology of Tertiary coals from the Eureka Sound Group at Strathcona Fiord and Bache Peninsula, Ellesmere Island, Arctic Canada. Int J Coal Geol 24:75–111

    Article  CAS  Google Scholar 

  • Kidston R, Lang WH (1917) On old red sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire, Part 1: Rhynia gwynne-vaughani Kidston and Lang. Trans R Soc Edinburgh 51:761–784

    Google Scholar 

  • Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary productivity. Science 291:481–484

    Article  PubMed  CAS  Google Scholar 

  • Koch BE (1963) Fossil plants from the Lower Paleocene of the Agatdalen (Angmârtussut) area, central Nûgssuaq Peninsula, northwest Greenland. Medd Grønland 172:1–120

    Google Scholar 

  • Kotyk MEA, Basinger JF, McIver EE (2003) Early Tertiary Chamaecyparis Spach from Axel Heiberg Island, Canadian High Arctic. Can J Bot 81:113–130

    Article  Google Scholar 

  • Koutavas A, Lynch-Stieglitz J (2005) Variability of the marine ITCZ over the eastern Pacific during the past 30,000 years – regional perspective and global context. In: Diaz HF, Bradley RS (eds) The Hadley circulation: present, past and future. Kluwer Academic Publishers, Dordrecht, pp 347–369

    Google Scholar 

  • Kowalewski M (1996) Time-averaging, overcompleteness, and the geological record. J Geol 104:317–326

    Article  Google Scholar 

  • Labandeira CC, LePage BA, Johnson AH (2001) A Dendroctonus bark engraving (Coleoptera: Scolytidae) from a middle Eocene Larix (Coniferales: Pinaceae): early or delayed colonization? Am J Bot 88:2026–2039

    Article  PubMed  CAS  Google Scholar 

  • Lamb HF, Bates RC, Coombes PV, Marshall MH, Umer M, Davies SJ, Dejen E (2007) Late Pleistocene desiccation of Lake Tana, source of the Blue Nile. Quat Sci Rev 26:287–299

    Article  Google Scholar 

  • Lamentowicz M, Cedro A, Miotk-Szpiganowicz G, Mitchell EAD, Pawlyta J, Goslar T (2008) Last millennium palaeoenvironmental changes from a Baltic bog (Poland) inferred from stable isotopes, pollen, plant macrofossils and testate amoebae. Palaeogeogr Palaeoclimatol Palaeoecol 265:93–106

    Article  Google Scholar 

  • Lee S-Y, Poulsen CJ (2009) Obliquity and precessional forcing of continental snow fall and melt: implications for orbital forcing of Pleistocene ice ages. Quat Sci Rev 28:2663–2674

    Article  Google Scholar 

  • Leng MJ (2006) Isotopes in palaeoenvironmental research, vol 10, Developments in paleoenvironmental research. Springer, New York, 307pp

    Book  Google Scholar 

  • LePage BA (2001) New species of Picea (Pinaceae) from the middle Eocene of Axel Heiberg Island, Arctic Canada. Bot J Linn Soc 135:137–167

    Article  Google Scholar 

  • LePage BA (2003a) A new species of Tsuga (Pinaceae) and an assessment of the evolution and biogeographic history of the genus. Bot J Linn Soc 141:257–296

    Article  Google Scholar 

  • LePage BA (2003b) A new species of Thuja (Cupressaceae) from the Late Cretaceous of Alaska: implications of being evergreen in a polar environment. Am J Bot 90:165–172

    Article  Google Scholar 

  • LePage BA (2007) The taxonomy and biogeographic history of Glyptostrobus Endlicher (Cupressaceae). Spec Publ Peabody Mus Nat Hist Yale Univ 48:359–426

    Article  Google Scholar 

  • LePage BA (2009) Earliest occurrence of Taiwania (Cupressaceae) from the Early Cretaceous of Alaska: evolution, biogeography, and paleoecology. Proc Acad Nat Sci Phila 158:129–158

    Article  Google Scholar 

  • LePage BA, Basinger JF (1991) A new species of Larix (Pinaceae) from the early Tertiary of Axel Heiberg Island, Arctic Canada. Rev Palaeobot Palynol 70:89–111

    Article  Google Scholar 

  • LePage BA, Basinger JF (1995) The evolutionary history of Pseudolarix (Pinaceae). Int J Plant Sci 156:910–950

    Article  Google Scholar 

  • LePage BA, Yang H, Matsumoto M (2005) The evolution and biogeographic history of Metasequoia. In: LePage BA, Williams CJ, Yang H (eds) The geobiology and ecology of Metasequoia. Springer, Dordrecht, pp 3–114

    Chapter  Google Scholar 

  • Lézine A-M, Duplessy J-C, Cazet J-P (2005) West African monsoon variability during the last deglaciation and the Holocene: evidence from fresh water algae, pollen and isotope data from core KW31, Gulf of Guinea. Palaeogeogr Palaeoclimatol Palaeoecol 219:225–237

    Article  Google Scholar 

  • Liu Y-S, Basinger JF (2000) Fossil Cathaya (Pinaceae) pollen from the Canadian High Arctic. Int J Plant Sci 161:829–847

    Article  Google Scholar 

  • Liu Z, Otto-Bliesner BL, He F, Brady EC, Tomas R, Clark PU, Carlson AE, Lynch-Stieglitz J, Curry W, Brook E, Erickson D, Jacob R, Kutzbach J, Cheng J (2009) Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325:310–314

    Article  PubMed  CAS  Google Scholar 

  • Loader NJ, McCarroll D, van der Knaap WO, Robertson I, Gagen M (2007) Characterizing carbon isotopic variability in Sphagnum. Holocene 17:403–410

    Article  Google Scholar 

  • Lyons RP, Scholz CA, Buoniconti MR, Martin MR (2011) Late Quaternary stratigraphic analysis of the Lake Malawi Rift, East Africa: an integration of drill-core and seismic reflection data. Palaeogeogr Palaeoclimatol Palaeoecol 303:20–37

    Article  Google Scholar 

  • MacGinitie HD (1941) A middle Eocene flora from the central Sierra Nevada. Carnegie Inst Wash Publ 534:1–94

    Google Scholar 

  • Maley J, Brenac P (1998) Vegetation dynamics, palaeoenvironments and climatic changes in the forests of western Cameroon during the last 28,000 years B.P. Rev Palaeobot Palynol 99:157–187

    Article  Google Scholar 

  • Manum S (1962) Studies in the Tertiary flora of Spitsbergen, with notes on Tertiary floras of Ellesmere Island, Greenland, and Iceland. Nor Polarinst Skr 125:1–127

    Google Scholar 

  • Marchant R, Mumbi C, Behera S, Yamagata T (2007) The Indian Ocean dipole – the unsung driver of climatic variability in East Africa. Afr J Ecol 45:4–16

    Article  Google Scholar 

  • Markel E, Booth RK, Qin Y (2010) Testate amoebae and δ13C of Sphagnum as surface-moisture proxies in Alaskan peatlands. Holocene 20:463–475

    Article  Google Scholar 

  • McIntyre DJ (1991) Pollen and spore flora of an Eocene forest, eastern Axel Heiberg Island, N.W.T. Geol Surv Can Bull 403:83–98

    Google Scholar 

  • McIver EE, Basinger JF (1999) Early Tertiary floral evolution in the Canadian High Arctic. Ann Mo Bot Garden 86:523–545

    Article  Google Scholar 

  • McKenna MC (1980) Eocene paleolatitude, climate, and mammals of Ellesmere Island. Palaeogeogr Palaeoclimatol Palaeoecol 30:349–362

    Article  Google Scholar 

  • Mellilo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  Google Scholar 

  • Miall AD (1994) Alluvial deposits. In: Walker RG, James NP (eds) Facies models: response to sea level change. Geological Association of Canada, Stittsville, pp 119–142

    Google Scholar 

  • Middleton B (2011) Multidisciplinary approaches to climate change questions. In: LePage BA (ed) Wetlands – integrating multidisciplinary concepts. Springer, Dordrecht, pp 129–136

    Google Scholar 

  • Milankovitch M (1920) Théorie mathématique des phénomènes thermiques produits par la radiation solaire. Gauthier-Villars et Cie, Paris, 338pp

    Google Scholar 

  • Mosbrugger V, Utescher T (1987) The coexistence approach – a method for quantitative reconstructions of Tertiary terrestrial paleoclimate data using plant fossils. Palaeogeogr Palaeoclimatol Palaeoecol 134:61–86

    Article  Google Scholar 

  • Mustoe GE (2001) Washington’s fossil forests. Wash Geol 29:10–20

    Google Scholar 

  • Nathorst AG (1915) Tertiäre Pflanzenreste aus Ellesmere-land. Vidensk-Selsk Forh I Christiania 4:1–15

    Google Scholar 

  • Nicholson SE (2000) The nature of rainfall variability over Africa on time scales of decades to millennia. Glob Planet Chang 26:137–158

    Article  Google Scholar 

  • Nicholson SE (2001) Climatic and environmental change in Africa during the last two centuries. Clim Res 17:123–144

    Article  Google Scholar 

  • Otto-Bleisner BL, Upchurch GR Jr (1997) Vegetation-induced warming of the high-latitude regions during the late Cretaceous period. Nature 385:804–807

    Article  Google Scholar 

  • Park LE, Cohen AS (2011) Paleoecological response of ostracods to early Late Pleistocene lake-level changes in Lake Malawi, East Africa. Palaeogeogr Palaeoclimatol Palaeoecol 303:71–80

    Article  Google Scholar 

  • Peacock E, Derocher AE, Thiemann GW, Stirling I (2011) Conservation and management of Canada’s polar bears (Ursus maritimus) in a changing Arctic. Can J Zool 89:371–385

    Article  Google Scholar 

  • Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699

    Article  PubMed  CAS  Google Scholar 

  • Peck JA, Green RR, Shanahan T, King JW, Overpeck JT, Scholz CA (2004) A magnetic mineral record of Late Quaternary tropical climate variability from Lake Bosumtwi, Ghana. Palaeogeogr Palaeoclimatol Palaeoecol 215:37–57

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Pole M (1999) Structure of a near-polar latitude forest from the New Zealand Jurassic. Palaeogeogr Palaeoclimatol Palaeoecol 147:121–139

    Article  Google Scholar 

  • Poole I (2000) Fossil angiosperm wood: its role in the reconstruction of biodiversity and palaeoenvironment. Bot J Linn Soc 134:361–381

    Google Scholar 

  • Prance GT (1982) Forest refuges: evidence from woody angiosperms. In: Prance GT (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 137–157

    Google Scholar 

  • Raymo ME (1997) The timing of major climate terminations. Paleoceanography 12:577–585

    Article  Google Scholar 

  • Retallack GJ (2001) A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411:287–290

    Article  PubMed  CAS  Google Scholar 

  • Richards PW (1996) The tropical rainforest: an ecological study. Cambridge University Press, Cambridge, 600pp

    Google Scholar 

  • Richardson JL, Richardson AE (1972) History of an African rift lake and its climatic implications. Ecol Monogr 42:499–534

    Article  Google Scholar 

  • Rodin LE, Bazilevich NI, Rozov NN (1975) Productivity of the world’s main ecosystems. In: Reichle DE, Franklin JF, Goodall DW (eds) Productivity of world ecosystems. National Academy of Sciences, Washington, DC, pp 13–26

    Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357

    Article  PubMed  CAS  Google Scholar 

  • Rothwell GW, Stockey RA (1991) Onoclea sensibilis in the Paleocene of North America, a dramatic example of structural and ecological traits. Rev Palaeobot Palynol 70:113–124

    Article  Google Scholar 

  • Royer DL (2001) Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Rev Palaeobot Palynol 114:1–28

    Article  PubMed  Google Scholar 

  • Royer DL (2003) Estimating latest Cretaceous and Tertiary atmospheric CO2 from stomatal indices. Geol Soc Am Spec Pap 369:79–93

    Google Scholar 

  • Royer DL, Wing SL, Beerling DJ, Jolley DW, Koch PL, Hickey LJ, Berner RA (2001) Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary. Science 292:2310–2313

    Article  PubMed  CAS  Google Scholar 

  • Royer DL, Osborne CP, Beerling DJ (2003) The carbon costs of forest leaf habit in a CO2-rich polar environment. Nature 424:60–62

    Article  PubMed  CAS  Google Scholar 

  • Royer DL, Wilf P, Janesko DA, Kowalski EA, Dilcher DL (2005) Correlations of climate and plant ecology to the leaf size and shape: potential proxies for the fossil record. Am J Bot 92:1141–1151

    Article  PubMed  Google Scholar 

  • Russell JM, Johnson TC (2005) A high-resolution geochemical record from Lake Edward, Uganda Congo and the timing and causes of tropical African drought during the late Holocene. Quat Sci Rev 24:1375–1389

    Article  Google Scholar 

  • Russell JM, Johnson TC (2007) Little Ice Age drought in equatorial Africa: intertropical convergence zone migrations and El Niño – Southern Oscillation variability. Geology 35:21–24

    Article  CAS  Google Scholar 

  • Ryan MG, Melillo JM, Ricca A (1990) A comparison of methods for determining proximate carbon fraction of forest litter. Can J For Res 20:166–171

    Article  Google Scholar 

  • Schaarschmidt F (1992) The vegetation: fossil plants as witnesses of a warm climate. In: Schaal S, Ziegler W (eds) Messel: an insight into the history of life and of the earth. Clarendon, Oxford, pp 29–51

    Google Scholar 

  • Schefuss E, Schouten S, Jansen JHF, Damsté JSS (2003) African vegetation controlled by tropical sea surface temperatures in the mid-Pleistocene period. Nature 422:418–421

    Article  PubMed  CAS  Google Scholar 

  • Schloemer-Jäger A (1958) Alttertiäre Pflanzen aus Flözen der Brögger-Halbinsel Spitzbergens. Palaeontographica, Abteilung B, Pälaophytologie 104:39–103

    Google Scholar 

  • Scholz CA, Johnson TC, Cohen AS, King JW, Peck JA, Overpeck JT, Talbot MR, Brown ET, Kalindekafe L, Amoako PYO, Lyons RP, Shanahan TM, Castañeda IS, Heil CW, Forman SL, McHargue LR, Beuning KR, Gomez J, Pierson J (2007) East African megadroughts between 135 and 75 thousand years ago and bearing on early-modern human origins. Proc Natl Acad Sci USA 104:16416–16421

    Article  PubMed  CAS  Google Scholar 

  • Scholz CA, Cohen AS, Johnson TC, King J, Talbot MR, Brown ET (2011a) Scientific drilling in the Great Rift Valley: the 2005 Lake Malawi Scientific Drilling Project – an overview of the past 145,000 years of climate variability in Southern Hemisphere East Africa. Palaeogeogr Palaeoclimatol Palaeoecol 303:3–19

    Article  Google Scholar 

  • Scholz CA, Talbot MR, Brown ET, Lyons RP (2011b) Lithostratigraphy, physical properties and organic matter variability in Lake Malawi drillcore sediments over the past 145,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 303:38–50

    Article  Google Scholar 

  • Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shiklomanov N, Tarnocai C, Venevsky S, Vogel JG, Zimov SA (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience 58:701–714

    Article  Google Scholar 

  • Schweitzer H-J (1974) Die “Tertiären Koniferen Spitsbergens”. Palaeontographica, Abteilung B, Pälaophytologie 149:1–89

    Google Scholar 

  • Schweitzer H-J (1980) Environment and climate in the early Tertiary of Spitsbergen. Palaeogeogr Palaeoclimatol Palaeoecol 30:297–311

    Article  Google Scholar 

  • Schuyt K, Brander L (2004) Living waters: conserving the source of life: the economic values of the world’s wetlands. World Wildlife Fund, Gland, 32pp

    Google Scholar 

  • Scott AC, Calder JH (1994) Carboniferous fossil forests. Geol Today 10:213–217

    Article  Google Scholar 

  • Shanahan TM, Overpeck JT, Wheeler CW, Beck JW, PIgati JS, Talbot MR, Scholz CA, Peck J, King JW (2006) Paleoclimatic variations in West Africa from a record of Late Pleistocene and Holocene lake level stands of Lake Bosumtwi, Ghana. Palaeogeogr Palaeoclimatol Palaeoecol 242:287–302

    Article  Google Scholar 

  • Shi Z, Liu X, Sun Y, An Z, Liu Z, Kutzbach J (2011) Distinct responses of East Asian summer and winter monsoons to orbital forcing. Clim Past Discuss 7:943–964

    Article  Google Scholar 

  • Sloan LC, Pollard D (1998) Polar stratospheric clouds: a high-latitude warming mechanism in an ancient greenhouse world. Geophys Res Lett 25:3517–3520

    Article  Google Scholar 

  • Sloan LC, Rea DK (1995) Atmospheric carbon dioxide and early Eocene climate: a general circulation modeling sensitivity study. Palaeogeogr Palaeoclimatol Palaeoecol 119:275–292

    Article  Google Scholar 

  • Sloan LC, Walker JCG, Moore TC Jr, Rea DK, Zachos JC (1992) Possible methane-induced polar warming in the early Eocene. Nature 357:320–322

    Article  PubMed  CAS  Google Scholar 

  • Sloan LC, Huber M, Ewing A (1999) Polar stratospheric cloud forcing in a greenhouse world. In: Abrantes F, Mix AC (eds) Reconstructing ocean history: a window into the future. Kluwer Academic/Plenum Publishers, New York, pp 272–293

    Google Scholar 

  • Smiley CJ, Rember WC (1985) Composition of the Miocene Clarkia flora. In: Smiley CJ (ed) Late Cenozoic history of the Pacific Northwest. Pacific Division of the American Association for the Advancement of Science, San Francisco, pp 95–112

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 996pp

    Google Scholar 

  • Sosef MSM (1996) Begonias and African rain forest refuges. In: van der Maesen LJG, van der Burgt XM, de Rooy JMvanMedenbach (eds) The biodiversity of African plants. Kluwer Academic Publishers, Dordrecht, pp 602–611

    Chapter  Google Scholar 

  • Spicer RA (1989) The formation and interpretation of plant fossil assemblages. Adv Bot Res 16:95–191

    Article  Google Scholar 

  • Spicer RA (1991) Plant taphonomic processes. Top Geobiol 9:71–113

    Google Scholar 

  • Spicer RA, Parrish JT (1990) Late Cretaceous-early Tertiary paleoclimates of northern high latitudes: a quantitative view. J Geol Soc Lond 147:329–341

    Article  Google Scholar 

  • Stager C, Ryves DB, Chase BM, Pausata FSR (2011) Catastrophic drought in the Afro-Asian monsoon region during Heinrich Event 1. Science 331:1299–1302

    Article  PubMed  CAS  Google Scholar 

  • Stockey RA, Hoffman GL, Rothwell GW (1997) The fossil monocot Limnobiophyllum scutatum: resolving the phylogeny of Lemnaceae. Am J Bot 84:355–368

    Article  PubMed  CAS  Google Scholar 

  • Sugita S (1993) A model of pollen source area for an entire lake surface. Quat Res 39:239–244

    Article  Google Scholar 

  • Sugita S (1994) Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. J Ecol 82:881–897

    Article  Google Scholar 

  • Tabor NJ, Yapp CJ (2005) Juxtaposed Permian and Pleistocene isotopic archives: surficial environments recorded in calcite and goethite from the Wichita Mountains, Oklahoma. Geol Soc Am Spec Publ 395:55–70

    Google Scholar 

  • Taddei K, Daena C, Cross M, deWet AP, Wegmann K, Frankel KL, Williams CJ (2011) Paleosedimentary environment and paleoclimate conditions revealed by Holocene sediments from near Lake Hovsgol, northern Mongolia. Geol Soc Am Abstr Programs 43:112

    Google Scholar 

  • Talbot MR, Delibrias G (1980) A new late Pleistocene-Holocene water-level curve for Lake Bosumtwi, Ghana. Earth Planet Sci Lett 47:336–344

    Article  Google Scholar 

  • Talbot MR, Johannessen T (1992) A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet Sci Lett 110:23–37

    Article  CAS  Google Scholar 

  • Talbot MR, Laerdal T (2000) The Late Pleistocene-Holocene palaeolimnology of Lake Victoria, East Africa, based upon elemental and isotopic analyses of sedimentary organic matter. J Paleolimnol 23:141–164

    Article  Google Scholar 

  • Taulavuori K, Sarala M, Taulavuori E (2010a) Growth responses of trees to Arctic light environment. Prog Bot 71:157–168

    Article  Google Scholar 

  • Taulavuori E, Taulavuori K, Niimimaa A, Laine K (2010b) Effect of ecotype and latitude on growth, frost hardiness, and oxidative stress of south to north transplanted Scots pine seedlings. Int J For Res 2010:1–16

    Google Scholar 

  • Taylor TN, Osborn JM (1992) The role of wood in understanding saprophytism in the fossil record. Courier Forschungs-Institut Senckenberg 147:147–153

    Google Scholar 

  • Thorn V (2005) A Middle Jurassic fossil forest from New Zealand. Palaeontology 48:1–19

    Article  Google Scholar 

  • Tierney JE, Russell JM, Damsté JSS, Huang Y, Verschuren D (2011) Late Quaternary behavior of the East African monsoon and the importance of the Congo Air Boundary. Quat Sci Rev 30:798–807

    Article  Google Scholar 

  • Tiffney BH (1994) An estimate of early Tertiary paleoclimate of the southern Arctic. In: Boulter MC, Fisher HC (eds) Cenozoic plants and climates of the Arctic. Springer Verlag, Heidelberg, pp 267–295

    Chapter  Google Scholar 

  • Traverse A (2008) Paleopalynology, 2nd edn. Springer, Dordrecht, 813pp

    Google Scholar 

  • Upchurch GR Jr, Otto-Bleisner BL, Scotese C (1998) Vegetation-atmosphere interactions and their role in global warming during the latest Cretaceous. Philos Trans R Soc Lond B 353:97–112

    Article  Google Scholar 

  • Upchurch GR Jr, Otto-Bleisner BL, Scotese C (1999) Terrestrial vegetation and its effects on climate during the latest Cretaceous. Geol Soc Am Spec Pap 332:407–426

    Google Scholar 

  • van Bergen PF (1999) Pyrolysis and chemolysis of fossil plant remains: applications to palaeobotany. In: Jones TP, Rowe NP (eds) Fossil plants and spores: modern techniques. The Geological Society, London, pp 143–148

    Google Scholar 

  • Vann DR, Palmiotto PA, Strimbeck GR (1998) Allometric equations for two South American conifers: test of a nondestructive method. For Ecol Manag 106:55–71

    Article  Google Scholar 

  • Vann DR, Williams CJ, LePage BA (2003) Experimental evaluation of photosystem parameters and their role in the evolution of stand structure and deciduousness response to paleoclimate seasonality in Metasequoia glyptostroboides (Hu et Cheng). In: Hemsley AR, Poole I (eds) The evolution of plant physiology: from whole plants to ecosystems. Elsevier Academic Press, New York, pp 427–466

    Google Scholar 

  • Vassio E, Martinetto E, van der Burgh J (2008) Wood anatomy of the Glyptostrobus europaeus “whole plant” from a Pliocene fossil forest of Italy. Rev Palaeobot Palynol 151:81–89

    Article  Google Scholar 

  • Verschuren D, Laird KR, Cumming BF (2000) Rainfall and drought in equatorial East Africa during the past 1,100 years. Nature 403:410–414

    Article  PubMed  CAS  Google Scholar 

  • Vincens A (1991) Late Quaternary vegetation history of the South-Tanganyika Basin. Climatic implications in South Central Africa. Palaeogeogr Palaeoclimatol Palaeoecol 86:207–226

    Article  Google Scholar 

  • Vincens A (1993) Nouvelle séquence pollinique du Lac Tanganyika: 30,000 ans d’histoire botanique et climatique du Bassin Nord. Rev Palaeobot Palynol 78:381–394

    Article  Google Scholar 

  • Vincens A, Buchet G, Williamson D, Taieb M (2005) A 23,000 yr pollen record from Lake Rukwa (8°S, SW Tanzania): new data on vegetation dynamics and climate in Central Eastern Africa. Rev Palaeobot Palynol 137:147–162

    Article  Google Scholar 

  • Walker M, Johnsen S, Rasmussen SO, Popp T, Steffensen J-P, Gibbard P, Hoek W, Lowe J, Andrews J, Björck S, Cwynar LC, Hughen K, Kershaw P, Kromer B, Litt T, Lowe DJ, Nakagawa T, Newnham R, Schwander J (2009) Formal definition and dating of the GSSP (global stratotype section and point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. J Quat Sci 24:3–17

    Article  Google Scholar 

  • Wheeler EA, Bass P (1991) A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. Int Ass Wood Anat Bull New Ser 12:275–332

    Google Scholar 

  • Wheeler EA, Bass P (1993) The potentials and limitations of dicotyledonous wood anatomy for climatic reconstructions. Paleobiology 19:487–498

    Google Scholar 

  • White JWC, Ciais P, Figge RA, Kenny R, Markgraf V (1994) A high resolution record of atmospheric CO2 content from carbon isotopes in peat. Nature 367:153–156

    Article  CAS  Google Scholar 

  • Whittaker RH (1975) Communities and ecosystems, 2nd edn. MacMillan Publishing Co., Inc., New York, 385pp

    Google Scholar 

  • Whittaker RH, Woodwell GM (1968) Dimension and reproduction relations of trees and shrubs in the Brookhaven forest, New York. J Ecol 56:1–25

    Article  Google Scholar 

  • Whittaker RH, Bormann FH, Likens GE, Siccama TG (1974) The Hubbard Brook ecosystem study: forest biomass and production. Ecol Monogr 44:233–254

    Article  Google Scholar 

  • Whittaker RH, Likens GE, Lieth H (1975) Scope and purpose of this volume. In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere. Springer, New York, pp 3–5

    Chapter  Google Scholar 

  • Wieman MC, Manchester SR, Wheeler EA (1999) Paleotemperature estimation from dicotyledonous wood anatomical characters. Palaios 14:459–474

    Article  Google Scholar 

  • Wieman MC, Dilcher DL, Manchester SR (2000) Estimation of mean annual temperature from leaf and wood physiognomy. For Sci 47:141–149

    Google Scholar 

  • Wilf P (1997) When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology 23:373–390

    Google Scholar 

  • Wilf P, Wing S, Greenwood D, Greenwood C (1998) Using fossil leaves as paleoprecipitation indicators: an Eocene example. Geology 26:203–206

    Article  Google Scholar 

  • Williams CJ (2007) High-latitude forest structure: methodological considerations and insights on reconstructing high-latitude fossil forests. Bull Peabody Mus Nat Hist 48:339–357

    Article  Google Scholar 

  • Williams CJ, Johnson AH, LePage BA, Vann DR, Taylor KD (2003a) Reconstruction of Tertiary Metasequoia forests I. Test of a method for biomass determination based on stem dimensions. Paleobiology 29:256–270

    Article  Google Scholar 

  • Williams CJ, Johnson AH, LePage BA, Vann DR, Sweda T (2003b) Reconstruction of Tertiary Metasequoia forests II. Structure, biomass and productivity of Eocene floodplain forests in the Canadian Arctic. Paleobiology 29:271–292

    Article  Google Scholar 

  • Williams JW, Shuman BN, Webb T III, Bartlein PJ, Leduc PL (2004) Late-Quaternary vegetation dynamics in North America: scaling from taxa to biomes. Ecol Monogr 74:309–334

    Article  Google Scholar 

  • Williams M, Talbot M, Aharon P, Salaam YA, Williams F, Brendeland KI (2006) Abrupt return of the summer monsoon 15,000 years ago: new supporting evidence from the lower White Nile valley and Lake Albert. Quat Sci Rev 25:2651–2665

    Article  Google Scholar 

  • Williams CJ, Mendell EK, Murphy J, Court WM, Johnson AH, Richter SL (2008) Paleoenvironmental reconstruction of a middle Miocene forest from the western Canadian Arctic. Palaeogeogr Palaeoclimatol Palaeoecol 261:160–176

    Article  Google Scholar 

  • Williams CJ, LePage BA, Johnson AH, Vann DR (2009) Structure, biomass, and productivity of a late Paleocene Arctic forest. Proc Acad Nat Sci Phila 158:107–127

    Article  Google Scholar 

  • Wing SL, DiMichele WA (1992) Ecological characterization of plants. In: Behrensmeyer AK, Damuth JD, DiMichele WA, Potts R, Sues H-D, Wing SL (eds) Terrestrial ecosystems through time: evolutionary paleoecology of terrestrial plants and animals. The University of Chicago Press, Chicago, pp 139–180

    Google Scholar 

  • Wing SL, Hickey LJ, Swisher CC (1993) Implications of an exceptional flora of late Cretaceous vegetation. Nature 363:342–344

    Article  Google Scholar 

  • Wolfe JA (1979) Temperature parameters of humid to mesic forests of eastern Asia and relation of forests of other regions of the Northern Hemisphere and Australasia. U S Geol Sur Prof Pap 1106:1–37

    Google Scholar 

  • Wolfe JA (1980) Tertiary climates and floristic relationships at high latitudes in the Northern Hemisphere. Palaeogeogr Palaeoclimatol Palaeoecol 30:313–323

    Article  Google Scholar 

  • Wolfe JA (1985) Distribution of major vegetational types during the Tertiary. Geophys Monogr 32:357–375

    Article  Google Scholar 

  • Wolfe JA (1993) A method of obtaining climatic parameters from leaf assemblages. U S Geol Sur Bull 2040:1–71

    Google Scholar 

  • Wolfe JA, Wehr WC (1987) Middle Eocene dicotyledonous plants from Republic, northeastern Washington. U S Geol Sur Bull 1597:1–25

    Google Scholar 

  • Wolfe JA, Wehr WC (1991) Significance of the Eocene plants at Republic, Washington. Wash Geol 19:18–24

    Google Scholar 

  • Wolff C, Haug GH, Timmermann A, Sinninghe Damsté JS, Brauer A, Sigman DM, Cane MA, Verschuren D (2011) Reduced interannual rainfall variability in East Africa during the last ice age. Science 333:743–747

    Article  PubMed  CAS  Google Scholar 

  • Woodward FI (1987) Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature 327:617–618

    Article  Google Scholar 

  • Woodward FI, Bazzaz FA (1988) The responses of stomatal density to CO2 partial pressure. J Exp Bot 39:1771–1781

    Article  Google Scholar 

  • Woodward FI, Smith TM, Emanuel WR (1995) A global land productivity and phytogeography model. Global Biogeochem Cycles 9:471–490

    Article  CAS  Google Scholar 

  • Xie S, Nott CJ, Avsejs LA, Maddy D, Chambers FM, Evershed RP (2004) Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction. Geochim Cosmochim Acta 68:2849–2862

    Article  CAS  Google Scholar 

  • Yang H, Huang Y, Leng Q, LePage BA, Williams CJ (2005) Tissue-specific biochemical preservation revealed by comparative pyrolysis analysis of Tertiary Metasequoia fossil lagerstätten. Rev Palaeobot Palynol 134:237–256

    Article  Google Scholar 

  • Yang H, Leng Q, LePage BA (2007a) Labile biomolecules play important supportive role in three-dimensionally preserved early Tertiary Metasequoia leaves from Ellesmere Island, Canadian Arctic Archipelago. Spec Publ Peabody Mus Nat Hist Yale Univ 48:317–327

    Article  Google Scholar 

  • Yang J, Wang YF, Spicer RA, Mossbruger V, Li CS, Sun Q-G (2007b) Climatic reconstruction at the Miocene Shanwang Basin, China, using leaf margin analysis, CLAMP, coexistence approach, and overlapping distribution analysis. Am J Bot 94:599–608

    Article  PubMed  Google Scholar 

  • Yang H, Pagani M, Briggs DEG, Equiza MA, Jagels R, Leng Q, LePage BA (2009) Carbon and hydrogen isotope fractionation under continuous light: implications for paleoenvironmental interpretations of the high Arctic during Paleogene warming. Oecologia 160:461–470

    Article  PubMed  Google Scholar 

  • Zachos J, Pagni M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben A. LePage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

LePage, B.A., Jacobs, B.F., Williams, C.J. (2012). Insights from Paleohistory Illuminate Future Climate Change Effects on Wetlands. In: Middleton, B. (eds) Global Change and the Function and Distribution of Wetlands. Global Change Ecology and Wetlands, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4494-3_1

Download citation

Publish with us

Policies and ethics