Skip to main content

Energy-Efficient Memristive Analog and Digital Electronics

  • Chapter
  • First Online:
Advances in Neuromorphic Memristor Science and Applications

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 4))

Abstract

This chapter reviews recent technology trends in memristive analog and digital electronics, with particular attention to programmable analog and digital circuits, ultra-dense nonvolatile resistive memory architectures, and zero leakage nonvolatile logic gates. A reconfigurable nonvolatile computing platform that harnesses memristor properties is used to deploy massive local nonvolatile memories and advance computing capabilities with much lowered energy consumption than the conventional charge-based VLSI systems. With application of memristive devices for nonvolatile memories, programmable interconnects, stateful logic gates, and nonvolatile latches with high integration density and CMOS compatibility, combining memristor technology with the prevailing CMOS technology poses to prolong the Moore’s Law beyond the hitherto observed technological limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chua LO (1971, September) Memristor-the missing circuit element. IEEE Trans Circ Theor 18:507–519

    Article  Google Scholar 

  2. Chua LO, Kang SM (1976, February) Memristive devices and systems. Proc IEEE 64:209–223

    Article  Google Scholar 

  3. Strukov DB et al (2008) The missing memristor found. Nature 453:80–83

    Article  PubMed  CAS  Google Scholar 

  4. Strukov DB, Likharev KK (2005) CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16:888–900

    Article  CAS  Google Scholar 

  5. Snider GS, Williams RS (2007, January) Nano/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnology 18:035204

    Article  Google Scholar 

  6. Shin S, Kim K, Kang SM (2010, April) Compact models for memristors based on charge–flux constitutive relationships. IEEE Trans Comput-Aided Des 29(4):590–598

    Article  Google Scholar 

  7. Varghese D, Gandhi G (2009, July) Memristor based high linear range differential pair. ICCCAS 2009:935–938

    Google Scholar 

  8. Pershin YV, Ventra MD (2010, August) Practical approach to programmable analog circuits with memristors. IEEE Trans Circ Syst I 57(8):1857–1864

    Article  Google Scholar 

  9. Shin S, Kim K, Kang SM (2009, July 23–25) Memristor-based fine resolution resistance and its applications. ICCCAS 2009:948–951

    Google Scholar 

  10. Shin S, Kim K, Kang SM (2011, March) Memristor application to programmable analog ICs. IEEE Trans Nanotechnol 10(2):266–270

    Article  Google Scholar 

  11. Ozalevli E, Hasler PE (2008, May) Tunable highly linear floating-gate CMOS resistor using common-mode linearization technique. IEEE Trans Circ Syst 55(4):999–1010

    Article  Google Scholar 

  12. Liu M, Wang W (2008, September) Application of nanojunction-based RRAM to reconfigurable IC. Micro Nano Lett 3(3):101–105

    Article  Google Scholar 

  13. Rose GS et al (2007, April) Designing CMOS/molecular memories while considering device parameter variations. ACM J Emerg Technol Comput Syst 3:1–24

    Article  Google Scholar 

  14. David CA, Feldman B (1968, August) High-speed fixed memories using large-scale integrated resistor matrices. IEEE Trans Comput c-17(8):721–728

    Article  Google Scholar 

  15. Lynch WT (1969, October) Worst-case analysis of a resistor memory matrix. IEEE Trans Comput c-18(10):940–942

    Article  Google Scholar 

  16. Shin S, Kim K, Kang SM (2010, December) Data-dependent statistical memory model for passive memristive devices array. IEEE Trans Circ Syst II 57(12):986–990

    Article  Google Scholar 

  17. Mustafar J, Waser R (2006, November) A novel reference scheme for reading passive resistive crossbar memories. IEEE Trans Nanotechnol 5(6):687–691

    Article  Google Scholar 

  18. Riaza R (2010, March) Nondegeneracy conditions for active memristive circuits. IEEE Trans Circ Syst II 57:223–227

    Article  Google Scholar 

  19. Kuekes P (2008) Material implication: digital logic with memristors. Memristor and Memristive Systems Symposium, November 21, 2008

    Google Scholar 

  20. Borghetti J et al (2010) ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464:873–875

    Article  PubMed  CAS  Google Scholar 

  21. Shin S, Kim K, Kang SM (2011, July) Reconfigurable stateful NOR gate for large-scale logic array integrations. IEEE Trans Circ Syst II 58(7):442–446

    Article  Google Scholar 

  22. Kuekes PJ et al (2005) The crossbar latch: logic value storage, restoration, and inversion in crossbar circuits. J Appl Phys 97:034301

    Article  Google Scholar 

  23. Kim K, Shin S, Kang SM (2011, May) Stateful logic pipeline architecture. IEEE Int Symp Circ Syst 2011:2497–2500

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Mo Steve Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kang, S., Shin, S. (2012). Energy-Efficient Memristive Analog and Digital Electronics. In: Kozma, R., Pino, R., Pazienza, G. (eds) Advances in Neuromorphic Memristor Science and Applications. Springer Series in Cognitive and Neural Systems, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4491-2_11

Download citation

Publish with us

Policies and ethics