Skip to main content

The Secret of the Hominin Mind: An Evolutionary Story

  • Chapter
  • First Online:
Handbook of Neurosociology

Part of the book series: Handbooks of Sociology and Social Research ((HSSR))

Abstract

As Darwin and Wallace neatly surmised, organic evolution results from a selection process that acts to preserve traits better suited for a given habitat. And there is no better example of its potent influence than the hominin brain and mind. Why do humans have such large and complex brains? As a rule, larger brains are energy costly so we can assume that our encephalized brain evolved to meet environmental demands, and if so, clues should exist in the context of the problems it evolved to solve. As the control center for human activity, the brain directs all body functions—from our extraordinary sensorimotor skills to lots of mind-related business. It houses both a “social self” with a complex linguistic-based communication system to move ideas from one mind to another and an “individual self,” a rare character in the animal world that lends itself to a personal identity distinct from other conspecifics and to the taking of the role of others. The elusive social mind also has the novel capacity to engage in two distinctive types of sociality—the ability to form tight-knit kinship bonds or strong ties, a trait shared with all social mammals, and the ability to form loose-knit friendship bonds or weak-ties, a rare trait in the animal world but essential for the creation of large-scale societies with millions of individuals. What compelling demands in our ultimate history fostered such splendid cognitive traits?

The objective of this chapter is to review and interpret what is known about the evolution of the hominin brain with a focus on what was created. The human brain with its suite of novelties was not created by random mutations, a single adaptive package, or a concurrent sequence of events. Rather it was assembled in a variegated mosaic pattern over a span of nearly 60 million years of primate evolution. And, while the jury is still out, the bulk of the evidence on the hominin brain points to three key events that shaped the cognitive software that lies beneath its convoluted surface—the expansion of the primate neocortex and the shift to visual dominance, the selective “cheery picking” of the swinging Miocene apes, and the Pleistocene shift of Homo erectus to an open-country niche.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Selection is the architect of evolution, of course, but the variation it needs to act is generated by the other forces of evolution—mutation, genetic drift, and gene flow.

  2. 2.

    A hominin is the new taxonomic term now used when referring to living humans and past humans as well as all extinct relatives that walked upright (e.g., Australopithecus)). It replaces the term hominid which is now more inclusive and includes our closest living and extinct ape relatives.

  3. 3.

    The relationship between brain size and body size for most species is closely correlated, so it would be expected that larger animals would have bigger brains than smaller ones. The encephalization quotient (EQ) is the ratio of observed brain size to the predicated size given the overall body size of a species. The encephalization quotient in humans is tremendous.

  4. 4.

    Early vertebrate brains had a structure of three divisions—a forebrain, a midbrain, and a hindbrain.

  5. 5.

    Fossilized endocasts and comparative data on living mammalian groups indicate that early mammals were tiny creatures with small brains that contained only a tiny neocortex with only about 20–25 cortical areas and no hemispheric specializations. Modern humans are estimated to have at least 200 cortical areas (see Kass 2008).

  6. 6.

    For example, most mammals cannot detect ultraviolet light, although many insects, fish, birds, and snakes are aware of its presence. One exception are Arctic reindeer (Rangifer) who live in a relatively rich UV light environment with rods and cones sensitive to ultraviolet light. With selection for an enhanced visual range that included short-wavelength vision, Arctic reindeer were able to adapt to the extreme seasonal differences in light levels (Hogg et al. 2011).

  7. 7.

    Although evolution is a population concept that refers to change, and not progress or complexity, the fossil record reveals a very slow but increasing complexity of the cortical senses that virtually exploded with the rise of higher mammals, especially primates.

  8. 8.

    Each epoch of the Cenozoic Era is associated with the radiation of a particular grouping of primates, although overlap exists in time period lines.

  9. 9.

    The Plesiadapiformes refer to a large grouping of extinct mammalian families who appear to be the stem population for the origin of true primates in the late Paleocene and early Eocene. Not everyone agrees with this assessment, although recently discovered fossils and a reinterpretation of older fossils lend weight to this assessment (see Ross and Martin 2007: 74).What nobody doubts is that the first true primates relied upon a tree-living niche for survival and reproduction.

  10. 10.

    While a few other mammalian species have postorbital bars, this is a major distinction from early proto-primates (see Ross and Martin 2007).

  11. 11.

    Mammals have four kinds of teeth—incisors, canines, premolars, and molars. A dental formula is an abbreviated way of denoting the number and types of teeth in each quadrant of the mouth. A primate with a 2.1.3.3 dental formula means it has 2 incisors, 1 canine, 3 premolars, and 3 molars in each quadrant or 36 teeth. As teeth are completely under genetic control and get preserved more than any other body part, primate dentition provides information on habitat, body size, diet, and even “life history characteristics” (to be discussed).

  12. 12.

    A clade refers to a group of species that are descended from a single common ancestor. Clades are considered to be monophyletic—that is, they contain one last common ancestor and all its descendants. The LCA can be inferred (until discovered) or a known species.

  13. 13.

    With the rise of mammals, the olfactory bulb and olfactory cortex underwent a foremost and elaborate expansion (Rowe et al. 2011).

  14. 14.

    As a subcortical sense, the olfactory bulb is located far from cortical regions—such as Broca’s area in the left inferior frontal lobe where the programs for speech sounds are located. This probably accounts for why humans often have difficulty classifying and naming customary smells (Falk 2000:68). It is also why the aromas of familiar smells will evoke at times strong emotional sensations.

  15. 15.

    Today, we can thank (or blame) our Oligocene stem ancestor for our remarkable sweet-taste receptor which may explain our fondness for rich, yummy desserts and other “junk foods” where sucrose or other refined sugars are the usual ingredient.

  16. 16.

    According to Hackett (2008: 775), “there is both direct and indirect evidence that the major features of nonhuman primate auditory cortex organization are conserved in humans.”

  17. 17.

    Although each modality is distinct in its own right, all primates utilize more than one modality simultaneously, which increases the likelihood that a message will be properly received. Thus, cross-modal and intermodal activity is the norm. However, vision is the major integrator of most environmental stimuli, and it is so powerful that it even influences the information pickup for the auditory and tactile sense; for in cases of intersensory conflict, the visual system will usually determine what is perceived.

  18. 18.

    As discussed earlier, all Old World monkeys, apes, and humans have a 2.1.2.3 dental formula or 32 teeth (see note 11). How then would you separate monkey teeth from ape/human teeth? The answer is—look at lower molar construction. All Old World monkeys will have four cusps arranged in two pairs, each linked by a loph so they have a bilophodont, four-cusp pattern on their molars. In contrast, ape and human lower molar construction will have an additional cusp that is shaped like a Y and called a Y-5 cusp pattern.

  19. 19.

    See note 18.

  20. 20.

    Only the huge teeth and jaws of Gigantopithecus have been recovered, but some maintain that this giant ape is the stem ancestor of the legendary Sasquatch, Yeti, and Bigfoot who are alleged to still roam the forests of Asia and the Pacific Northwest. The real significance of Gigantopithecus, of course, is the realization that such a hulking ape survived in parts of Vietnam, India, and China for over 9 million years.

  21. 21.

    The appearance in the fossil record of Microcolobus, an ancestral colobine about 10 million years ago, nicely fits the ripe-fruit-unripe-fruit hypothesis as apes began their accelerated decline during the late Miocene (Raaum et al. 2005).

References

  • Adams, E., Cooper, S., Thomson, G., & Parham, P. (2000). Common chimpanzees have greater diversity than humans at two of the three highly polymorphic MHC class I genes. Immunogenetics, 51, 410–424.

    Google Scholar 

  • Andrews, P. (1981). Species diversity and diet in monkeys and apes during the miocene. In C. B. Stringer (Ed.), Aspects of human evolution. London: Taylor & Francis.

    Google Scholar 

  • Andrews, P. (2007). The biogeography of hominid evolution. Journal of Biogeography, 34, 381–382.

    Google Scholar 

  • Andrews, P., & Kelley, J. (2007). Middle miocene dispersals of apes. Folia Primatol, 78, 328–343.

    Google Scholar 

  • Bailey, R., & Aunger, R. (1990). Humans as primates. The social relationships of Efe Pygmy men in comparative perspective. International Journal of Primatology, 11, 127–145.

    Google Scholar 

  • Barton, R. A. (1998). Visual specialization and brain evolution in primates. Proceedings of the Royal Society, London, B Biological Sciences, 265, 1933–1937.

    Google Scholar 

  • Begun, D. (2007). Fossil record of miocene hominoids. In W. Henke & T. Hardt (Eds.), Handbook of paleoanthropology 1 (pp. 921–977). Berlin: Springer.

    Google Scholar 

  • Benefit, B. R. (1999). Victoriapithecus: The key to old world monkey and catarrhine origins. Evolutionary Anthropology, 7, 155–174.

    Google Scholar 

  • Benefit, B., & McCrossin, M. (1997). Earliest known old world monkey skull. Nature, 388, 368–371.

    Google Scholar 

  • Bhatnagar, K. P., & Smith, T. D. (2007). The vomeronasal organ and its evolutionary loss in catarrhine primates. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference, V4 (pp. 41–148). Amsterdam: Elsevier.

    Google Scholar 

  • Bloch, J., & Boyer, D. (2002). Grasping primate origins. Science, 298, 1606–1610.

    Google Scholar 

  • Bloch, J., & Boyer, D. (2007). New skeletons of Paleocene-Eocene plesiadapiformes: A diversity of arboreal positional behaviors in early primates. In M. J. Ravosa & M. Dagosto (Eds.), Primate origins: Adaptations and evolution (pp. 535–581). New York: Springer.

    Google Scholar 

  • Bradley, B. (2008). Reconstructing phylogenies and phenotypes: A molecular view of human evolution. Journal of Anatomy, 212, 337–353.

    Google Scholar 

  • Call, J., & Tomasello, M. (2007). The gestural communication of apes and monkeys. Mahwah: Lawrance Erlbaum.

    Google Scholar 

  • Callaway, E. (2011). Female australopiths seek brave new world. Nature, June 1, p. 1038.

    Google Scholar 

  • Campbell, F., & Maffer, L. (1976). Contrast and spatial frequency. In R. Held & W. Richards (Eds.), Recent progress in perception (Scientific American). San Francisco: W.H. Freeman and Company.

    Google Scholar 

  • Casagrande, V. A., & Khaytin, I. (2007). The evolution of parallel visual pathways in the brains of primates. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference, V4 (pp. 87–119). Amsterdam: Elsevier.

    Google Scholar 

  • Chatterjee, H., Simon, H., Barnes, I., & Groves, C. (2009). Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC Evolutionary Biology, 9, 259–278.

    Google Scholar 

  • Cheney, D. L., & Seyfarth, R. M. (1980). Vocal recognition in free-ranging vervet monkeys. Animal Behavior, 28, 739–751.

    Google Scholar 

  • Coleman, M. (2009). What do primates hear? a meta-analysis of all known nonhuman primate behavioral audiograms. International Journal of Primatology, 30, 55–91.

    Google Scholar 

  • Coleman, M., & Colbert, M. (2010). Correlation between auditory structures and hearing in non-human primates. Journal of Morphology, 27, 511–532.

    Google Scholar 

  • Coleman, M., Kay, R., & Colbert, M. (2010). Auditory morphology and hearing sensitivity in fossil new world monkeys. The Anatomical Record, 293, 1711–1721.

    Google Scholar 

  • Conroy, G. (1990). Primate evolution. New York: Methuen.

    Google Scholar 

  • Copeland, S., Sponheimer, M., de Ruiter, D., Lee-Thorp, J., Codron, D., le Roux, P., Grimes, V., & Richards, M. (2011). Strontium isotope evidence for landscape use by early hominins. Nature, 474, 76–78.

    Google Scholar 

  • Corruccini, R., Ciochon R., & McHenry H. (1975). Osteometric shape relationships in the wrist joint of some anthropoids. Folia Primatologioa, 24, 250–274.

    Google Scholar 

  • Deacon, T. W. (2007). The evolution of language systems in the human brain. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference, V4 (pp. 529–547). Amsterdam: Elsevier.

    Google Scholar 

  • Dean, M. C., & Leakey, M. (2004). Enamel and dentine development and the life history profile of Victoriapithecus macinnesi from maboko island, Kenya. Annals of Anatomy, 186, 405–412.

    Google Scholar 

  • Deane, A. (2009). Early miocene catarrhine dietary behaviour: The influence of the red queen effect on incisor shape and curvature. Journal of Human Evolution, 56, 275–285.

    Google Scholar 

  • deWaal, F. B., Dindo, M., Freeman, C. A., & Hall, M. (2005). The monkey in the mirror: Hardly a stranger. Proceedings of the National Academy of Sciences, 102, 1140–1146.

    Google Scholar 

  • Dominy, N., Ross, C., & Smith, T. (2004). Evolution of the special senses in primates: Past, present and future. The Anatomical Record Part A, 281 A, 1078–1082.

    Google Scholar 

  • Durkheim, E. ([1895] 1938). The division of labor in society (George Simpson, Trans.). New York: The Free Press.

    Google Scholar 

  • Falk, D. (2000). Primate diversity. New York: W.W. Norton & Company.

    Google Scholar 

  • Falk, D. (2007). Evolution of the primate brain. In W. Henke & T. Hardt (Eds.), Handbook of paleoanthropology (Vol. 1, pp. 1133–1162). Berlin: Springer.

    Google Scholar 

  • Filler, A. (2007). Emergence and optimization of upright posture among hominiform hominoids and the evolutionary pathophysiology of back pain. Neurosurg Focus, 23, 1–6.

    Google Scholar 

  • Fleagle, J. (1999). Primate adaptation and evolution. New York: Academic.

    Google Scholar 

  • Fleagle, J., Shea, J., Grine, F., Baden, A., & Leakey, R. (2010). Out of Africa (Vol. 1). London: Springer.

    Google Scholar 

  • Fortelius, M., & Hokkanen, A. (2001). The trophic context of hominoid occurrence in the later miocene of Western Eurasia: A primate-free view. In L. de bonis, G. Koufos, & P. Andrews (Eds.), Hominoid evolution and climatic change in Europe (pp. 19–47). Cambridge: Cambridge University Press.

    Google Scholar 

  • Freides, D. (1973). Human information processing and sense modality: Cross-modal functions, information complexity, memory, and deficit. Psychological Bulletin, 81(5), 284–310.

    Google Scholar 

  • Gagneux, P., & Varki, A. (2001). Genetic differences between humans and great apes. Molecular Phylogenetics and Evolution, 18, 2–13.

    Google Scholar 

  • Gagneux, P. (2002). The genus pan: Population genetics of an endangered outgroup. Trends in Genetics , 18, 327–330.

    Google Scholar 

  • Gallup, G. G. (1998). Self-awareness and the evolution of social intelligence. Behavioral Processes, 42, 239–247.

    Google Scholar 

  • Gebo, D., Malit, N., & Nengo, I. (1997). New proconsuloid postcranials from the early Miocene of Kenya. Primates, 50, 311–319.

    Google Scholar 

  • Gibson, J. J. (1962). Observations on active touch. Psychological Review, 69, 477–491.

    Google Scholar 

  • Glaser, D. (2007). The evolution of the sweetness receptor in primates. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 121–128). Amsterdam: Elsevier.

    Google Scholar 

  • Glaser, D., Tinti, J. M., & Nofre, C. (1995). Evolution of the sweetness receptor in primates. 1. Why does alitame taste sweet in all prosimians and simians, and aspartame only in old world simians? Chemical Senses, 20, 573–584.

    Google Scholar 

  • Glazko, G. V., & Nei, M. (2003). Estimation of divergence times for major lineages of primate species. Molecular Biology and Evolution (Supplement), 20, 424–434.

    Google Scholar 

  • Glendenning, K. K., & Masterton, R. B. (1998). Comparative morphometry of mammalian central auditory systems: Variation in nuclei and form of the ascending system. Brain, Behavior and Evolution, 51, 59–89.

    Google Scholar 

  • Goodall, J. (1986). The chimpanzees of Gombe: Patterns of behavior. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78, 1360–1380.

    Google Scholar 

  • Gregory, W. (1916). Studies on the evolution of the primates. Bulletin of the American Museum of Natural History, 35, 239–355.

    Google Scholar 

  • Hackett, T. (2003). The comparative anatomy of the primate auditory cortex. In A. Ghazanfar (Ed.), Primate audition: Behavior and neurobiology (pp. 199–226). Boca Raton: CRC Press.

    Google Scholar 

  • Hackett, T. (2008). Anatomical organization of the auditory cortex. Journal of the American Academy of Audiology, 19, 774–779.

    Google Scholar 

  • Halloway, R. (1978). The relevance of endocasts for studying primate brain evolution. In C. R. Noback (Ed.), Sensory systems of primates. New York: Plenum.

    Google Scholar 

  • Hamrick, M. (2001). Primate origins: evolutionary change in digital ray patterning and segmentation. Journal of Human Evolution, 40, 339–351.

    Google Scholar 

  • Hare, B. (2011). From hominoid to hominid mind: What changed and why? Annual Review of Anthropology, 40, 293–309.

    Google Scholar 

  • Harpendig, H., Gurven, M. R., et al. (1998). Genetic traces of ancient demography. Proceedings of the National Academy of Sciences, 95, 1961–1967.

    Google Scholar 

  • Harrison, T., & Andrews, P. (2009). The anatomy and systematic position of the early miocene proconsulid from meswa bridge, Kenya. Journal of Human Evolution, 56, 479–496.

    Google Scholar 

  • Heffner, R. (2004). Primate hearing from a mammalian perspective. The Anatomical Record, 281A, 1111–1122.

    Google Scholar 

  • Heffner, H., & Heffner, R. (2008). High frequency hearing. In P. Dallos, D. Oertel, & R. Hoy (Eds.), Handbook of the senses: Audition (pp. 55–60). New York: Elsevier.

    Google Scholar 

  • Heidegard, H., Beil, B., Hilbig, H., Call, J., & Bidmon, H.-J. (2009). Superior olivary complex organization and cytoarchitecture may be correlated with function and catarrhine primate phylogeny. Brain Structure and Function, 213, 489–497.

    Google Scholar 

  • Hogg, C., Neveu, M., Stokkan, K.-A., Folkow, L., Cottrill, P., Douglas, R., Hunt, D., & Jeffery, G. (2011). Arctic reindeer extend their visual range into the ultraviolet. The Journal of Experimental Biology, 214, 2014–2019.

    Google Scholar 

  • Holloway, R. (1968). The evolution of the primate brain: Some aspects of quantitative relations. Brain Research, 7, 121–172.

    Google Scholar 

  • Hoover, K. (2010). Smell with inspiration: The evolutionary significance of olfaction. Yearbook of Physical Anthropology, 53, 63–74.

    Google Scholar 

  • Israfil, H. S. M., Zehr, A. R., Mootnick, M. R., & Steiper, M. E. (2011). Unresolved molecular phylogenies of gibbons and siamangs (family: Hylobatidae) based on mitochondrial, Y-linked loci, and X linked loci indicate a rapid miocene radiation or sudden vicariance event. Molecular Phylogenetics and Evolution, 58, 447–455.

    Google Scholar 

  • Jablonski, N. G., Whitfort, M. J., Roberts-Smith, N., & Qinqu, X. (2000). The influence of life history and diet on the distribution of catarrhine primates during the Pleistocene in eastern Asia. Journal of Human Evolution, 39, 131–157.

    Google Scholar 

  • Jacobs, G. H. (1993). The distribution and nature of colour vision among the mammals. Biological Reviews of Cambridge Philosophical Society, 68, 413–471.

    Google Scholar 

  • Jacobs, G. H. (2004). Photopigment variations and the evolution of anthropoid vision. In C. F. Ross & R. F. Kay (Eds.), Anthropoid origins: New visions (pp. 645–664). New York: Kluwer/Plenum.

    Google Scholar 

  • Jacobs, G. H. (2007). The comparative biology of photopigments and color vision in primates. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 80–85). Amsterdam: Elsevier.

    Google Scholar 

  • Jacobs, G. H., & Deegan, J. F. (1999). Uniformity of colour vision in old world monkeys. Proceedings of the Royal Society London B, 266, 2023–2028.

    Google Scholar 

  • Jacobs, G. H., & Williams, G. A. (2001). The prevalence of defective color vision in old world monkeys and apes. Color Research and Application [supplement], 26, 123–127.

    Google Scholar 

  • Janečka, J., Miller, W., Pringle, T., Wiens, F., Zitzmann, A., Helgen, K., Springer, M., & Murphy, W. (2007). Molecular and genomic data identify the closest living relative of primates. Science, 318, 792–794.

    Google Scholar 

  • Jeffers, R., & Lehiste, I. (1979). Principles and methods of historical linguistics. Cambridge, MA: MIT Press.

    Google Scholar 

  • Jerison, H. J. (1973). Evolution of the brain and behavior. New York: Academic.

    Google Scholar 

  • Jerison, H. J. (2007). What fossils tell us about the evolution of the neocortex. In J. Kaas (Ed.), Evolution of nervous systems: A comprehensive reference (Vol. 3, pp. 1–12). Amsterdam: Elsevier.

    Google Scholar 

  • Kagaya, M., Ogihara, N., & Nakatsukasa, M. (2010). Is the clavicle of apes long? an investigation of clavicular length in relation to body mass and upper thoracic width. International Journal of Primatology, 31, 209–217.

    Google Scholar 

  • Kass, J. (2007). The evolution of sensory and motor systems in primates. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 35–57). Amsterdam: Elsevier.

    Google Scholar 

  • Kass, J. (2008). The evolution of the complex sensory and motor system of the human brain. Brain Research Bulletin, 75, 384–390.

    Google Scholar 

  • Kass, J., & Pons, T. P. (1988). The somatosensory system of primates. In H. D. Steklis & J. Erwin (Eds.), Comparative primate biology, Vol. 4: Neurosciences (pp. 421–468). New York: Alan R. Liss.

    Google Scholar 

  • Kaessmann, H., & Pääbo, S. (2002). The genetic history of humans and the great apes. Journal of Internal Medicine, 251, 1–18.

    Google Scholar 

  • Kasserman, H., Wiebe, V., & Pääbo, S. (1999). Extensive nuclear DNA sequence diversity among chimpanzees. Science, 286, 1159–1161.

    Google Scholar 

  • Kay, R., Ungar, P. (1997). Dental evidence for diet in some Miocene Catarrhines with comments on the effects of phylogeny on the interpretation of adaptation. In D. Begun, C. Ward, & M. Rose (Eds.), Function, phylogeny, and fossils: Miocene hominoid evolution and adaptation. New York: Plenum.

    Google Scholar 

  • Keller, G., & Barron, J. (1987). Paleodepht distribution of Neogene hiatuses. Paleoceanography, 2, 697–713.

    Google Scholar 

  • Keller, H. (1904). The world I live in. London: Hodder & Stoughton.

    Google Scholar 

  • Kelley, J. (2002). Life-history evolution in miocene and extant apes. In N. Minugh-Purvis & K. J. McNamara (Eds.), Human evolution through developmental change. Baltimore: John Hopkins University Press.

    Google Scholar 

  • Kelley, J., & Smith, T. M. (2003). Age at first molar emergence in early miocene Afropithecus turkanensis and life-history evolution in the Hominoidea. Journal of Human Evolution, 44, 307–329.

    Google Scholar 

  • King, B. J. (2004). Dynamic dance: Nonvocal communication in the African great apes. Cambridge: Harvard University Press.

    Google Scholar 

  • King, A., & Nelken, I. (2009). Unraveling the principles of auditory cortical processing: Can we learn from the visual system? Nature Neuroscience, 12, 698–701.

    Google Scholar 

  • Kirk, C. (2004). Comparative morphology of the eye in primates. The Anatomical Record Part A, 281A, 1095–1103.

    Google Scholar 

  • Kirk, C. (2006). Visual influences on primate encephalization. Journal of Human Evolution, 51, 76–90.

    Google Scholar 

  • Krubitzer, L., & Kaas, J. (2005). The evolution of neocortex in mammals: How is phenotypic diversity generated. Current Opinion in Neurobiology, 15, 444–453.

    Google Scholar 

  • Le Gros Clark, W. E. (1962). The antecedents of man. Chicago: Quadrangle Books.

    Google Scholar 

  • Lederman, S. J., & Klatzky, R. L. (2009). Haptic perception: A tutorial. Attention, Perception and Psychophysics, 71, 1439–1459.

    Google Scholar 

  • Lemelin, P., & Jungers, W. (2007). Body size and scaling of the hands and feet of prosimian primates. American Journal of Physical Anthropology, 133, 828–840.

    Google Scholar 

  • Lewis, O. J. (1974). The wrist articulations of the anthropoidea. In F. Jenkins (Ed.), Primate locomotion (pp. 143–167). New York: Academic.

    Google Scholar 

  • Lucas, P., Dominy, N., Riba-Hernandex, P., Stoner, K., Yamashita, N., LorÍa-Calderón, E., Petersen-Pereira, W., Rojas-Durán, Y., Salas-Pena, R., Solis-Madrigal, S., Osorio, D., & Darvell, B. (2003). Evolution and function of routine trichromatic vision in primates. Evolution, 57, 2636–2643.

    Google Scholar 

  • Lyon, D. C. (2007). The evolution of visual cortex and visual systems. In J. Kaas & L. Krubitzer (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 3, pp. 267–306). Amsterdam: Elsevier.

    Google Scholar 

  • Machalek, R. (1992). The evolution of macrosociety: Why are large societies rare? Advances in Human Ecology, 1, 33–64.

    Google Scholar 

  • Maclatchy, L. (2004). The oldest ape. Evolutionary Anthropology, 13, 90–103.

    Google Scholar 

  • MacLatchy, L., Gebo, D., Kityo, R., & Pilbeam, D. (2000). Postcranial functional morphology of Morotopithecus bishopi, with implications for the evolution of modern ape locomotion. Journal of Human Evolution, 39, 159–183.

    Google Scholar 

  • Martin, R. D. (1990). Primate origins and evolution: A phylogenetic construction. London: Chapman & Hall.

    Google Scholar 

  • Maryanski, A. R. (1987). African ape social structure: Is there strength in weak ties? Social Networks, 9, 191–215.

    Google Scholar 

  • Maryanski, A. (1992). The last ancestor: An ecological network model on the origins of human sociality. Advances in Human Ecology, 2, 1–32.

    Google Scholar 

  • Maryanski, A. (1995). African ape social networks: A blueprint for reconstructing early hominid social structure. In J. Steele & S. Shennan (Eds.), Archaeology of human ancestry. London: Routledge.

    Google Scholar 

  • Maryanski, A. (1996). Was speech an evolutionary afterthought? In B. Velichkovsky & D. Rumbaugh (Eds.), Communicating meaning: The evolution and development of language (pp. 79–97). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Maryanski, A. (1997). Primate communication and the ecology of a language niche. In U. Segerstråle & P. Molnár (Eds.), Nonverbal communication: Where nature meets culture (pp. 191–209). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Maryanski, A., & Turner, J. (1992). The social cage: Human nature and the evolution of society. Stanford: Stanford University Press.

    Google Scholar 

  • Masterton, B., & Diamond, I. (1973). Hearing: Central neural mechanisms. In E. Carterette & M. Friedman (Eds.), Handbook of perception no. 3, biology of perceptual systems (pp. 408–448). New York: Academic.

    Google Scholar 

  • Mead, G. H. (1934). Mind, self and society. Chicago: University of Chicago Press.

    Google Scholar 

  • Meldrum, J. (2006). Sasquatch: Legend meets science. New York: Forge.

    Google Scholar 

  • Miller, E. R., Benefit, B. R., McCrossin, M. L., Plavan, J. M., Leakey, M. G., El-Barkooky, A. N., Hamdan, M. A., Abdel Gawad, M. K., Hassan, S. M., & Simons, E. L. (2009). Systematics of early and middle miocene old world monkeys. Journal of Human Evolution, 57, 195–211.

    Google Scholar 

  • Molnár, Z., Tavare, A., & Cheung, A. F. P. (2007). The origin of neocortex: Lessons from comparative embryology. In J. Kaas & L. Krubitzer (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 3, pp. 13–26). Amsterdam: Elsevier.

    Google Scholar 

  • Nakatsukasa, M. (2008). Comparative study of moroto vertebral specimens. Journal of Human Evolution, 55, 581–588.

    Google Scholar 

  • Napier, J. (1963). Brachiators and brachiators. In J. Napier & N. A. Barniat (Eds.), The primates. Symposia of the Zoological Society of London 10.

    Google Scholar 

  • Napier, J. R., & Napier, P. H. (1985). The natural history of the primates. Cambridge, MA: MIT Press.

    Google Scholar 

  • Nofre, C., Tinti, J. M., & Glaser, D. (1996). Evolution of the sweetness receptor in primates. 11. “Gustatory responses of non-human primates to nine compounds known to be sweet in man”. Chemical Senses, 21, 747–762.

    Google Scholar 

  • Norman, P., & Don Cameron, H. (1977). Cladistic methods in textual, linguistic, and phylogenetic analysis. Systematic Zoology, 26, 380–385.

    Google Scholar 

  • Oxnard, C. E. (1963). Locomotor adaptation in the primates. In J. Napier, W. A. Barnicot (Eds.), The Primates. Symposia of the Zoological Society of London 10.

    Google Scholar 

  • Pilbeam, D., & Young, N. (2004). Hominoid evolution: Synthesizing disparate data. Comptes Rendus Palevol, 3, 305–321.

    Google Scholar 

  • Platnick, N., & Cameron, D. (1977). Cladistic methods in textual, linguistic, and phylogenetic analysis. Systematic Zoology, 26, 380–385.

    Google Scholar 

  • Plotnik, J., de Waal, F., & Reiss. D. (2006) Self-recognition in an Asian elephant. Proceedings of the National Academy of Sciences USA, 103, 17053–17057.

    Google Scholar 

  • Potts, R. (2004). Paleoenvironmental basis of cognitive evolution in great apes. American Journal of Primatology, 62, 209–228.

    Google Scholar 

  • Preuschoft, S., & Preuschoft, H. (1994). Primate nonverbal communication: Our communication heritage. In W. Nöth (Ed.), Origins of semiosis (pp. 66–100). Berlin: Mouton de Gruyter.

    Google Scholar 

  • Preuss, T. M. (2007). Primate brain evolution in phylogenetic context. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 1–34). Amsterdam: Elsevier.

    Google Scholar 

  • Purvis, D., White, L., Zheng, D., Andrews, T., & Riddle, D. (1996). Brain size, behavior and the allocation of neural space. In D. Magnusson (Ed.), The lifespan development of individuals: Behavioral, neurobiological, and psychosocial perspectives. Cambridge: Cambridge University Press.

    Google Scholar 

  • Raaum, R., Kirstin, L., Sterner, N., Noviello, C., Stewart, C., & Disotell, T. (2005). Catarrhine primate divergence dates estimated from complete mitochondrial genomes: Concordance with fossil and nuclear DNA evidence. Journal of Human Evolution, 48, 237–257.

    Google Scholar 

  • Radinsky, L. B. (1970). The fossil evidence of prosimian brain evolution. In C. Noback & W. Montagna (Eds.), The primate brain. New York: Appleton.

    Google Scholar 

  • Radinsky, L. B. (1974). The fossil evidence of anthropoid brain evolution. American Journal of Physical Anthropology, 41, 15–28.

    Google Scholar 

  • Rakic, P., & Kornack, D. (2001). Neocortical expansion and elaboration during primate evolution: A view from neuroembryology. In K. R. Gibson & D. Falk (Eds.), Evolutionary anatomy of the primate cerebral cortex (pp. 30–56). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rakic, P., & Kornack, D. (2007). The development and evolutionary expansion of the cerebral cortex in primates. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 243–259). Amsterdam: Elsevier.

    Google Scholar 

  • Relethford, J. (2010). The human species. Boston: McGraw Hill.

    Google Scholar 

  • Ross, C. F., & Martin, R. D. (2007). The role of vision in the origin and evolution of primates. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 59–76). Amsterdam: Elsevier.

    Google Scholar 

  • Rossie, J. B. (2005). “Anatomy of the nasal cavity and paranasal sinuses in aegyptopithecus and early Miocene African catarrhines. American Journal of Physical Anthropology, 126(126), 250–267.

    Google Scholar 

  • Rouquier, S., & Giorgi, D. (2007). The loss of olfactory receptor genes in human evolution. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 129–139). Amsterdam: Elsevier.

    Google Scholar 

  • Rowe, T., Macrini, T., & Luo, Zhe-Xi. (2011). Fossil evidence on origin of the mammalian brain. Science, 332, 955–957.

    Google Scholar 

  • Savage-Rumbaugh, S., & Lewin, R. (1994). Kanzi: The ape at the brink of the human mind. New York: Wiley.

    Google Scholar 

  • Savage-Rumbaugh, S. J. M., Seveik, J., Brakke, K., Williams, S. L., & Rumbaugh, D. (1993). Language comprehension in the ape and child. Monographs of the society for research in child development (Vol. 58, 3–4). Chicago: University of Chicago Press.

    Google Scholar 

  • Seiffert, E., Perry, J., Simons, E., & Boyer, D. (2009). Convergent evolution of anthropoid-like adaptations in Eocene adapiform primates. Nature, 461, 118–121.

    Google Scholar 

  • Semendeferi, K., & Damasio, H. (2000). The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. Journal of Human Evolution, 38, 317–332.

    Google Scholar 

  • Sherwood, C. C., & Hof, P. R. (2007). The evolution of neuron types and cortical histology in apes and humans. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 355–378). Amsterdam: Elsevier.

    Google Scholar 

  • Sherwood, C., Subiaul, F., & Zawidzki, T. (2008). A natural history of the human mind: Tracing evolutionary changes in brain and cognition. Journal of Anatomy, 212, 426–454.

    Google Scholar 

  • Silcox, M. T. (2007). Primate taxonomy, plesiadapiforms, and approaches to primate origins. In M. J. Ravosa & M. Dagosto (Eds.), Primate origins: Adaptations and evolution (pp. 143–178). New York: Plenum Press.

    Google Scholar 

  • Silcox, M., Benham, A., & Block, J. (2010). Endocasts of microsyops (microsyopidae, primates) and the evolution of the brain in primitive primates. Journal of Human Evolution, 58, 505–521.

    Google Scholar 

  • Simons, E. (1987). New faces of aegyptopithecus from the oligocene of Egypt. Journal of Human Evolution, 16, 273–289.

    Google Scholar 

  • Smith, T. D., Bhatnagar, K. P., Shimp, K. L., et al. (2002). Histological definition of the vomeronasal organ in humans and chimpanzees with a comparison to other primates. Anatomical Record, 265, 176–192.

    Google Scholar 

  • Snowdon, C. (1990). Language capacities of Non-human animals. Yearbook of Physical Anthropology, 33, 215–243.

    Google Scholar 

  • Sousa, A., & Wood, B. (2007). The hominin fossil record and the emergence of the modern human central nervous system. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 292–336). Amsterdam: Elsevier.

    Google Scholar 

  • Stanford, C., Allen, J., & Antón, S. (2013). Biological anthropology. Boston: Pearson.

    Google Scholar 

  • Stebbins, G. L. (1969). The basis of progressive evolution. Chapel Hill: University of North Carolina Press.

    Google Scholar 

  • Stebbins, G. L. (1978). The dynamics of evolutionary change. In H. Evolution (Ed.), Ediated by noel korn (pp. 61–79). New York: Holt, Rinehart and Winston.

    Google Scholar 

  • Stein, P., & Rowe, B. (2011). Physical anthropology. New York: McGraw Hill.

    Google Scholar 

  • Suddenforf, T., & Collier-Baker, E. (2009). The evolution of primate visual self-recognition: Evidence of absence in lesser apes. Proceedings of the Royal Society B: Biological Sciences, 276, 1671–1677.

    Google Scholar 

  • Taylor, M. M., Lederman, S. J., & Gibson, R. H. (1973). Tactual perception of texture. In E. Carterrette & M. Friedman (Eds.), Handbook of perception (Vol. 5). New York: Academic.

    Google Scholar 

  • Temerin, L., & Cant, J. (1983). The evolutionary divergence of old world monkeys and apes. American Naturalist, 122, 335–351.

    Google Scholar 

  • Tomasello, M., & Call, J. (2007). Ape gestures and the origins of language. In J. Call & M. Tomasello (Eds.), The gestural communication of apes and monkeys (pp. 221–239). Mahwah: Lawrance Erlbaum.

    Google Scholar 

  • Tomasello, M., & Herrmann, e. (2010). Ape and human cognition: What’s The difference? Currrent Directions in Psychological Science, 19, 3–8.

    Google Scholar 

  • Turner, J., & Maryanski, A. (2005). Incest: Origins of the taboo. Boulder: Paradigm Press.

    Google Scholar 

  • Turner, J., & Maryanski, A. (2008). On the origin of societies by natural selection. Boulder: Paradigm Publishers.

    Google Scholar 

  • Von Senden, M. (1960). Space and sight. The perception of space and shape in the congenitally blind before and after operation (Peter Heath, Trans.). London: Methuen.

    Google Scholar 

  • Vorobyev, M. (2004). Ecology and evolution of primate colour vision. Clinical and Experimental Optometry, 87, 231–238.

    Google Scholar 

  • Walker, A. D., Falk, R. S., & Pickford, M. (1983). The skull of Proconsul africanus: Reconstruction of cranial capacity. Nature, 305, 525–527.

    Google Scholar 

  • Ward, C. V. (1993). Torso morphology and locomotion in proconsul nyanzae. American Journal of Physical Anthropology, 92, 291–328.

    Google Scholar 

  • Ward, C., Kimbel, W., & Johanson, D. (2011). Complete fourth metatarsal and arches in the foot of australopithecus afarensis. Science, 331, 750–753.

    Google Scholar 

  • Whishaw, I. Q. (2003). Did a change in sensory control of skilled movements stimulate the evolution of the primate frontal cortex? Behavioral and Brain Sciences, 146, 31–41.

    Google Scholar 

  • Williams, B., Kay, R., & Kirk, C. (2010). New perspectives on anthropoid origins. Proceedings of the National Academy of Sciences, 107, 4797–4804.

    Google Scholar 

  • Wise, S. P. (2007). Evolution of ventral premotor cortex and the primate way of reaching. In J. Kaas & T. Preuss (Eds.), Evolution of nervous systems: A comprehensive reference (Vol. 4, pp. 157–165). Amsterdam: Elsevier.

    Google Scholar 

  • Wolpoff, M. (1999). Paleoanthropology. Boston: McGraw-Hill.

    Google Scholar 

  • Young, N. (2003). A reassessment of living hominoid postcranial variability: Implications for ape evolution. Journal of Human Evolution, 45, 441–464.

    Google Scholar 

  • Zalmout, L., Sanders, W., MacLatchy, L., Gunnell, G., Al-Mufarreh, Y., Ali, M., Nasser, A.-A., Al-Masari, A., Al-Sobhi, S., Nadhra, A., Matari, A., Wilson, J., & Gingerich, P. (2010). New oligocene primate from Saudi Arabia and the divergence of apes and old world monkeys. Nature, 466, 360–365.

    Google Scholar 

  • Zhang, J., & Webb, D. M. (2003). Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates. Proceedings of the National Academy of Sciences, 100, 8337–8341.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Maryanski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Maryanski, A. (2013). The Secret of the Hominin Mind: An Evolutionary Story. In: Franks, D.D., Turner, J.H. (eds) Handbook of Neurosociology. Handbooks of Sociology and Social Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4473-8_18

Download citation

Publish with us

Policies and ethics