Skip to main content

Models of Solar Total and Spectral Irradiance Variability of Relevance for Climate Studies

  • Chapter

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

The variable radiative output of the Sun is a prime external driver of the Earth’s climate system. Just how effective this driver is has remained relatively uncertain, however, partly due to missing knowledge on the exact variation of the Sun’s irradiance over time in different parts of the solar spectrum. Due to the limited length of the time series of measured irradiance and inconsistencies between different measurements, models of solar irradiance variation are particularly important. Here we provide an overview of progress over the last half decade in the development and application of the SATIRE family of models. For the period after 1974, the model makes use of the full-disc magnetograms of the Sun and reproduces up to 97 % of the measured irradiance variation. Over this time frame, there is no evidence for any non-magnetic change in the solar irradiance on time scales longer than about a day. We have also been able to compute total solar irradiance since the Maunder minimum and further into the past throughout the whole Holocene. The Sun’s spectral irradiance from the Lyman α line in the UV to the far infrared has also been reconstructed throughout the telescopic era.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ball, W. T., Unruh, Y. C., Krivova, N. A., Solanki, S. K., & Harder, J. W. (2011). Solar irradiance: a six-year comparison between SORCE observations and the SATIRE model. Astronomy & Astrophysics, 530, A71.

    Article  Google Scholar 

  • Balmaceda, L., Krivova, N. A., & Solanki, S. K. (2007). Reconstruction of solar irradiance using the Group sunspot number. Advances in Space Research, 40, 986–989.

    Article  Google Scholar 

  • Balmaceda, L. A., Solanki, S. K., Krivova, N. A., & Foster, S. (2009). A homogeneous sunspot areas database covering more than 130 years. Journal of Geophysical Research, 114, A07104. doi:10.1029/2009JA014299.

    Article  Google Scholar 

  • Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., & Bonani, G. (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science, 294, 2130–2136.

    Article  Google Scholar 

  • Camp, C. D., & Tung, K. K. (2007). Surface warming by the solar cycle as revealed by the composite mean difference projection. Geophysical Research Letters, 34, L14703. doi:10.1029/2007GL030207.

    Article  Google Scholar 

  • Chapman, G. A., Cookson, A. M., & Dobias, J. J. (1997). Solar variability and the relation of facular to sunspot areas during solar cycle 22. The Astrophysical Journal, 482, 541–545.

    Article  Google Scholar 

  • Christensen-Dalsgaard, J. (2002). Helioseismology. Reviews of Modern Physics, 74, 1073–1129. doi:10.1103/RevModPhys.74.1073.

    Article  Google Scholar 

  • Crouch, A. D., Charbonneau, P., Beaubien, G., & Paquin-Ricard, D. (2008). A model for the total solar irradiance based on active region decay. The Astrophysical Journal, 677, 723–741. doi:10.1086/527433.

    Article  Google Scholar 

  • Danilovic, S., Solanki, S. K., Livingston, W., Krivova, N. A., & Vince, I. (2007). Magnetic source of the solar cycle variation of the Mn I 539.4 nm line. In Modern solar facilities—advanced solar sciences (pp. 189–192). Göttingen: Universtitätsverlag.

    Google Scholar 

  • Danilovic, S., Solanki, S. K., Livingston, W., Krivova, N. A., & Vince, I. (2011). The solar cycle variation of the Mn I 539.4 nm line. Astronomy & Astrophysics. doi:10.1051/0004-6361/201116565. Submitted.

    Google Scholar 

  • DeLand, M. T., & Cebula, R. P. (2008). Creation of a composite solar ultraviolet irradiance data set. Journal of Geophysical Research, 113(A12), A11103. doi:10.1029/2008JA013401.

    Article  Google Scholar 

  • Dewitte, S., Crommelynck, D., Mekaoui, S., & Joukoff, A. (2004). Measurement and uncertainty of the long term total solar irradiance trend. Solar Physics, 224, 209–216.

    Article  Google Scholar 

  • Domingo, V., Ermolli, I., Fox, P., Fröhlich, C., Haberreiter, M., Krivova, N., Kopp, G., Schmutz, W., Solanki, S. K., Spruit, H. C., Unruh, Y., & Vögler, A. (2009). Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Science Reviews, 145, 337–380. doi:10.1007/s11214-009-9562-1.

    Article  Google Scholar 

  • Eddy, J. A. (1976). The Maunder minimum. Science, 192, 1189–1202.

    Article  Google Scholar 

  • Ermolli, I., Berrilli, F., & Florio, A. (2003). A measure of the network radiative properties over the solar activity cycle. Astronomy & Astrophysics, 412, 857–864.

    Article  Google Scholar 

  • Ermolli, I., Solanki, S. K., Tlatov, A. G., Krivova, N. A., Ulrich, R. K., & Singh, J. (2009). Comparison among Ca II K spectroheliogram time series with an application to solar activity studies. The Astrophysical Journal, 698, 1000–1009.

    Article  Google Scholar 

  • Fligge, M., Solanki, S. K., & Unruh, Y. C. (2000). Modelling irradiance variations from the surface distribution of the solar magnetic field. Astronomy & Astrophysics, 353, 380–388.

    Google Scholar 

  • Floyd, L., Rottman, G., DeLand, M., & Pap, J. (2003). 11 years of solar UV irradiance measurements from UARS. ESA SP, 535, 195–203.

    Google Scholar 

  • Fontenla, J. M., Harder, J., Rottman, G., Woods, T. N., Lawrence, G. M., & Davis, S. (2004). The signature of solar activity in the infrared spectral irradiance. The Astrophysical Journal Letters, 605, L85–L88.

    Article  Google Scholar 

  • Fontenla, J. M., Avrett, E., Thuillier, G., & Harder, J. (2006). Semiempirical models of the solar atmosphere. I. The quiet- and active sun photosphere at moderate resolution. The Astrophysical Journal, 639, 441–458.

    Article  Google Scholar 

  • Foster, S. (2004). Reconstruction of solar irradiance variations for use in studies of global climate change: application of recent SOHO observations with historic data from the Greenwich observatory. Ph.D. thesis, University of Southhampton, School of Physics and Astronomy.

    Google Scholar 

  • Fröhlich, C., & Lean, J. (1997). Total solar irradiance variations: the construction of a composite and its comparison with models. ESA SP, 415, 227–233.

    Google Scholar 

  • Fröhlich, C. (2006). Solar irradiance variability since 1978: revision of the PMOD composite during solar cycle 21. Space Science Reviews, 125, 53–65.

    Article  Google Scholar 

  • Fröhlich, C. (2009). Evidence of a long-term trend in total solar irradiance. Astronomy & Astrophysics, 501, L27–L30. doi:10.1051/0004-6361/200912318.

    Article  Google Scholar 

  • Fröhlich, C. (2011). Solar constant. Construction of a composite total solar irradiance (TSI) time series from 1978 to present. http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant.

  • Fröhlich, C., Andersen, B., Appourchaux, T., Berthomieu, G., Crommelynck, D. A., Domingo, V., Fichot, A., Finsterle, W., Gomez, M. F., Gough, D., Jimenez, A., Leifsen, T., Lombaerts, M., Pap, J. M., Provost, J., Cortes, T. R., Romero, J., Roth, H., Sekii, T., Telljohann, U., Toutain, T., & Wehrli, C. (1997). First results from VIRGO, the experiment for helioseismology and solar irradiance monitoring on SOHO. Solar Physics, 170, 1–25.

    Article  Google Scholar 

  • Garcia, R. R. (2010). Atmospheric physics: solar surprise? Nature, 467, 668–669. doi:10.1038/467668a.

    Article  Google Scholar 

  • Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G. A., Shindell, D., van Geel, B., & White, W. (2010). Solar influences on climate. Reviews of Geophysics, 48, RG4001. doi:10.1029/2009RG000282.

    Article  Google Scholar 

  • Haigh, J. D. (1994). The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature, 370, 544–546.

    Article  Google Scholar 

  • Haigh, J. D. (2007). The sun and the earth’s climate. Living Reviews in Solar Physics. http://solarphysics.livingreviews.org/Articles/lrsp-2007-2/.

  • Haigh, J. D., Winning, A. R., Toumi, R., & Harder, J. W. (2010). An influence of solar spectral variations on radiative forcing of climate. Nature, 467, 696–699. doi:10.1038/nature09426.

    Article  Google Scholar 

  • Hall, J. C., & Lockwood, G. W. (2004). The chromospheric activity and variability of cycling and flat activity solar-analog stars. The Astrophysical Journal, 614, 942–946.

    Article  Google Scholar 

  • Hansen, J., Sato, M., Nazarenko, L., Ruedy, R., Lacis, A., Koch, D., Tegen, I., Hall, T., Shindell, D., Santer, B., Stone, P., Novakov, T., Thomason, L., Wang, R., Wang, Y., Jacob, D., Hollandsworth, S., Bishop, L., Logan, J., Thompson, A., Stolarski, R., Lean, J., Willson, R., Levitus, S., Antonov, J., Rayner, N., Parker, D., & Christy, J. (2002). Climate forcings in Goddard Institute for space studies SI2000 simulations. Journal of Geophysical Research, 107. doi:10.1029/2001JD001143.

  • Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M., Cheng, Y., Del Genio, A., Faluvegi, G., Fleming, E., Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D., Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T., Yao, M., & Zhang, S. (2005). Efficacy of climate forcings. Journal of Geophysical Research, 110(D9), D18104. doi:10.1029/2005JD005776.

    Article  Google Scholar 

  • Hansen, J. E. (2000). The Sun’s role in long-term climate change. Space Science Reviews, 94, 349–356.

    Article  Google Scholar 

  • Harder, J. W., Fontenla, J. M., Pilewskie, P., Richard, E. C., & Woods, T. N. (2009). Trends in solar spectral irradiance variability in the visible and infrared. Geophysical Research Letters, 36. doi:10.1029/2008GL036797.

  • Harvey, K. L. (1992). The cyclic behavior of solar activity. In ASP conf. ser.: Vol. 27. The solar cycle (pp. 335–367).

    Google Scholar 

  • Harvey, K. L. (1994). The solar magnetic cycle. In R. J. Rutten & C. J. Schrijver (Eds.), Solar surface magnetism (p. 347). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Hoyt, D. V., & Schatten, K. H. (1993). A discussion of plausible solar irradiance variations, 1700–1992. Journal of Geophysical Research, 98, 18895–18906.

    Article  Google Scholar 

  • Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick, C. H., Brovkin, V., Six, K., Segschneider, J., Giorgetta, M. A., Crowley, T. J., Pongratz, J., Krivova, N. A., Vieira, L. E., Solanki, S. K., Klocke, D., Botzet, M., Esch, M., Gayler, V., Haak, H., Raddatz, T. J., Roeckner, E., Schnur, R., Widmann, H., Claussen, M., Stevens, B., & Marotzke, J. (2010). Climate and carbon-cycle variability over the last millennium. Climate of the Past, 6, 723–737. doi:10.5194/cp-6-723-2010.

    Article  Google Scholar 

  • Kodera, K., & Kuroda, Y. (2002). Dynamical response to the solar cycle. Journal of Geophysical Research, 107, D24. doi:10.1029/2002JD002224.

    Article  Google Scholar 

  • Kodera, K., & Kuroda, Y. (2005). A possible mechanism of solar modulation of the spatial structure of the North Atlantic Oscillation. Journal of Geophysical Research, 110, D02111. doi:10.1029/2004JD005258.

    Article  Google Scholar 

  • Kopp, G., & Lean, J. L. (2011). A new, lower value of total solar irradiance: evidence and climate significance. Geophysical Research Letters, 38, L01706. doi:10.1029/2010GL045777.

    Article  Google Scholar 

  • Kopp, G., Lawrence, G., & Rottman, G. (2005). The total irradiance monitor (TIM): science results. Solar Physics, 230, 129–139. doi:10.1007/s11207-005-7433-9.

    Article  Google Scholar 

  • Kopp, G., Heuerman, K., Harber, D., & Drake, G. (2007). The TSI radiometer facility: absolute calibrations for total solar irradiance instruments. In Society of photo-optical instrumentation engineers (SPIE) conference series: Vol. 6677. doi:10.1117/12.734553.

    Google Scholar 

  • Krivova, N. A., & Solanki, S. K. (2004). Effect of spatial resolution on estimating the Sun’s magnetic flux. Astronomy & Astrophysics, 417, 1125–1132.

    Article  Google Scholar 

  • Krivova, N. A., & Solanki, S. K. (2005). Reconstruction of solar UV irradiance. Advances in Space Research, 35, 361–364.

    Article  Google Scholar 

  • Krivova, N. A., & Solanki, S. K. (2008). Models of solar irradiance variations: current status. Journal of Astrophysics and Astronomy, 29, 151–158.

    Article  Google Scholar 

  • Krivova, N. A., Solanki, S. K., Fligge, M., & Unruh, Y. C. (2003). Reconstruction of solar total and spectral irradiance variations in cycle 23: is solar surface magnetism the cause? Astronomy & Astrophysics, 399, L1–L4.

    Article  Google Scholar 

  • Krivova, N. A., Solanki, S. K., & Floyd, L. (2006). Reconstruction of solar UV irradiance in cycle 23. Astronomy & Astrophysics, 452, 631–639.

    Article  Google Scholar 

  • Krivova, N. A., Balmaceda, L., & Solanki, S. K. (2007). Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astronomy & Astrophysics, 467, 335–346.

    Article  Google Scholar 

  • Krivova, N. A., Solanki, S. K., & Wenzler, T. (2009a). ACRIM-gap and total solar irradiance revisited: is there a secular trend between 1986 and 1996? Geophysical Research Letters, 36, L20101. doi:10.1029/2009GL040707.

    Article  Google Scholar 

  • Krivova, N. A., Solanki, S. K., Wenzler, T., & Podlipnik, B. (2009b). Reconstruction of solar UV irradiance since 1974. Journal of Geophysical Research, 114, D00I04. doi:10.1029/2009JD012375.

    Article  Google Scholar 

  • Krivova, N. A., Vieira, L. E. A., & Solanki, S. K. (2010). Reconstruction of solar spectral irradiance since the Maunder minimum. Journal of Geophysical Research, 115, A12112. doi:10.1029/2010JA015431.

    Article  Google Scholar 

  • Krivova, N. A., Solanki, S. K., & Schmutz, W. (2011a). Solar total irradiance in cycle 23. Astronomy & Astrophysics, 529, A81. doi:10.1051/0004-6361/201016234.

    Article  Google Scholar 

  • Krivova, N. A., Solanki, S. K., & Unruh, Y. C. (2011b). Towards a long-term record of solar total and spectral irradiance. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 223–234. doi:10.1016/j.jastp.2009.11.013.

    Article  Google Scholar 

  • Kurucz, R. (1993). ATLAS9 stellar atmosphere programs and 2 km/s grid. In ATLAS9 stellar atmosphere programs and 2 km/s grid. Cambridge: Smithsonian Astrophysical Observatory. Kurucz CD-ROM No. 13.

    Google Scholar 

  • Langematz, U., Matthes, K., & Grenfell, J. L. (2005). Solar impact on climate: modeling the coupling between the middle and the lower atmosphere. Memorie Della Società Astronomica Italiana, 76, 868–875.

    Google Scholar 

  • Lean, J. (1989). Contribution of ultraviolet irradiance variations to changes in the sun’s total irradiance. Science, 244, 197–200.

    Article  Google Scholar 

  • Lean, J., Skumanich, A., & White, O. (1992). Estimating the sun’s radiative output during the Maunder minimum. Geophysical Research Letters, 19, 1595–1598.

    Article  Google Scholar 

  • Lean, J. L., Rottman, G. J., Kyle, H. L., Woods, T. N., Hickey, J. R., & Puga, L. C. (1997). Detection and parameterization of variations in solar mid- and near-ultraviolet radiation (200–400 nm). Journal of Geophysical Research, 102, 29939–29956.

    Article  Google Scholar 

  • Lockwood, M., Rouillard, A. P., & Finch, I. D. (2009). The rise and fall of open solar flux during the current grand solar maximum. The Astrophysical Journal, 700, 937–944. doi:10.1088/0004-637X/700/2/937.

    Article  Google Scholar 

  • Matthes, K., Kuroda, Y., Kodera, K., & Langematz, U. (2006). Transfer of the solar signal from the stratosphere to the troposphere: northern winter. Journal of Geophysical Research, 111, D06108. doi:10.1029/2005JD006283.

    Article  Google Scholar 

  • Mendoza, B. (1997). Estimations of Maunder minimum solar irradiance and Ca II H and K fluxes using rotation rates and diameters. The Astrophysical Journal, 483, 523–526.

    Article  Google Scholar 

  • Morrill, J. S., Floyd, L., & McMullin, D. (2011). The solar ultraviolet spectrum estimated using the Mg II index and Ca II K disk activity. Solar Physics, 269, 253–267. doi:10.1007/s11207-011-9708-7.

    Article  Google Scholar 

  • Neff, U., Burns, S. J., Mangini, A., Mudelsee, M., Fleitmann, D., & Matter, A. (2001). Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature, 411, 290–293.

    Article  Google Scholar 

  • Pagaran, J., Weber, M., & Burrows, J. (2009). Solar variability from 240 to 1750 nm in terms of faculae brightening and sunspot darkening from SCIAMACHY. The Astrophysical Journal, 700, 1884–1895. doi:10.1088/0004-637X/700/2/1884.

    Article  Google Scholar 

  • Preminger, D. G., Walton, S. R., & Chapman, G. A. (2002). Photometric quantities for solar irradiance modeling. Journal of Geophysical Research, 107(A11), 1354. doi:10.1029/2001JA009169.

    Article  Google Scholar 

  • Reid, G. C. (1987). Influence of solar variability on global sea surface temperatures. Nature, 329, 142–143.

    Article  Google Scholar 

  • Rozanov, E. V., Schlesinger, M. E., Egorova, T. A., Li, B., Andronova, N., & Zubov, V. A. (2004). Atmospheric response to the observed increase of solar UV radiation from solar minimum to solar maximum simulated by the University of Illinois at Urbana-Champaign climate—chemistry model. Journal of Geophysical Research, 109, D1. doi:10.1029/2003JD003796.

    Google Scholar 

  • Scafetta, N., & Willson, R. C. (2009). ACRIM-gap and TSI trend issue resolved using a surface magnetic flux TSI proxy model. Geophysical Research Letters, 36, L05701. doi:10.1029/2008GL036307.

    Article  Google Scholar 

  • Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., & Vieira, L. E. A. (2011). Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geoscientific Model Development, 4, 33–45. doi:10.5194/gmd-4-33-2011.

    Article  Google Scholar 

  • Schrijver, C. J., Livingston, W. C., Woods, T. N., & Mewaldt, R. A. (2011). The minimal solar activity in 2008–2009 and its implications for long-term climate modeling. Geophysical Research Letters, 38, L06701. doi:10.1029/2011GL046658.

    Article  Google Scholar 

  • Seleznyov, A. D., Solanki, S. K., & Krivova, N. A. (2011). Modelling solar irradiance variability on time scales from minutes to months. Astronomy & Astrophysics, 532, A108.

    Article  Google Scholar 

  • Shapiro, A. I., Schmutz, W., Schoell, M., Haberreiter, M., & Rozanov, E. (2010). NLTE solar irradiance modeling with the COSI code. Astronomy & Astrophysics, 517, A48. doi:10.1051/0004-6361/200913987.

    Article  Google Scholar 

  • Shapiro, A. I., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M., Shapiro, A. V., & Nyeki, S. (2011). A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astronomy & Astrophysics, 529, A67. doi:10.1051/0004-6361/201016173.

    Article  Google Scholar 

  • Skupin, J., Noël, S., Wuttke, M. W., Gottwald, M., Bovensmann, H., Weber, M., & Burrows, J. P. (2005). SCIAMACHY solar irradiance observation in the spectral range from 240 to 2380 nm. Advances in Space Research, 35, 370–375.

    Article  Google Scholar 

  • Solanki, S. K., Schüssler, M., & Fligge, M. (2000). Evolution of the Sun’s large-scale magnetic field since the Maunder minimum. Nature, 408, 445–447.

    Article  Google Scholar 

  • Solanki, S. K., Schüssler, M., & Fligge, M. (2002). Secular variation of the Sun’s magnetic flux. Astronomy & Astrophysics, 383, 706–712.

    Article  Google Scholar 

  • Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M., & Beer, J. (2004). Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature, 431, 1084–1087.

    Article  Google Scholar 

  • Solanki, S. K., Krivova, N. A., & Wenzler, T. (2005). Irradiance models. Advances in Space Research, 35, 376–383.

    Article  Google Scholar 

  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., & Miller, H. L. (Eds.) (2007). Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Soon, W. H., Posmentier, E. S., & Baliunas, S. L. (1996). Inference of solar irradiance variability from terrestrial temperature changes, 1880–1993: an astrophysical application of the sun-climate connection. The Astrophysical Journal, 472, 891–902. doi:10.1086/178119.

    Article  Google Scholar 

  • Steinhilber, F. (2010). Total solar irradiance since 1996: is there a long-term variation unrelated to solar surface magnetic phenomena? Astronomy & Astrophysics, 523, A39.

    Article  Google Scholar 

  • Steinhilber, F., Beer, J., & Fröhlich, C. (2009). Total solar irradiance during the Holocene. Geophysical Research Letters, 36. doi:10.1029/2009GL040142.

  • Unruh, Y. C., Solanki, S. K., & Fligge, M. (1999). The spectral dependence of facular contrast and solar irradiance variations. Astronomy & Astrophysics, 345, 635–642.

    Google Scholar 

  • Unruh, Y. C., Krivova, N. A., Solanki, S. K., Harder, J. W., & Kopp, G. (2008). Spectral irradiance variations: comparison between observations and the SATIRE model on solar rotation time scales. Astronomy & Astrophysics, 486, 311–323.

    Article  Google Scholar 

  • Usoskin, I. G., Solanki, S. K., & Korte, M. (2006a). Solar activity reconstructed over the last 7000 years: the influence of geomagnetic field changes. Geophysical Research Letters, 33, L08103. doi:10.1029/2006GL025921.

    Article  Google Scholar 

  • Usoskin, I. G., Solanki, S. K., Taricco, C., Bhandari, N., & Kovaltsov, G. A. (2006b). Long-term solar activity reconstructions: direct test by cosmogenic 44Ti in meteorites. Astronomy & Astrophysics, 457, L25–L28.

    Article  Google Scholar 

  • Vieira, L. E. A., & Solanki, S. K. (2010). Evolution of the solar magnetic flux on time scales of years to millennia. Astronomy & Astrophysics, 509, A100. doi:10.1051/0004-6361/200913276.

    Article  Google Scholar 

  • Vieira, L. E. A., Solanki, S. K., Krivova, N. A., & Usoskin, I. (2011). Evolution of the solar irradiance during the Holocene. Astronomy & Astrophysics, 531, A6. doi:10.1051/0004-6361/201015843.

    Article  Google Scholar 

  • Wang, Y.-M., Lean, J. L., & Sheeley, N. R. (2005). Modeling the Sun’s magnetic field and irradiance since 1713. The Astrophysical Journal, 625, 522–538. doi:10.1086/429689.

    Article  Google Scholar 

  • Wenzler, T., Solanki, S. K., Krivova, N. A., & Fluri, D. M. (2004). Comparison between KPVT/SPM and SoHO/MDI magnetograms with an application to solar irradiance reconstructions. Astronomy & Astrophysics, 427, 1031–1043.

    Article  Google Scholar 

  • Wenzler, T., Solanki, S. K., & Krivova, N. A. (2005). Can surface magnetic fields reproduce solar irradiance variations in cycles 22 and 23? Astronomy & Astrophysics, 432, 1057–1061.

    Article  Google Scholar 

  • Wenzler, T., Solanki, S. K., Krivova, N. A., & Fröhlich, C. (2006). Reconstruction of solar irradiance variations in cycles 21–23 based on surface magnetic fields. Astronomy & Astrophysics, 460, 583–595.

    Article  Google Scholar 

  • Wenzler, T., Solanki, S. K., & Krivova, N. A. (2009). Reconstructed and measured total solar irradiance: is there a secular trend between 1978 and 2003? Geophysical Research Letters, 36, L11102. doi:10.1029/2009GL037519.

    Article  Google Scholar 

  • Willson, R. C., & Mordvinov, A. V. (2003). Secular total solar irradiance trend during solar cycles 21–23. Geophysical Research Letters, 30, 1199. doi:10.1029/2002GL016038.

    Article  Google Scholar 

  • Willson, R. C., Gulkis, S., Janssen, M., Hudson, H. S., & Chapman, G. A. (1981). Observations of solar irradiance variability. Science, 211, 700–702.

    Article  Google Scholar 

  • Woods, T. N., Tobiska, W. K., Rottman, G. J., & Worden, J. R. (2000). Improved solar Lyman-α irradiance modeling from 1947 through 1999 based on UARS observations. Journal of Geophysical Research, 105(A12), 27195–27215.

    Article  Google Scholar 

  • Wright, J. T. (2004). Do we know of any Maunder minimum stars? The Astronomical Journal, 128, 1273–1278.

    Article  Google Scholar 

  • Zhang, Q., Soon, W. H., Baliunas, S. L., Lockwood, G. W., Skiff, B. A., & Radick, R. R. (1994). A method of determining possible brightness variations of the Sun in past centuries from observations of solar-type stars. The Astrophysical Journal Letters, 427, L111–L114.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft, DFG project number SO 711/1 and by the WCU grant No. R31-10016 funded by the Korean Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie A. Krivova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krivova, N.A., Solanki, S.K. (2013). Models of Solar Total and Spectral Irradiance Variability of Relevance for Climate Studies. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_2

Download citation

Publish with us

Policies and ethics