Skip to main content

Gene Expression Profiling and Regulatory Networks in Single Cells

  • Chapter
  • First Online:
Book cover New Frontiers of Network Analysis in Systems Biology

Abstract

Tissues and organs are composed of various kinds of cells including stem cells, progenitors, and terminally differentiated cells that have large variations of gene expression. Within a seemingly homogeneous cell population, gene expression levels may differ dramatically on a cell-to-cell level. However, differences or variations of individual cells are masked by the averaging effect of pooled samples in population analysis. Therefore, analyzing transcript levels for multiple genes across multiple individual cells could be key for understanding the unique characteristics of individual cells and for clarifying the complicated mechanisms controlling the function of individual cells. Recent advances in cDNA amplification techniques from single cell samples allow for analyzing gene expression patterns in individual cells. Amplified cDNAs are applicable to measurements of gene expression systems such as microarrays, DNA sequencing, and TaqMan assay-based high throughput nanofluidic real time PCR array analysis. Gene expression profiling at the single cell level allows us to identify specific sub-populations in heterogeneous cell populations in tissues and clarify the complex networks controlling the function of individual cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161

    Article  PubMed  CAS  Google Scholar 

  2. Benveniste P, Frelin C, Janmohamed S, Barbara M, Herrington R, Hyam D, Iscove NN (2010) Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 6:48–58

    Article  PubMed  CAS  Google Scholar 

  3. Brady G, Barbara M, Iscove NN (1990) Representative in vitro cDNA amplification from individual hemopoietic cells and colonies. Method Mol Cell Biol 2:17–25

    CAS  Google Scholar 

  4. Brady G, Iscove NN (1993) Construction of cDNA libraries from single cells. Methods Enzymol 225:611–623

    Article  PubMed  CAS  Google Scholar 

  5. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  PubMed  CAS  Google Scholar 

  6. Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, Zettel M, Coleman P (1992) Analysis of gene expression in single live neurons. Proc Natl Acad Sci U S A 89:3010–3014

    Article  PubMed  CAS  Google Scholar 

  7. Eilken HM, Nishikawa S, Schroeder T (2009) Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457:896–900

    Article  PubMed  CAS  Google Scholar 

  8. Esumi S, Wu SX, Yanagawa Y, Obata K, Sugimoto Y, Tamamaki N (2008) Method for single-cell microarray analysis and application to gene-expression profiling of GABAergic neuron progenitors. Neurosci Res 60:439–451

    Article  PubMed  CAS  Google Scholar 

  9. Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, Kronenberg HM, Scadden DT (2008) Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2:274–283

    Article  PubMed  CAS  Google Scholar 

  10. Foygel K, Choi B, Jun S, Leong DE, Lee A, Wong CC, Zuo E, Eckart M, Reijo Pera RA, Wong WH et al (2008) A novel and critical role for Oct4 as a regulator of the maternal-embryonic transition. PLoS One 3:e4109

    Article  PubMed  Google Scholar 

  11. Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, Gao W, Saito TI, Lo Celso C, Tsuyuzaki H et al (2011) In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474:216–219

    Article  PubMed  CAS  Google Scholar 

  12. Haug JS, He XC, Grindley JC, Wunderlich JP, Gaudenz K, Ross JT, Paulson A, Wagner KP, Xie Y, Zhu R et al (2008) N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells. Cell Stem Cell 2:367–379

    Article  PubMed  CAS  Google Scholar 

  13. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637

    Article  PubMed  CAS  Google Scholar 

  14. Hosokawa K, Arai F, Yoshihara H, Iwasaki H, Hembree M, Yin T, Nakamura Y, Gomei Y, Takubo K, Shima H et al (2010) Cadherin-based adhesion is a potential target for niche manipulation to protect hematopoietic stem cells in adult bone marrow. Cell Stem Cell 6:194–198

    Article  PubMed  CAS  Google Scholar 

  15. Hosokawa K, Arai F, Yoshihara H, Nakamura Y, Gomei Y, Iwasaki H, Miyamoto K, Shima H, Ito K, Suda T (2007) Function of oxidative stress in the regulation of hematopoietic stem cell-niche interaction. Biochem Biophys Res Commun 363:578–583

    Article  PubMed  CAS  Google Scholar 

  16. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–421

    Article  PubMed  CAS  Google Scholar 

  17. Kawasaki ES (2004) Microarrays and the gene expression profile of a single cell. Ann N Y Acad Sci 1020:92–100

    Article  PubMed  CAS  Google Scholar 

  18. Kiel MJ, Morrison SJ (2008) Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8:290–301

    Article  PubMed  CAS  Google Scholar 

  19. Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, Tesio M, Samstein RM, Goichberg P, Spiegel A et al (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12:657–664

    Article  PubMed  CAS  Google Scholar 

  20. Kurimoto K, Saitou M (2010) Single-cell cDNA microarray profiling of complex biological processes of differentiation. Curr Opin Genet Dev 20:470–477

    Article  PubMed  CAS  Google Scholar 

  21. Kurimoto K, Yabuta Y, Ohinata Y, Saitou M (2007) Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat Protoc 2:739–752

    Article  PubMed  CAS  Google Scholar 

  22. Lapidot T, Dar A, Kollet O (2005) How do stem cells find their way home? Blood 106:1901–1910

    Article  PubMed  CAS  Google Scholar 

  23. Lu R, Markowetz F, Unwin RD, Leek JT, Airoldi EM, MacArthur BD, Lachmann A, Rozov R, Ma’ayan A, Boyer LA et al (2009) Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature 462:358–362

    Article  PubMed  CAS  Google Scholar 

  24. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:442–447

    Article  PubMed  CAS  Google Scholar 

  25. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    Article  PubMed  CAS  Google Scholar 

  26. Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311:1880–1885

    Article  PubMed  CAS  Google Scholar 

  27. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132:598–611

    Article  PubMed  CAS  Google Scholar 

  28. Nakamura Y, Arai F, Iwasaki H, Hosokawa K, Kobayashi I, Gomei Y, Matsumoto Y, Yoshihara H, Suda T (2010) Isolation and characterization of endosteal niche cell populations that regulate hematopoietic stem cells. Blood 116:1422–1432

    Article  PubMed  CAS  Google Scholar 

  29. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460:259–263

    Article  PubMed  CAS  Google Scholar 

  30. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, Bertoncello I, Bendall LJ, Simmons PJ, Haylock DN (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106:1232–1239

    Article  PubMed  CAS  Google Scholar 

  31. Qian H, Buza-Vidas N, Hyland CD, Jensen CT, Antonchuk J, Månsson R, Thoren LA, Ekblom M, Alexander WS, Jacobsen SEW (2007) Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1:671–684

    Article  PubMed  CAS  Google Scholar 

  32. Rieger MA, Hoppe PS, Smejkal BM, Eitelhuber AC, Schroeder T (2009) Hematopoietic cytokines can instruct lineage choice. Science 325:217–218

    Article  PubMed  CAS  Google Scholar 

  33. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336

    Article  PubMed  CAS  Google Scholar 

  34. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D’Amico AV, Richie JP et al (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1:203–209

    Article  PubMed  CAS  Google Scholar 

  35. Spurgeon SL, Jones RC, Ramakrishnan R (2008) High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One 3:e1662

    Article  PubMed  Google Scholar 

  36. Stahlberg A, Bengtsson M (2010) Single-cell gene expression profiling using reverse transcription quantitative real-time PCR. Methods 50:282–288

    Article  PubMed  CAS  Google Scholar 

  37. Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grunewald E, Cheng T, Dombkowski D, Calvi LM, Rittling SR et al (2005) Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 201:1781–1791

    Article  PubMed  CAS  Google Scholar 

  38. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988

    Article  PubMed  CAS  Google Scholar 

  39. Thoren LA, Liuba K, Bryder D, Nygren JM, Jensen CT, Qian H, Antonchuk J, Jacobsen SE (2008) Kit regulates maintenance of quiescent hematopoietic stem cells. J Immunol 180:2045–2053

    PubMed  CAS  Google Scholar 

  40. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584

    Article  PubMed  CAS  Google Scholar 

  41. Van Gelder RN, von Zastrow ME, Yool A, Dement WC, Barchas JD, Eberwine JH (1990) Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A 87:1663–1667

    Article  PubMed  Google Scholar 

  42. Warren L, Bryder D, Weissman IL, Quake SR (2006) Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc Natl Acad Sci U S A 103:17807–17812

    Article  PubMed  CAS  Google Scholar 

  43. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E et al (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135:1118–1129

    Article  PubMed  CAS  Google Scholar 

  44. Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106

    Article  PubMed  CAS  Google Scholar 

  45. Yin T, Li L (2006) The stem cell niches in bone. J Clin Invest 116:1195–1201

    Article  PubMed  CAS  Google Scholar 

  46. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, Gomei Y, Iwasaki H, Matsuoka S, Miyamoto K et al (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1:685–697

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Funding Program for Next Generation World-Leading Researchers (NEXT Program) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumio Arai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Arai, F., Hosokawa, K., Matsumoto, Y., Toyama, H., Suda, T. (2012). Gene Expression Profiling and Regulatory Networks in Single Cells. In: Ma'ayan, A., MacArthur, B. (eds) New Frontiers of Network Analysis in Systems Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4330-4_1

Download citation

Publish with us

Policies and ethics