Skip to main content

Molecular Typing of Coxiella burnetii (Q Fever)

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 984))

Abstract

Although we live in the age of genomics and the availability of complete genome sequences of Coxiella burnetii has increased our understanding of the genomic diversity of the agent, it is still somewhat a “query” microorganism. The epidemiology of Q fever is complex due to the worldwide distribution, reservoir and vector diversity, and a lack of studies defining the dynamic interaction between these factors. In addition Coxiella is an agent that could be used as a bioterror weapon. Therefore, typing methods that can discriminate strains and be used to trace back infections to their source are of paramount importance. In this chapter we provide an overview of historical and current typing methods and describe their advantages and limitations. Recently developed techniques such as MLVA and SNP typing have shown promise and improved the discrimination capacity and utility of genotyping methods for molecular epidemiologic studies of this challenging pathogen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amitai Z, Bromberg M, Bernstein M, Raveh D, Keysary A, David D, Pitlik S, Swerdlow D, Massung R, Rzotkiewicz S, Halutz O (2010) A large Q fever outbreak in an urban school in Central Israel. Clin Infect Dis 50:1433–1438

    Article  PubMed  Google Scholar 

  • Arricau-Bouvery N, Hauck Y, Bejaoui A, Frangoulidis D, Bodier CC, Souriau A, Meyer H, Neubauer H, Rodolakis A, Vergnaud G (2006) Molecular characterization of Coxiella burnetii isolates by infrequent restriction site-PCR and MLVA typing. BMC Microbiol. doi:10.1186/1471-2180-6-38

  • Bamberg WM, Pape WJ, Beebe JL, Nevin-Woods C, Ray W, Maguire H, Nucci J, Massung RF, Gershman K (2007) Outbreak of Q fever associated with a horse-boarding ranch, Colorado, 2005. Vector Borne Zoonotic Dis 7:394–402

    Article  PubMed  Google Scholar 

  • Barlow J, Rauch B et al (2008) Association between Coxiella burnetii shedding in milk and subclinical mastitis in dairy cattle. Vet Res 39:23

    Article  PubMed  Google Scholar 

  • Beare PA, Samuel JE, Howe D, Virtaneva K, Porcella SF, Heinzen RA (2006) Genetic diversity of the Q fever agent, Coxiella burnetii, assessed by microarray-based whole-genome comparisons. J Bacteriol 188:2309–2324

    Article  PubMed  CAS  Google Scholar 

  • Beare PA, Unsworth N, Andoh M, Voth DE, Omsland A, Gilk SD, Williams KP, Sobral BW, Kupko JJ 3rd, Porcella SF, Samuel JE, Heinzen RA (2009) Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 77:642–656

    Article  PubMed  CAS  Google Scholar 

  • Berri M, Rousset E et al (2007) Goats may experience reproductive failures and shed Coxiella burnetii at two successive parturitions after a Q fever infection. Res Vet Sci 83:47–52

    Article  PubMed  CAS  Google Scholar 

  • Brezina R (1958) A change in the virulence of the Henzerling strain of Coxiella burneti during passage in white mice. Acta Virol 2:220–227

    PubMed  CAS  Google Scholar 

  • Cerf O, Condron R (2006) Coxiella burnetii and milk pasteurization: an early application of the precautionary principle? Epidemiol Infect 134:946–951

    Article  PubMed  CAS  Google Scholar 

  • Chen PE, Willner KM, Butani A, Dorsey S, George M, Stewart A, Lentz SM, Cook CE, Akmal A, Price LB, Keim PS, Mateczun A, Brahmbhatt TN, Bishop-Lilly KA, Zwick ME, Read TD, Sozhamannan S (2010) Rapid identification of genetic modifications in Bacillus anthracis using whole genome draft sequences generated by 454 pyrosequencing. PLoS One 5(8): pii: e12397

    Google Scholar 

  • Chmielewski T, Sidi-Boumedine K, Duquesne V, Podsiadly E, Thiéry R, Tylewska-Wierzbanowska S (2009) Molecular epidemiology of Q fever in Poland. Pol J Microbiol 58:9–13

    PubMed  CAS  Google Scholar 

  • Cooley MB, Carychao D, Nguyen K, Whitehand L, Mandrell R (2010) Effects of environmental stress on stability of tandem repeats in Escherichia coli O157:H7. Appl Environ Microbiol 76:3398–3400

    Article  PubMed  CAS  Google Scholar 

  • Denison A, Thompson H, Massung RF (2007) IS1111 insertion sequences of Coxiella burnetii: characterization and use for repetitive element PCR-based differentiation of Coxiella burnetii isolates. BMC Microbiol. doi:10.1186/1471-2180-7-91

  • Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686, Review

    PubMed  CAS  Google Scholar 

  • Driscoll JR (2009) Spoligotyping for molecular epidemiology of the Mycobacterium tuberculosis complex. Methods Mol Biol 551:117–128

    Article  PubMed  CAS  Google Scholar 

  • Fournier P, Marrie T, Raoult D (1998) Diagnosis of Q fever. J Clin Microbiol 36:1823–1834

    PubMed  CAS  Google Scholar 

  • Frazier ME, Heinzen RA, Stiegler GL, Mallavia LP (1991) Physical mapping of the Coxiella burnetii genome. Acta Virol 35(6):511–518

    PubMed  CAS  Google Scholar 

  • Fretz R, Schaeren W et al (2007) Screening of various foodstuffs for occurrence of Coxiella burnetii in Switzerland. Int J Food Microbiol 116:414–418

    Article  PubMed  CAS  Google Scholar 

  • Genig VA (1960) Attenuated variant “M” of Rickettsia burneti as a possible live vaccine against Q-fever. Vestn Akad Med Nauk SSSR 15(2):46–57 [In Russian]

    PubMed  Google Scholar 

  • Glazunova O, Roux V, Freylikman O, Sekeyova Z, Fournous G, Tyczka J, Tokarevich N, Kovacava E, Marrie T, Raoult D (2005) Coxiella burnetii genotyping. Emerg Infect Dis 11:1211–1217

    PubMed  CAS  Google Scholar 

  • Hanczaruk M, Meyer H, Frangoulidis D (2009) A genotyping system for Coxiella burnetii based on IS1111-elements. Paper presented at the 61rd annual meeting of the German Society of Hygiene and Microbiology (DGHM), University of Göttingen, Germany, 20–23 Sept 2009

    Google Scholar 

  • Heinzen R, Stiegler GL, Whiting LL, Schmitt SA, Mallavia LP, Frazier ME (1990) Use of pulsed field gel electrophoresis to differentiate Coxiella burnetii strains. Ann N Y Acad Sci 590:504–513

    Article  PubMed  CAS  Google Scholar 

  • Hendrix L, Samuel J, Mallavia L (1991) Differentiation of Coxiella burnetii isolates by analysis of restriction-endonuclease-digested DNA separated by SDS-PAGE. J Gen Microbiol 137:269–276

    Article  PubMed  CAS  Google Scholar 

  • Huijsmans CJJ, Schellekens JJA, Wever PC et al (2011) Single-nucleotide-polymorphisms genotyping of Coxiella burnetii during a Q fever outbreak in the Netherlands. Appl Environ Microbiol 77:2051–2057

    Article  PubMed  CAS  Google Scholar 

  • Jäger C, Willems H, Thiele D, Baljer G (1998) Molecular characterization of Coxiella burnetii isolates. Epidemiol Infect 120:157–164

    Article  PubMed  Google Scholar 

  • Jäger C, Lautenschläger S, Willems H, Baljer G (2002) Coxiella burnetii plasmid types QpDG and QpH1 are closely related and likely identical. Vet Microbiol 89:161–166

    Article  PubMed  Google Scholar 

  • Jernigan DB, Raghunathan PL, Bell BP, Brechner R, Bresnitz EA, Butler JC, Cetron M, Cohen M, Doyle T, Fischer M, Greene C, Griffith KS, Guarner J, Hadler JL, Hayslett JA, Meyer R, Petersen LR, Phillips M, Pinner R, Popovic T, Quinn CP, Reefhuis J, Reissman D, Rosenstein N, Schuchat A, Shieh WJ, Siegal L, Swerdlow DL, Tenover FC, Traeger M, Ward JW, Weisfuse I, Wiersma S, Yeskey K, Zaki S, Ashford DA, Perkins BA, Ostroff S, Hughes J, Fleming D, Koplan JP, Gerberding JL (2002) Investigation of bioterrorism-related anthrax, United States, 2001: epidemiologic findings. Emerg Infect Dis 8:1019–1028

    Article  PubMed  Google Scholar 

  • Jordan IK, Rogozin IB, Wolf YI, Koonin EV (2002) Microevolutionary genomics of bacteria. Theor Popul Biol 61:435–447

    Article  PubMed  Google Scholar 

  • Keim P, Van Ert MN, Pearson T, Vogler AJ, Huynh LY, Wagner DW (2004) Anthrax molecular epidemiology and forensics: using the appropriate marker for different evolutionary scales. Infect Genet Evol 4:205–213

    Article  PubMed  CAS  Google Scholar 

  • Kersh GJ, Wolfe TM, Fitzpatrick KA, Candee AJ, Oliver LD, Patterson NE, Self JS, Priestley RA, Loftis AD, Massung RF (2010) Presence of Coxiella burnetii DNA in the environment of the United States, 2006 to 2008. Appl Environ Microbiol 76:4469–4475

    Article  PubMed  CAS  Google Scholar 

  • Klaassen CHW, Nabuurs-Franssen MH, Tilburg JJHC, Hamans MAWM, Horrevorts AM (2009) Multigenotype Q fever outbreak, the Netherlands. Emerg Infect Dis 15:613–614

    Article  PubMed  Google Scholar 

  • Lautenschläger S, Willems H, Jäger C, Baljer G (2000) Sequencing and characterization of the cryptic plasmid QpRS from Coxiella burnetii. Plasmid 44:85–88

    Article  PubMed  Google Scholar 

  • Li B, Kadura I, Fu D, Watson DE (2004) Genotyping with TaqMAMA. Genomics 83:311–320

    Article  PubMed  CAS  Google Scholar 

  • Loftis AD, Priestley RA, Massung RF (2010) Detection of Coxiella burnetii in commercially available raw milk from the United States. Foodborne Pathog Dis 7(12):1453–1456

    Article  PubMed  Google Scholar 

  • Madariaga M, Rezai K, Trenholme GM, Weinstein RA (2003) Q fever: a biological weapon in your backyard. Lancet Infect Dis 3:709–721

    Article  PubMed  Google Scholar 

  • Malorny B, Junker E, Helmuth R (2008) Multi-locus variable-number tandem repeat analysis for outbreak studies of Salmonella enterica serotype Enteritidis. BMC Microbiol. doi:10.1186/1471-2180-8-84

  • Nelder MP, Lloyd JE et al (2008) Coxiella burnetii in wild-caught filth flies. Emerg Infect Dis 14:1002–1004

    Article  PubMed  Google Scholar 

  • Nguyen SV, Hirai K (1999) Differentiation of Coxiella burnetii isolates by sequence determination and PCR-restriction fragment length polymorphism analysis of isocitrate dehydrogenase gene. FEMS Microbiol Lett 180:249–254

    Article  PubMed  CAS  Google Scholar 

  • Panning M, Kilwinski J, Greiner-Fischer S, Peters M, Kramme S, Frangoulidis D, Meyer H, Henning K, Drosten C (2008) High throughput detection of Coxiella burnetii by real-time PCR with internal control system and automated DNA preparation. BMC Microbiol 19:77

    Article  Google Scholar 

  • Papp AC, Pinsonneault JK, Cooke G, Sadee W (2003) Single nucleotide polymorphism genotyping using allele-specific PCR and fluorescence melting curves. Biotechniques 34:1068–1072

    PubMed  CAS  Google Scholar 

  • Priestley RA, Hornstra HM, Pearson T, Keim P, Massung RF (2009) The state of the SNP: using real-time PCR to genotype Coxiella burnetii. Abstract #34, 23rd meeting of the American Society for Rickettsiology, Hilton Head Island, SC

    Google Scholar 

  • Rodolakis A, Berri M, Héchard C, Caudron C, Souriau A, Bodier CC, Blanchard B, Camuset P, Devillechaise P, Natorp JC, Vadet JP, Arricau-Bouvery N (2007) Comparison of Coxiella burnetii shedding in milk of dairy bovine, caprine, and ovine herds. J Dairy Sci 90:5352–5360

    Article  PubMed  CAS  Google Scholar 

  • Samuel JE, Frazier ME, Mallavia LP (1985) Correlation of plasmid type and disease caused by Coxiella burnetii. Infect Immun 49:775–779

    PubMed  CAS  Google Scholar 

  • Schneeberger PM, Hermans MH, van Hannen EJ, Schellekens JJ, Leenders AC, Wever PC (2009) Real-time PCR on serum samples is indispensable for early diagnosis of acute Q-fever. Clin Vaccine Immunol 17:286–290

    Article  PubMed  Google Scholar 

  • Schulz J, Runge M, Schröder C, Ganter M, Hartung J (2005) Detection of Coxiella burnetii in the air of a sheep barn during shearing. Dtsch Tierarztl Wochenschr 112:470

    PubMed  CAS  Google Scholar 

  • Sekeyová Z, Roux V, Raoult D (1999) Intraspecies diversity of Coxiella burnetii as revealed by com1 and mucZ sequence comparison. FEMS Microbiol Lett 180:61–67

    Article  PubMed  Google Scholar 

  • Seshadri R, Paulsen IT, Eisen JA, Read TD, Nelson KE, Nelson WC, Ward NL, Tettelin H, Davidsen TM, Beanan MJ, Deboy RT, Daugherty SC, Brinkac LM, Madupu R, Dodson RJ, Khouri HM, Lee KH, Carty HA, Scanlan D, Heinzen RA, Thompson HA, Samuel JE, Fraser CM, Heidelberg JF (2003) Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci U S A 100:5455–5460

    Article  PubMed  CAS  Google Scholar 

  • Stein A, Saunders NA, Taylor AG, Raoult D (1993) Phylogenic homogeneity of Coxiella burnetii strains as determinated by 16S ribosomal RNA sequencing. FEMS Microbiol Lett 113:339–344

    Article  PubMed  CAS  Google Scholar 

  • Stein A, Kruszewska D, Gouvernet J, Raoult D (1997) Study of the 16S–23S ribosomal DNA internal spacer of Coxiella burnetii. Eur J Epidemiol 13:471–475

    Article  PubMed  CAS  Google Scholar 

  • Svraka S, Toman R, Skultety L, Slaba K, Homan WL (2006) Establishment of a genotyping scheme for Coxiella burnetii. FEMS Microbiol Lett 254:268–274

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi N, Baumgartner A et al (2006) Detection of Coxiella burnetii in market chicken eggs and mayonnaise. Ann N Y Acad Sci 1078:502–505

    Article  PubMed  CAS  Google Scholar 

  • Thiele D, Willems H (1994) Is plasmid based differentiation of Coxiella burnetii in ‘acute’ and ‘chronic’ isolates still valid? Eur J Epidemiol 10:427–434

    Article  PubMed  CAS  Google Scholar 

  • Thiele D, Willems H, Köpf G, Krauss H (1993) Polymorphism in DNA restriction patterns of Coxiella burnetii isolates investigated by pulsed field gel electrophoresis and image analysis. Eur J Epidemiol 9:419–425

    Article  PubMed  CAS  Google Scholar 

  • Thiele D, Willems H, Haas M, Krauss H (1994) Analysis of the entire nucleotide sequence of the cryptic plasmid QpH1 from Coxiella burnetii. Eur J Epidemiol 10:413–420

    Article  PubMed  CAS  Google Scholar 

  • Tilburg JJ, Melchers WJ, Pettersson AM, Rossen JW, Hermans MH, van Hannen EJ, Nabuurs-Franssen MH, de Vries MC, Horrevorts AM, Klaassen CH (2010) Interlaboratory evaluation of different extraction and real-time PCR methods for the detection of Coxiella burnetii DNA in serum. J Clin Microbiol 48(11):3923–3927

    Article  PubMed  CAS  Google Scholar 

  • Tissot-Dupont H, Amadei MA, Nezri M, Raoult D (2004) Wind in November, Q fever in December. Emerg Infect Dis 10:1264–1269

    Article  PubMed  Google Scholar 

  • Turra M, Chang G, Whybrow D, Higgins G, Qiao M (2006) Diagnosis of acute Q fever by PCR on sera during a recent outbreak in rural south Australia. Ann N Y Acad Sci 1078:566–569

    Article  PubMed  CAS  Google Scholar 

  • Valková D, Kazár J (1995) A new plasmid (QpDV) common to Coxiella burnetii isolates associated with acute and chronic Q fever. FEMS Microbiol Lett 125:275–280

    Article  PubMed  Google Scholar 

  • van Woerden HC, Mason BW et al (2004) Q fever outbreak in industrial setting. Emerg Infect Dis 10:1282–1289

    Article  PubMed  Google Scholar 

  • Vodkin MH, Williams JC, Stephenson EH (1986) Genetic heterogeneity among isolates of Coxiella burnetii. J Gen Microbiol 132:455–463

    PubMed  CAS  Google Scholar 

  • Wen BH, Yu SR, Yu GQ, Li QJ, Zhang X (1991) Analysis of proteins and lipopolysaccharides from Chinese isolates of Coxiella burnetii with monoclonal antibodies. Acta Virol 35:538

    PubMed  CAS  Google Scholar 

  • Willems H, Ritter M, Jäger C, Thiele D (1997) Plasmid-homologous sequences in the chromosome of plasmidless Coxiella burnetii Scurry Q217. J Bacteriol 179:3293–3297

    PubMed  CAS  Google Scholar 

  • Xing Y, Liu J, Sakamuri RM, Wang Z, Wen Y, Vissa V, Weng X (2009) VNTR typing studies of Mycobacterium leprae in China: assessment of methods and stability of markers during treatment. Lepr Rev 80:261–271

    PubMed  Google Scholar 

  • Zhang GQ, To H, Yamaguchi T, Fukushi H, Hirai K (1997) Differentiation of Coxiella burnetii by sequence analysis of the gene (com1) encoding a 27-kDa outer membrane protein. Microbiol Immunol 41:871–877

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Frangoulidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Massung, R.F., Cutler, S.J., Frangoulidis, D. (2012). Molecular Typing of Coxiella burnetii (Q Fever). In: Toman, R., Heinzen, R., Samuel, J., Mege, JL. (eds) Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium. Advances in Experimental Medicine and Biology, vol 984. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4315-1_19

Download citation

Publish with us

Policies and ethics