Skip to main content

Chondrogenic Differentiation of Human Mesenchymal Stem Cells: Effect of Electromagnetic Fields

  • Chapter
  • First Online:
  • 1139 Accesses

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 7))

Abstract

Electromagnetic fields (EMF) have been shown to exert beneficial effects on cartilage tissue. Nowadays differentiated human mesenchymal stem cells (hMSCs) are discussed as an alternative to repair cartilage. Therefore the impact of EMF on hMSCs during chondrogenic differentiation plays an important role. HMSCs cultures exposed to homogeneous sinusoidal extremely low-frequency magnetic fields (5 mT) produced by a solenoid underwent chondrogenic differentiation. After 3 weeks of culture chondrogenesis was assessed by toluidine blue and safranin-O staining, immunohistochemistry, quantitative real-time PCR for cartilage specific proteins and a DMMB-dye binding assay for glycosaminoglycans. Under EMF hMSCs showed a significant increase of collagen type II expression at passage 6. Aggrecan and SOX9 expression did not change significantly after EMF exposure. Collagen type X expression decreased under electromagnetic stimulation. Pellet cultures at passage 5 which had been treated by EMF provided a higher glycosaminoglycan (GAG)/DNA content than cultures which had not been exposed to EMF. Chondrogenic differentiation of hMSCs may be improved by EMF regarding collagen type II expression and GAG content of cultures. EMF might be a way to stimulate and maintain chondrogenesis of hMSCs and therefore a new step in regenerative medicine regarding tissue engineering of cartilage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aaron RK, Boyan BD, Ciombor DM, Schwartz Z, Simon BJ (2004) Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop Relat Res 419:30–37

    Article  PubMed  Google Scholar 

  • Bobacz K, Graninger WB, Amoyo L, Smolen JS (2006) Effect of pulsed electromagnetic fields on proteoglycan biosynthesis of articular cartilage is age dependent. Ann Rheum Dis 65:949–951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boopalan PR, Arumugam S, Livingston A, Mohanty M, Chittaranjan S (2010) Pulsed electromagnetic field therapy results in healing of full thickness articular cartilage defect. Int Orthop. doi:10.1007/s00264-010-0994-8

  • Brighton CT, Wang W, Seldes R, Zhang G, Pollack SR (2001) Signal transduction in electrically stimulated bone cells. J Bone Joint Surg Am 83-A:1514–1523

    CAS  PubMed  Google Scholar 

  • Chang CH, Loo ST, Liu HL, Fang HW, Lin HY (2010) Can low frequency electromagnetic field help cartilage tissue engineering? J Biomed Mater Res A 92:843–851

    PubMed  Google Scholar 

  • Ciombor DM, Aaron RK, Wang S, Simon B (2003) Modification of osteoarthritis by pulsed electromagnetic field—a morphological study. Osteoarthritis Cartilage 11:455–462

    Article  PubMed  Google Scholar 

  • De Mattei M, Pasello M, Pellati A, Stabellini G, Massari L, Gemmati D, Caruso A (2003) Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants. Connect Tissue Res 44:154–159

    Article  PubMed  Google Scholar 

  • De Mattei M, Varani K, Masieri FF, Pellati A, Ongaro A, Fini M, Cadossi R, Vincenzi F, Borea PA, Caruso A (2009) Adenosine analogs and electromagnetic fields inhibit prostaglandin E2 release in bovine synovial fibroblasts. Osteoarthritis Cartilage 17:252–262

    Article  PubMed  Google Scholar 

  • Fassina L, Saino E, Sbarra MS, Visai L, De Angelis MG, Magenes G, Benazzo F (2010) In vitro electromagnetically stimulated SAOS-2 osteoblasts inside porous hydroxyapatite. J Biomed Mater Res A 93:1272–1279

    PubMed Central  PubMed  Google Scholar 

  • Fini M, Torricelli P, Giavaresi G, Aldini NN, Cavani F, Setti S, Nicolini A, Carpi A, Giardino R (2008) Effect of pulsed electromagnetic field stimulation on knee cartilage, subchondral and epiphyseal trabecular bone of aged Dunkin Hartley guinea pigs. Biomed Pharmacother 62:709–715

    Article  PubMed  Google Scholar 

  • Im GI, Jung NH, Tae SK (2006) Chondrogenic differentiation of mesenchymal stem cells isolated from patients in late adulthood: the optimal conditions of growth factors. Tissue Eng 12:527–536

    Article  CAS  PubMed  Google Scholar 

  • Khan WS, Johnson DS, Hardingham TE (2010) The potential of stem cells in the treatment of knee cartilage defects. Knee. doi:10.1006/j.knee.2009.12.003

  • Kraus W (1984) Magnetic field therapy and magnetically induced electrostimulation in orthopedics. Orthopade 13:78–92

    CAS  PubMed  Google Scholar 

  • Li WJ, Chiang H, Kuo TF, Lee HS, Jiang CC, Tuan RS (2009) Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J Tissue Eng Regen Med 3:1–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lohmann CH, Schwartz Z, Liu Y, Li Z, Simon BJ, Sylvia VL, Dean DD, Bonewald LF, Donahue HJ, Boyan BD (2003) Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells. J Orthop Res 21:326–334

    Article  CAS  PubMed  Google Scholar 

  • Longobardi L, O’Rear L, Aakula S, Johnstone B, Shimer K, Chytil A, Horton WA, Moses HL, Spagnoli A (2006) Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res 21:626–636

    Article  CAS  PubMed  Google Scholar 

  • Massari L, Fini M, Cadossi R, Setti S, Traina GC (2006) Biophysical stimulation with pulsed electromagnetic fields in osteonecrosis of the femoral head. J Bone Joint Surg Am 88(Suppl 3):56–60

    Article  PubMed  Google Scholar 

  • Mayer-Wagner S, Schiergens TS, Sievers B, Docheva D, Schieker M, Betz OB, Jansson V, Muller PE (2009) Membrane-based cultures generate scaffold-free neocartilage in vitro: influence of growth factors. Tissue Eng Part A 16(2):513–521

    Article  Google Scholar 

  • Parivar K, Kouchesfehani MH, Boojar MM, Hayati RN (2006) Organ culture studies on the development of mouse embryo limb buds under EMF influence. Int J Radiat Biol 82:455–464

    Article  CAS  PubMed  Google Scholar 

  • Patterson TE, Sakai Y, Grabiner MD, Ibiwoye M, Midura RJ, Zborowski M, Wolfman A (2006) Exposure of murine cells to pulsed electromagnetic fields rapidly activates the mTOR signaling pathway. Bioelectromagnetics 27:535–544

    Article  CAS  PubMed  Google Scholar 

  • Pelaez D, Huang CY, Cheung HS (2009) Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Dev 18:93–102

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Rodemann HP, Bayreuther K, Pfleiderer G (1989) The differentiation of normal and transformed human fibroblasts in vitro is influenced by electromagnetic fields. Exp Cell Res 182:610–621

    Article  CAS  PubMed  Google Scholar 

  • Sakai Y, Patterson TE, Ibiwoye MO, Midura RJ, Zborowski M, Grabiner MD, Wolfman A (2006) Exposure of mouse preosteoblasts to pulsed electromagnetic fields reduces the amount of mature, type I collagen in the extracellular matrix. J Orthop Res 24:242–253

    Article  CAS  PubMed  Google Scholar 

  • Schwartz Z, Simon BJ, Duran MA, Barabino G, Chaudhri R, Boyan BD (2008) Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells. J Orthop Res 26:1250–1255

    Article  CAS  PubMed  Google Scholar 

  • Sisken BF, Walker J, Orgel M (1993) Prospects on clinical applications of electrical stimulation for nerve regeneration. J Cell Biochem 51:404–409

    CAS  PubMed  Google Scholar 

  • Sun LY, Hsieh DK, Yu TC, Chiu HT, Lu SF, Luo GH, Kuo TK, Lee OK, Chiou TW (2009) Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells. Bioelectromagnetics 30:251–260

    Article  CAS  PubMed  Google Scholar 

  • Tokalov SV, Gutzeit HO (2004) Weak electromagnetic fields (50 Hz) elicit a stress response in human cells. Environ Res 94:145–151

    Article  CAS  PubMed  Google Scholar 

  • Trock DH, Bollet AJ, Dyer RH Jr, Fielding LP, Miner WK, Markoll R (1993) A double-blind trial of the clinical effects of pulsed electromagnetic fields in osteoarthritis. J Rheumatol 20:456–460

    CAS  PubMed  Google Scholar 

  • Tsai MT, Li WJ, Tuan RS, Chang WH (2009) Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. J Orthop Res 27(9):1169–1174

    Article  PubMed Central  PubMed  Google Scholar 

  • von der Mark MK, Gauss V, von der Mark MH, Muller P (1977) Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 267:531–532

    Article  PubMed  Google Scholar 

  • Wolf FI, Torsello A, Tedesco B, Fasanella S, Boninsegna A, D’Ascenzo M, Grassi C, Azzena GB, Cittadini A (2005) 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim Biophys Acta 1743:120–129

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Tao C, Zhao D, Li F, Zhao W, Wu H (2009) EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Bioelectromagnetics 31:277–285

    CAS  Google Scholar 

Download references

Acknowledgement

The article contains material from “Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells”, Bioelectromagnetics, Volume 32, Issue 4, May 2011, Pages: 283–290, copyright © 1999–2011 John Wiley & Sons, Inc. This material is reproduced with permission of John Wiley & Sons, Inc.

Part of this research was supported by the Bayerische Forschungsstiftung and by the “Promotionsstudium Förderung für Forschung und Lehre” program from the University of Munich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Mayer-Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mayer-Wagner, S., Paßberger, A., Jansson, V., Müller, P.E. (2012). Chondrogenic Differentiation of Human Mesenchymal Stem Cells: Effect of Electromagnetic Fields. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 7. Stem Cells and Cancer Stem Cells, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4285-7_16

Download citation

Publish with us

Policies and ethics