Skip to main content

Fungus Development and Reactive Oxygen: Phytopathological Aspects

  • Chapter
  • First Online:

Abstract

Fungi produce intracellular and extracellular reactive oxygen species (ROS) via different mechanisms. Diverse fungal metabolites (elicitors, toxins, antioxidants) modify ROS production by plants. Fungal antioxidants control signaling and destructive effects of plant and their own ROS. Disruption of pro-/antioxidant balance in host–pathogen system may disturb fungal development and hinder its virulence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguirre J, Rios-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13:111–118

    Article  PubMed  CAS  Google Scholar 

  • Aguirre J, Hansberg W, Navarro R (2006) Fungal responses to reactive oxygen species. Med Mycol 44:S101–S109

    Article  CAS  Google Scholar 

  • Asai S, Yoshioka H (2009) Nitric oxide is a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthaniana. Mol Plant Microbe Interact 22:619–629

    Article  PubMed  CAS  Google Scholar 

  • Aver’yanov AA, Lapikova VP (1990) Activated oxygen as a possible factor in the autoinhibition of spore germination of the fungus Pyricularia oryzae. Biokhimia (Moscow) 55:1397–1402

    Google Scholar 

  • Aver’yanov AA, Lapikova VP, Lebrun M-H (2007a) Tenuazonic acid, toxin of rice blast fungus, induces disease resistance and reactive oxygen production in plants. Russ J Plant Physiol 54:749–754

    Article  Google Scholar 

  • Aver’yanov AA, Lapikova VP, Pasechnik TD, VlV K, Baker CJ (2007b) Suppression of early stages of fungus development by hydrogen peroxide at low concentrations. Plant Pathol J 6:242–247

    Article  Google Scholar 

  • Aver’yanov AA, Pasechnik TD, Lapikova VP, Gaivoronskaya LM, VlV K, Baker CJ (2007c) Possible contribution of blast spores to the oxidative burst in the infection droplet on rice leaf. Acta Phytopathol Entomol Hung 42:305–319

    Article  Google Scholar 

  • Aver’yanov AA, Lapikova VP, Pasechnik TD, Zakharenkova TS, Baker CJ (2011) Self-inhibition of spore germination via reactive oxygen in the fungus Cladosporium cucumerinum, causal agent of cucurbit scab. Eur J Plant Pathol 130:541–555

    Article  Google Scholar 

  • Bahn YS (2008) Master and commander in fungal pathogens: the two-component system and the HOG signaling pathway. Eukaryot Cell 7:2017–2036

    Article  PubMed  CAS  Google Scholar 

  • Blackman LM, Hardham AR (2008) Regulation of catalase activity and gene expression during Phytophthora nicotianae development and infection of tobacco. Mol Plant Pathol 9:495–510

    Article  PubMed  CAS  Google Scholar 

  • Brown A, Haynes K, Quinn J (2009) Nitrosative and oxidative stress responses in fungal pathogenicity. Curr Opin Microbiol 12:384–391

    Article  PubMed  CAS  Google Scholar 

  • Cessna SG, Sears VE, Dickman MB, Low PS (2000) Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12:2191–2199

    PubMed  CAS  Google Scholar 

  • Chiranand W, McLeod I, Zhou H, Lynn JJ, Vega LA, Myers H, Yates JR, Lorenz MC, Gustin MC (2008) CTA4 transcription factor mediates induction of nitrosative stress response in Candida albicans. Eukaryot Cell 7:268–278

    Article  PubMed  CAS  Google Scholar 

  • Daub ME (1987) The fungal photosensitizer cercosporin and its role in plant disease. In: Heitz JR, Downum KR (eds) Light activated pesticides. American Chemical Society, Washington, DC, pp 271–280

    Chapter  Google Scholar 

  • Deledonne M, Xia Y, Dixon R, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:685–688

    Google Scholar 

  • Desmond OJ, Manners JM, Stephens AE, Maclean DJ, Schenk PM, Gardiner DM, Munn AL, Kazan K (2008) The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. Mol Plant Pathol 9:435–445

    Article  PubMed  CAS  Google Scholar 

  • Egan MJ, Zheng-Yi W, Jones MA, Smirnoff N, Talbot NJ (2007) Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci USA 104:11772–11777

    Article  PubMed  CAS  Google Scholar 

  • Fassler JS, West AH (2011) Fungal Skn7 stress responses and their relationship to virulence. Eukaryot Cell 10:156–167

    Article  PubMed  CAS  Google Scholar 

  • Forman HJ, Maiorino M, Ursini F (2010) Signalling functions of reactive oxygen species. Biochemistry 49:835–842

    Article  PubMed  CAS  Google Scholar 

  • Garre V, Tenberge KB, Eising R (1998) Secretion of a fungal extracellular catalase by Claviceps purpurea during infection of rye: putative role in pathogenicity and suppression of host defense. Phytopathology 88:744–753

    Article  PubMed  CAS  Google Scholar 

  • Gessler NN, Aver’yanov AA, Belozerskaya TA (2007) Reactive oxygen species in regulation of fungal development. Biochemistry (Moscow) 72:1091–1109

    Article  CAS  Google Scholar 

  • Gil-ad NL, Mayer AM (1999) Evidence for rapid breakdown of hydrogen peroxide by Botrytis cinerea. FEMS Microbiol Lett 176:455–461

    Article  CAS  Google Scholar 

  • Gómez-Toribio V, García-Martín AB, Martínez MJ, Martínez AT, Guillén F (2009) Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling. Appl Environ Microbiol 75:3944–3953

    Article  PubMed  Google Scholar 

  • Hof C, Eisfeld K, Antelo L, Foster AJ, Anke H (2009) Siderophore synthesis in Magnaporthe grisea is essential for vegetative growth, conidiation and resistance to oxidative stress. Fungal Genet Biol 46:321–332

    Article  PubMed  CAS  Google Scholar 

  • Jain C, Yun M, Politz SM, Rao RP (2009) A pathogenesis assay using Saccharomyces cerevisiae and Caenorhabditis elegans reveals novel roles for yeast AP-1, Yap1, and host dual oxidase BLI-3 in fungal pathogenesis. Eukaryot Cell 8:1218–1227

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Yu J, Mahoney N, Chan KL, Molyneux RJ, Varga J, Bhatnagar D, Cleveland TE, Nierman WC, Campbell BC (2008) Elucidation of the functional genomics of antioxidant-based inhibition of aflatoxin biosynthesis. Int J Food Microbiol 122:49–60

    Article  PubMed  CAS  Google Scholar 

  • L’Haridon F, Besson-Bard A, Binda M, Serrano M, Abou-Mansour E, Balet F, Schoonbeek H-J, Hess S, Ricardo M, Léon J, Lamotte O, Métraux J-P (2011) A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLoS Pathog 7:e1002148

    Article  PubMed  Google Scholar 

  • Levy E, Eyal Z, Hochman A (1992) Purification and characterization of catalase-peroxidase from the fungus Septoria tritici. Arch Biochem Biophys 296:321–327

    Article  PubMed  CAS  Google Scholar 

  • Li B, Fu Y, Jiang D, Xie J, Cheng J, Li G, Hamid MI, Yi X (2010) Cyclic GMP as a second messenger in the nitric oxide-mediated conidiation of the mycoparasite Coniothyrium minitans. Appl Environ Microbiol 76:2830–2836

    Article  PubMed  CAS  Google Scholar 

  • Macarisin D, Droby S, Bauchanc G, Wisniewski M (2010) Superoxide anion and hydrogen peroxide in the yeast antagonist–fruit interaction: a new role for reactive oxygen species in postharvest biocontrol? Postharvest Biol Technol 58:184–202

    Article  Google Scholar 

  • Missall TA, Pusateri ME, Donlin MJ, Chambers KT, Corbett JA, Lodge JK (2006) Posttranslational, translational, and transcriptional responses to nitric oxide stress in Cryptococcus neoformans: implications for virulence. Eukaryot Cell 5:518–529

    Article  PubMed  CAS  Google Scholar 

  • Molina L, Kahmann R (2007) An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19:2293–2309

    Article  PubMed  CAS  Google Scholar 

  • Moore S, De Vries OMH, Tudzynski P (2002) The major Cu, Zn SOD of the pathogen Claviceps purpurea is not essential for pathogenicity. Mol Plant Pathol 3:9–22

    Article  PubMed  CAS  Google Scholar 

  • Nathues E, Jörgens C, Lorentz N, Tudzynski P (2007) The histidine kinase CpHK2 has impact on spore germination, oxidative stress and fungicide resistance, and virulence of the ergot fungus Claviceps purpurea. Mol Plant Pathol 8:653–665

    Article  PubMed  CAS  Google Scholar 

  • Navarro R, Aguirre J (1998) Posttranscriptional control mediates cell type-specific localization of catalase during Aspergillus nidulans development. J Bacteriol 180:5733–5738

    PubMed  CAS  Google Scholar 

  • Papapostolou I, Georgiou CD (2008) Differentiation of Sclerotinia minor depends on thiol redox state and oxidative stress. Can J Microbiol 54:28–36

    Article  Google Scholar 

  • Papapostolou I, Georgiou CD (2010) Superoxide radical is involved in the sclerotial differentiation of filamentous phytopathogenic fungi: identification of a fungal xanthine oxidase. Fungal Biol 114:387–395

    Article  PubMed  CAS  Google Scholar 

  • Peraza L, Hansberg W (2002) Neurospora crassa catalases, singlet oxygen and cell differentiation. Biol Chem 383:569–575

    Article  PubMed  CAS  Google Scholar 

  • Prats E, Carver TLW, Mur LAJ (2008) Pathogen-derived nitric oxide influences formation of the appressorium infection structure in the phytopathogenic fungus Blumeria graminis. Res Microbiol 159:476–480

    Article  PubMed  CAS  Google Scholar 

  • Reverberi M, Zjalic S, Ricelli A, Punelli F, Camera E, Fabbri C, Picardo M, Fanelli C, Fabbri AA (2008) Modulation of antioxidant defense in Aspergillus parasiticus is involved in aflatoxin biosynthesis: a role for the ApyapA gene. Eukaryot Cell 7:988–1000

    Article  PubMed  CAS  Google Scholar 

  • Roetzer A, Klopf E, Gratz N, Marcet-Houben M, Hiller E, Rupp S, Toni G, Kovarik P, Schüller C (2011) Regulation of Candida glabrata oxidative stress resistance is adapted to host environment. FEBS Lett 585:319–327

    Article  PubMed  CAS  Google Scholar 

  • Schliebs W, Würtz CH, Kunau W-H, Veenhuis M, Rottensteiner H (2006) A eukaryote without catalase-containing microbodies: Neurospora crassa exhibits a unique cellular distribution of its four catalases. Eukaryot Cell 5:1490–1502

    Article  PubMed  CAS  Google Scholar 

  • Schumacher J, de Larrinoa IF, Tudzynski B (2008) Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryot Cell 7:584–601

    Article  PubMed  CAS  Google Scholar 

  • Segmüller N, Ellendorf U, Tudzynski B, Paul T (2007) BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot Cell 6:211–221

    Article  PubMed  Google Scholar 

  • Semighini CP, Harris SD (2008) Regulation of apical dominance in Aspergillus nidulans hyphae by reactive oxygen species. Genetics 179:1919–1932

    Article  PubMed  CAS  Google Scholar 

  • Shetty NP, Jorgensen HJL, Jensen JD, Collinge DB, Shetty HS (2008) Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol 121:267–280

    Article  CAS  Google Scholar 

  • Sierra-Campos E, Pardo JP (2009) The relationship between the antioxidant system and the virulence in Ustilago maydis, a fungal pathogen. Rev Latinoam Microbiol 51:7–17

    Google Scholar 

  • Skamnioti P, Henderson C, Zhang Z, Robinson Z, Gurr SJ (2007) A novel role for catalase B in the maintenance of fungal cell-wall integrity during host invasion in the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 20:568–580

    Article  PubMed  CAS  Google Scholar 

  • Temme N, Tudzynski P (2009) Does Botrytis cinerea ignore H2O2-induced oxidative stress during interaction? Characterization of Botrytis activator protein 1. Mol Plant Microbe Interact 22:987–998

    Article  PubMed  CAS  Google Scholar 

  • Valenciano S, Lucas JR, Pedregosa A, Monistrol IF, Laborda F (1996) Induction of β-oxidation enzymes and microbody proliferation in Aspergillus nidulans. Arch Microbiol 166:336–341

    Article  PubMed  CAS  Google Scholar 

  • Vandenbroucke K, Robbens S, Vandepoele K, Inzé D, Van de Peer Y, Van Breusegem F (2008) Hydrogen peroxide-induced gene expression across kingdoms: a comparative analysis. Mol Biol Evol 25:507–516

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Higgins VJ (2005) Nitric oxide has a regulatory effect in the germination of conidia of Colletotrichum coccodes. Fungal Genet Biol 42:284–292

    Article  PubMed  CAS  Google Scholar 

  • Westwater C, Balish E, Schofield DA (2005) Candida albicans-conditioned medium protects yeast cells from oxidative stress: a possible link between quorum sensing and oxidative stress resistance. Eukaryot Cell 4:1654–1661

    Article  PubMed  CAS  Google Scholar 

  • Yang SL, Lin C-H, Chung K-R (2009) Coordinate control of oxidative stress tolerance, vegetative growth, and fungal pathogenicity via the AP1 pathway in the rough lemon pathotype of Alternaria alternata. Physiol Mol Plant Pathol 74:100–110

    Article  CAS  Google Scholar 

  • Yen M-T, Tseng Y-H, Li R-C, Mau J-L (2007) Antioxidant properties of fungal chitosan from shiitake stipes. LWT 40:255–261

    Article  CAS  Google Scholar 

  • Zakharenkova TS, Aver’yanov AA, Pasechnik TD, Lapikova VP, Baker CJ (2010) Release of elicitors from rice blast spores under the action of reactive oxygen species. Russ J Plant Physiol 57:615–619

    Article  CAS  Google Scholar 

  • Zhang H, Zhang X, Mao B, Li Q, He Z (2004a) Alpha-picolinic acid, a fungal toxin and mammal apoptosis-inducing agent, elicits hypersensitive-like response and enhances disease resistance in rice. Cell Res 14:27–33

    Article  PubMed  Google Scholar 

  • Zhang Z, Henderson C, Gurr SJ (2004b) Blumeria graminis secretes an extracellular catalase during infection of barley: potential role in suppression of host defence. Mol Plant Pathol 5:537–547

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Aver’yanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aver’yanov, A.A., Belozerskaya, T.A., Gessler, N.N. (2012). Fungus Development and Reactive Oxygen: Phytopathological Aspects. In: Witzany, G. (eds) Biocommunication of Fungi. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4264-2_17

Download citation

Publish with us

Policies and ethics