Skip to main content

Finite Element Modeling of Biomolecular Systems in Ionic Solution

  • Chapter

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 3))

Abstract

An accurate finite element method is introduced to solve the two most commonly used continuum models in computational biophysics: Poisson–Boltzmann (PB) equation and Poisson–Nernst–Planck (PNP) equations. They describe equilibrium and non-equilibrium (with diffusion existed) properties of ionic liquid, respectively. Both models involve two domains (solvent and solute) with distributed singular permanent charges inside biomolecules (solute domain) and a dielectric jump at the interface between solvent and solute. A stable regularization scheme is described to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and regular, well-posed PB/PNP equations are formulated. The interface conditions for electric potential are also explicitly enforced to be satisfied. An inexact-Newton method is used to solve the nonlinear elliptic PB equation and the coupled steady-state PNP equations; while an Adams–Bashforth–Crank–Nicolson method is devised for time integration for the unsteady electrodiffusion. The numerical methods are shown to be accurate and stable by various tests of real biomolecular electrostatic and diffusion problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abaid N, Eisenberg RS, Liu W (2008) Asymptotic expansions of I-V relations via a Poisson–Nernst–Planck system. SIAM J Appl Dyn Syst 7(4):1507–1526

    Article  MathSciNet  MATH  Google Scholar 

  2. Aksoylu B, Holst M (2006) Optimality of multilevel preconditioners for local mesh refinement in three dimensions. SIAM J Numer Anal 44(3):1005–1025

    Article  MathSciNet  MATH  Google Scholar 

  3. Baker NA (2005) Biomolecular applications of Poisson–Boltzmann methods. In: Lipkowitz KB, Larter R, Cundari TR (eds) Reviews in computational chemistry, vol 21. Wiley, Hoboken, pp 349–379

    Chapter  Google Scholar 

  4. Baker NA, Holst M, Wang F (2000) Adaptive multilevel finite element solution of the Poisson–Boltzmann equation II: refinement schemes based on solvent accessible surfaces. J Comput Chem 21:1343–1352

    Article  Google Scholar 

  5. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  Google Scholar 

  6. Baker NA, Bashford D, Case DA (2006) Implicit solvent electrostatics in biomolecular simulation. In: Leimkuhler B, Chipot C, Elber R, Laaksonen A, Mark A, Schlick T, Schutte C, Skeel R (eds) New algorithms for macromolecular simulation. Springer, Berlin, pp 263–295

    Chapter  Google Scholar 

  7. Bank RE, Rose DJ, Fichtner W (1983) Numerical methods for semiconductor device simulation. SIAM J Sci Stat Comput 4:416–435

    Article  MathSciNet  MATH  Google Scholar 

  8. Barcilon V, Chen DP, Eisenberg RS, Jerome JW (1997) Qualitative properties of steady-state Poisson–Nernst–Planck systems: perturbation and simulation study. SIAM J Appl Math 57(3):631–648

    Article  MathSciNet  MATH  Google Scholar 

  9. Berg OG, von Hippel PH (1985) Diffusion-controlled macromolecular interactions. Annu Rev Biophys Biophys Chem 14:131–160

    Article  Google Scholar 

  10. Biler P, Hebisch W, Nadzieja T (1994) The Debye system: existence and large time behavior of solutions. Nonlinear Anal 23:1189–1209

    Article  MathSciNet  MATH  Google Scholar 

  11. Bolintineanu DS, Sayyed-Ahmad A, Davis HT, Kaznessis YN (2009) Poisson–Nernst–Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore. PLoS Comput Biol 5(1):e1000277

    Article  Google Scholar 

  12. Boschitsch AH, Fenley MO (2004) Hybrid boundary element and finite difference method for solving the nonlinear Poisson–Boltzmann equation. J Comput Chem 25(7):935–955

    Article  Google Scholar 

  13. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) Charmm: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  Google Scholar 

  14. Cardenas AE, Coalson RD, Kurnikova MG (2000) Three-dimensional Poisson–Nernst–Planck theory studies: influence of membrane electrostatics on gramicidin a channel conductance. Biophys J 79(1):80–93

    Article  Google Scholar 

  15. Chapman DL (1913) A contribution to the theory of electrocapollarity. Philos Mag 25:475–481

    Article  MATH  Google Scholar 

  16. Chen L, Holst M, Xu J (2007) The finite element approximation of the nonlinear Poisson–Boltzmann equation. SIAM J Numer Anal 45(6):2298–2320

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen MX, Lu BZ (2011) TMSmesh: a robust method for molecular surface mesh generation using a trace technique. J Chem Theory Comput 7(1):203–212

    Article  Google Scholar 

  18. Chen Z, Zou J (1998) Finite element methods and their convergence for elliptic and parabolic interface problems. Numer Math 79(2):175–202

    Article  MathSciNet  MATH  Google Scholar 

  19. Chern IL, Liu JG, Wang WC (2003) Accurate evaluation of electrostatics for macromolecules in solution. Methods Appl Anal 10:309–328

    MathSciNet  MATH  Google Scholar 

  20. Cohen H, Cooley JW (1965) The numerical solution of the time-dependent Nernst–Planck equations. Biophys J 5:145–162

    Article  Google Scholar 

  21. Cortis CM, Friesner RA (1997) Numerical solution of the Poisson–Boltzmann equation using tetrahedral finite-element meshes. J Comput Chem 18(13):1591–1608

    Article  Google Scholar 

  22. Cox SM, Matthews PC (2002) Exponential time differencing for stiff systems. J Comput Phys 176(2):430–455. doi:10.1006/jcph.2002.6995

    Article  MathSciNet  MATH  Google Scholar 

  23. Davis ME, McCammon JA (1990) Electrostatics in biomolecular structure and dynamics. Chem Rev 90(3):509–521

    Article  Google Scholar 

  24. Debye P, Huckel E (1923) Zur theorie der elektrolyte. Phys Z 24:185–206

    MATH  Google Scholar 

  25. Derjaguin B, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim (USSR) 14:633–662

    Google Scholar 

  26. Eisenberg B, Liu W (2007) Poisson–Nernst–Planck systems for ion channels with permanent charges. SIAM J Math Anal 38(6):1932–1966

    Article  MathSciNet  MATH  Google Scholar 

  27. Eisenberg R, Chen DP (1993) Poisson–Nernst–Planck (PNP) theory of an open ionic channel. Biophys J 64(2):A22

    Google Scholar 

  28. Feig M, Brooks CL (2004) Recent advances in the development and application of implicit solvent models in biomolecule simulations. Curr Opin Struct Biol 14(2):217–224

    Article  Google Scholar 

  29. Feig M, Onufriev A, Lee MS, Im W, Case DA, Brooks CL (2004) Performance comparison of generalized Born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. J Comput Chem 25(2):265–284

    Article  Google Scholar 

  30. Fogolari F, Brigo A, Molinari H (2002) The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J Mol Recognit 15(6):377–392

    Article  Google Scholar 

  31. Gatti E, Micheletti S, Sacco R (1998) A new Galerkin framework for the drift-diffusion equation in semiconductors. East-West J Numer Math 6:101–135

    MathSciNet  MATH  Google Scholar 

  32. Geng WH, Yu SN, Wei GW (2007) Treatment of charge singularities in implicit solvent models. J Chem Phys 127(11):114106

    Article  Google Scholar 

  33. Gillespie D, Nonner W, Eisenberg RS (2002) Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux. J Phys, Condens Matter 14(46):12129–12145

    Article  Google Scholar 

  34. Gilson MK, Honig BH (1987) Calculation of electrostatic potentials in an enzyme active-site. Nature 330(6143):84–86

    Article  Google Scholar 

  35. Gilson MK, Sharp KA, Honig BH (1988) Calculating the electrostatic potential of molecules in solution—method and error assessment. J Comput Chem 9(4):327–335

    Article  Google Scholar 

  36. Gilson MK, Davis ME, Luty BA, McCammon JA (1993) Computation of electrostatic forces on solvated molecules using the Poisson–Boltzmann equation. J Phys Chem 97(14):3591–3600

    Article  Google Scholar 

  37. Gouy G (1910) Constitution of the electric charge at the surface of an electrolyte. J Phys 9:457–468

    MATH  Google Scholar 

  38. Guyomarch G, Lee CO (2004) A discontinuous Galerkin method for elliptic interface problems with applications to electroporation. Technical report, Korea Advanced Institute of Science and Technology

    Google Scholar 

  39. He Y, Sun W (2007) Stability and convergence of the Crank–Nicolson/Adams–Bashforth scheme for the time-dependent Navier–Stokes equations. SIAM J Numer Anal 45(2):837–869

    Article  MathSciNet  MATH  Google Scholar 

  40. Holst M Finite element toolkit. http://www.fetk.org/

  41. Holst M (2001) Adaptive numerical treatment of elliptic systems on manifolds. Adv Comput Math 15(1–4):139–191

    Article  MathSciNet  MATH  Google Scholar 

  42. Holst M, Saied F (1995) Numerical solution of the nonlinear Poisson–Boltzmann equation: developing more robust and efficient methods. J Comput Chem 16:337–364

    Article  Google Scholar 

  43. Holst M, Saied F (1993) Multigrid solution of the Poisson–Boltzmann equation. J Comput Chem 14(1):105–113

    Article  Google Scholar 

  44. Holst M, Baker NA, Wang F (2000) Adaptive multilevel finite element solution of the Poisson–Boltzmann equation I: algorithms and examples. J Comput Chem 21:1319–1342

    Article  Google Scholar 

  45. Holst M, McCammon JA, Yu Z, Zhou YC, Zhu Y (2011) Adaptive finite element modeling techniques for the Poisson–Boltzmann equation. Commun Comput Phys 11:179–214

    MathSciNet  Google Scholar 

  46. Holst MJ (1993) Multilevel methods for the Poisson–Boltzmann equation. PhD thesis, University of Illinois at Urbana-Champaign

    Google Scholar 

  47. Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268(5214):1144–1149

    Article  Google Scholar 

  48. Jerome JW (1985) Consistency of semiconductor modeling: an existence/stability analysis for the stationary van Boosbroeck system. SIAM J Appl Math 45:565–590

    Article  MathSciNet  MATH  Google Scholar 

  49. Jerome JW (1996) Analysis of charge transport: a mathematical study of semiconductor devices. Springer, Berlin

    Google Scholar 

  50. Jerome JW, Kerkhoven T (1991) A finite element approximation theory for the drift diffusion semiconductor model. SIAM J Numer Anal 28(2):403–422

    Article  MathSciNet  MATH  Google Scholar 

  51. Koehl P (2006) Electrostatics calculations: latest methodological advances. Curr Opin Struct Biol 16(2):142–151

    Article  Google Scholar 

  52. Kurnikova MG, Coalson RD, Graf P, Nitzan A (1999) A lattice relaxation algorithm for 3D Poisson–Nernst–Planck theory with application to ion transport through the gramicidin a channel. Biophys J 76(2):642–656

    Article  Google Scholar 

  53. Liu WS (2005) Geometric singular perturbation approach to steady-state Poisson–Nernst–Planck systems. SIAM J Appl Math 65(3):754–766

    Article  MathSciNet  MATH  Google Scholar 

  54. Lu BZ, McCammon JA (2010) Kinetics of diffusion-controlled enzymatic reactions with charged substrates. PMC Biophys 3(1):1

    Article  Google Scholar 

  55. Lu BZ, Zhou YC (2011) Poisson–Nernst–Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates. Biophys J 100(10):2475–2485

    Article  Google Scholar 

  56. Lu BZ, Cheng XL, McCammon JA (2007) “New-version-fast-multipole method” accelerated electrostatic calculations in biomolecular systems. J Comput Phys 226(2):1348–1366

    Article  MathSciNet  MATH  Google Scholar 

  57. Lu BZ, Zhou YC, Huber GA, Bond SD, Holst MJ, McCammon JA (2007) Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution. J Chem Phys 127(13):135102

    Article  Google Scholar 

  58. Lu BZ, Zhou YC, Holst M, McCammon JA (2008) Recent progress in numerical solution of the Poisson–Boltzmann equation for biophysical applications. Commun Comput Phys 3(5):973–1009

    MATH  Google Scholar 

  59. Lu BZ, Holst MJ, McCammon JA, Zhou YC (2010) Poisson–Nernst–Planck equations for simulating biomolecular diffusion-reaction processes I: finite element solutions. J Comput Phys 229(19):6979–6994

    Article  MathSciNet  MATH  Google Scholar 

  60. Lu T, Cai W (2008) A Fourier spectral-discontinuous Galerkin method for time-dependent 3-D Schrodinger–Poisson equations with discontinuous potentials. J Comput Appl Math 220:588–614

    Article  MathSciNet  MATH  Google Scholar 

  61. Luty BA, Davis ME, McCammon JA (1992) Solving the finite-difference nonlinear Poisson–Boltzmann equation. J Comput Chem 13(9):1114–1118

    Article  MathSciNet  Google Scholar 

  62. Mori Y, Jerome JW, Peskin CS (2007) A three-dimensional model of cellular electrical activity. Bull Inst Math Acad Sin 2:367–390

    MathSciNet  MATH  Google Scholar 

  63. Mori Y, Fishman GI, Peskin CS (2008) Ephaptic conduction in a cardiac strand model with 3D electrodiffusion. Proc Natl Acad Sci USA 105:6463–6468

    Article  Google Scholar 

  64. Nadler B, Schuss Z, Singer A, Eisenberg RS (2004) Ionic diffusion through confined geometries: from Langevin equations to partial differential equations. J Phys, Condens Matter 16(22):S2153–S2165

    Article  Google Scholar 

  65. Nernst W (1889) Die elektromotorische wirksamkeit der ionen. Z Phys Chem 4:129

    Google Scholar 

  66. Orozco M, Luque F (2000) Theoretical methods for the description of the solvent effect in biomolecular systems. Chem Rev 100(11):4187–4226

    Article  Google Scholar 

  67. Planck M (1890) Über die erregung von electricität und wärme in electrolyten. Ann Phys Chem 39:161

    Google Scholar 

  68. Prohl A, Schmuck M (2009) Convergent discretizations for the Nernst–Planck–Poisson system. Numer Math 111(4):591–630. doi:10.1007/s00211-008-0194-2

    Article  MathSciNet  MATH  Google Scholar 

  69. Quere PL, de Roquefort TA (1982) Computation of natural convection in two-dimension cavities with Chebyshev polynomials. J Chem Phys 57:210–228

    Google Scholar 

  70. Radic Z, Quinn DM, McCammon JA, Taylor P (1997) Electrostatic influence on the kinetics of ligand binding to acetylcholinesterase—distinctions between active center ligands and fasciculin. J Biol Chem 272(37):23265–23277

    Article  Google Scholar 

  71. Roux B, Simonson T (1999) Implicit solvent models. Biophys Chem 78(1–2):1–20

    Article  Google Scholar 

  72. Rubinstein I (1990) Electro-diffusion of ions. SIAM, Philadelphia

    Book  Google Scholar 

  73. Schuss Z, Nadler B, Eisenberg RS (2001) Derivation of Poisson and Nernst–Planck equations in a bath and channel from a molecular model. Phys Rev E 64(3):036116

    Article  Google Scholar 

  74. Sharp K, Honig B (1989) Lattice models of electrostatic interactions—the finite-difference Poisson–Boltzmann method

    Google Scholar 

  75. Shestakov AI, Milovich JL, Noy A (2002) Solution of the nonlinear Poisson–Boltzmann equation using pseudo-transient continuation and the finite element method. J Colloid Interface Sci 247(1):62–79

    Article  Google Scholar 

  76. Song YH, Zhang YJ, Bajaj CL, Baker NA (2004) Continuum diffusion reaction rate calculations of wild-type and mutant mouse acetylcholinesterase: adaptive finite element analysis. Biophys J 87(3):1558–1566

    Article  Google Scholar 

  77. Song YH, Zhang YJ, Shen TY, Bajaj CL, McCammon JA, Baker NA (2004) Finite element solution of the steady-state Smoluchowski equation for rate constant calculations. Biophys J 86(4):2017–2029

    Article  Google Scholar 

  78. Tai KS, Bond SD, Macmillan HR, Baker NA, Holst MJ, McCammon JA (2003) Finite element simulations of acetylcholine diffusion in neuromuscular junctions. Biophys J 84(4):2234–2241

    Article  Google Scholar 

  79. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  80. Warwicker J, Watson HC (1982) Calculation of the electric-potential in the active-site cleft due to alpha-helix dipoles. J Mol Biol 157(4):671–679

    Article  Google Scholar 

  81. Weiser J, Shenkin PS, Still WC (1999) Optimization of Gaussian surface calculations and extension to solvent-accessible surface areas. J Comput Chem 20:688–703

    Article  Google Scholar 

  82. Xie D, Zhou S (2007) A new minimization protocol for solving nonlinear Poisson–Boltzmann mortar finite element equation. BIT Numer Math 47(4):853–871

    Article  MathSciNet  MATH  Google Scholar 

  83. Xie Y, Cheng J, Lu BZ, Zhang LB Parallel adaptive finite element algorithms for solving the coupled electro-diffusion equations (submitted)

    Google Scholar 

  84. Yang SY, Zhou YC, Wei GW (2002) Comparison of the Discrete Singular Convolution algorithm and the Fourier pseudospectral method for solving partial differential equations. Comput Phys Commun 143:113–135

    Article  MathSciNet  MATH  Google Scholar 

  85. Zhang L (2007) PHG: parallel hierarchical grid. http://lsec.cc.ac.cn/phg/

  86. Zhou YC, Feig M, Wei GW (2007) Highly accurate biomolecular electrostatics in continuum dielectric environments. J Comput Chem 29:87–97

    Article  Google Scholar 

  87. Zhou YC, Lu BZ, Huber GA, Holst MJ, McCammon JA (2008) Continuum simulations of acetylcholine consumption by acetylcholinesterase—a Poisson–Nernst–Planck approach. J Phys Chem B 112(2):270–275

    Article  Google Scholar 

  88. Zhou YC, Lu BZ, Gorfe AA (2010) Continuum electromechanical modeling of protein-membrane interactions. Phys Rev E 82(4):041923

    Article  Google Scholar 

  89. Zhou ZX, Payne P, Vasquez M, Kuhn N, Levitt M (1996) Finite-difference solution of the Poisson–Boltzmann equation: complete elimination of self-energy. J Comput Chem 17(11):1344–1351

    Article  Google Scholar 

Download references

Acknowledgements

The author was supported by the State Key Laboratory of Scientific/Engineering Computing, the National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, and the China NSF (NSFC10971218, NSFC11001257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benzhuo Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lu, B. (2013). Finite Element Modeling of Biomolecular Systems in Ionic Solution. In: Zhang, Y. (eds) Image-Based Geometric Modeling and Mesh Generation. Lecture Notes in Computational Vision and Biomechanics, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4255-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4255-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4254-3

  • Online ISBN: 978-94-007-4255-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics