Skip to main content

Midkine and Heart Failure

  • Chapter
  • First Online:
  • 407 Accesses

Abstract

The molecular mechanisms of midkine (MK) in myocardial damage and the possibility of clinical application of MK for heart failure were assessed. In the acute phase of cardiac ischemia/reperfusion (I/R) injury of mice, MK showed an anti-apoptotic reaction for cardiomyocytes through Bcl-2 and ERK activation. In addition, the damage from pig acute I/R injury was suppressed by catheter injection of MK into the coronary artery. The pig model is the faithful one of clinical case, and thus MK has been suggested to be an important candidate material for the treatment of acute myocardial infarction. MK also prevented ventricular remodeling and improved long-term survival after myocardial infarction in mouse and rat chronic models. The mechanisms of these effects involved MK-induced angiogenesis via the PI3/Akt pathway. Moreover, MK inhibited the cardiac remodeling of non-ischemic myocardial damage induced by rapid pacing in rabbits. MK is thus a potentially important new molecular target for treatment and prevention of heart failure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bialik S, Geenen DL, Sasson IE et al (1997) Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Invest 100:1363–1372

    Article  PubMed  CAS  Google Scholar 

  2. Moens AL, Claeys MJ, Timmermans JP et al (2005) Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. Int J Cardiol 100:179–190

    Article  PubMed  CAS  Google Scholar 

  3. Narula J, Haider N, Vimani R et al (1996) Apoptosis in myocytes in end-stage heart failure. N Eng J Med 335:1182–1189

    Article  CAS  Google Scholar 

  4. Horiba M, Kadomatsu K, Yasui K et al (2006) Midkine plays a protective role against cardiac ischemia/reperfusion injury through a reduction of apoptotic reaction. Circulation 114:1713–1720

    Article  PubMed  CAS  Google Scholar 

  5. Takenaka H, Horiba M, Ishiguro H et al (2009) Midkine prevents ventricular remodeling and improves long-term survival after myocardial infarction. Am J Physiol Heart Circ Physiol 296:H462–H469

    Article  PubMed  CAS  Google Scholar 

  6. Sumida A, Horiba M, Ishiguro H et al (2010) Midkine gene transfer after myocardial infarction in rats prevents remodelling and ameliorates cardiac dysfunction. Cardiovasc Res 86:113–121

    Article  PubMed  CAS  Google Scholar 

  7. Nakamura T, Mizuno S, Matsumoto K et al (2000) Exogenous HGF. J Clin Invest 106:1511–1519

    Article  PubMed  CAS  Google Scholar 

  8. Parsa CJ, Matsumoto A, Kim J et al (2003) A novel protective effect of erythropoietin in the infarcted heart. J Clin Invest 112:999–1007

    PubMed  CAS  Google Scholar 

  9. Kato K, Yin H, Agata J et al (2003) Adrenomedullin gene delivery attenuates myocardial infarction and apoptosis after ischemia and reperfusion. Am J Physiol Heart Circ Physiol 285:H1506–H1514

    PubMed  CAS  Google Scholar 

  10. Bock-Marquette I, Saxena A, White MD et al (2004) Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432:466–472

    Article  PubMed  CAS  Google Scholar 

  11. Qi M, Ikematsu S, Ichihara-Tanaka K et al (2000) Midkine rescues Wilms’ tumor cells from cisplatin-induced apoptosis: regulation of Bcl-2 expression by Midkine. J Biochem-Tokyo 127:269–277

    Article  PubMed  CAS  Google Scholar 

  12. Owada K, Sanjo N, Kobayashi T et al (1999) Midkine inhibits caspase-dependent apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase in cultured neurons. J Neurochem 73:2084–2092

    PubMed  CAS  Google Scholar 

  13. Ishiguro H, Horiba M, Takenaka H et al (2011) A single intracoronary injection of midkine reduces ischemia/reperfusion injury in swine hearts: a novel therapeutic approach for acute coronary syndrome. Front Physiol 2:27

    Article  PubMed  CAS  Google Scholar 

  14. Krzeminski TF, Nozynski JK, Grzyb J et al (2005) Angiogenesis and cardioprotection after TNFalpha-inducer-Tolpa Peat Preparation treatment in rat’s hearts after experimental myocardial infarction in vivo. Vascul Pharmacol 43:164–170

    Article  PubMed  CAS  Google Scholar 

  15. Wang Y, Ahmad N, Wani MA et al (2004) Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. J Mol Cell Cardiol 37:1041–1052

    Article  PubMed  CAS  Google Scholar 

  16. Muramatsu T (2002) Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem-Tokyo 132:359–371

    Article  PubMed  CAS  Google Scholar 

  17. Shiojima I, Walsh K (2002) Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res 90:1243–1250

    Article  PubMed  CAS  Google Scholar 

  18. Carmeliet P, Dor Y, Herbert JM et al (1998) Role of HIF-1 alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 395:525

    Article  CAS  Google Scholar 

  19. Gerber HP, Condorelli F, Park J et al (1997) Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem 272:23659–23667

    Article  PubMed  CAS  Google Scholar 

  20. Li J, Post M, Volk R et al (2000) PR39, a peptide regulator of angiogenesis. Nat Med 6:49–55

    Article  PubMed  CAS  Google Scholar 

  21. Martin C, Yu AY, Jiang BH et al (1998) Cardiac hypertrophy in chronically anemic fetal sheep: increased vascularization is associated with increased myocardial expression of vascular endothelial growth factor and hypoxia-inducible factor 1. Am J Obstet Gynecol 178:527–534

    Article  PubMed  CAS  Google Scholar 

  22. Choudhuri R, Zhang HT, Donnini S et al (1997) An angiogenic role for the neurokines midkine and pleiotrophin in tumorigenesis. Cancer Res 57:1814–1819

    PubMed  CAS  Google Scholar 

  23. Horiba M, Kadomatsu K, Nakamura E et al (2000) Neointima formation in a restenosis model is suppressed in midkine-deficient mice. J Clin Invest 105:489–495

    Article  PubMed  CAS  Google Scholar 

  24. Steffens S, Montecucco F, Mach F (2009) The inflammatory response as a target to reduce myocardial ischaemia and reperfusion injury. Thromb Haemost 102:240–247

    PubMed  CAS  Google Scholar 

  25. Jugdutt BI, Idikio HA (2005) Apoptosis and oncosis in acute coronary syndromes: assessment and implications. Mol Cell Biochem 270:177–200

    Article  PubMed  CAS  Google Scholar 

  26. Herskowitz A, Choi S, Ansari AA et al (1995) Cytokine mRNA expression in postischemic/reperfused myocardium. Am J Pathol 146:419–428

    PubMed  CAS  Google Scholar 

  27. Zhao ZQ, Budde JM, Morris C et al (2001) Adenosine attenuates reperfusion-induced apoptotic cell death by modulating expression of Bcl-2 and Bax proteins. J Mol Cell Cardiol 33:57–68

    Article  PubMed  CAS  Google Scholar 

  28. Baxter GF (2002) The neutrophil as a mediator of myocardial ischemia-reperfusion injury: time to move on. Basic Res Cardiol 97:268–275

    Article  PubMed  Google Scholar 

  29. Vinten-Johansen J (2004) Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 61:481–497

    Article  PubMed  CAS  Google Scholar 

  30. Arras M, Ito WD, Scholz D et al (1998) Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest 101:40–50

    Article  PubMed  CAS  Google Scholar 

  31. Jugdutt BI (2003) Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 108:1395–1403

    Article  PubMed  Google Scholar 

  32. Yoshida S, Yoshida A, Ishibashi T (2004) Induction of IL-8, MCP-1, and bFGF by TNF-alpha in retinal glial cells: implications for retinal neovascularization during post-ischemic inflammation. Graefes Arch Clin Exp Ophthalmol 242:409–413

    Article  PubMed  CAS  Google Scholar 

  33. Power JM, Raman J, Dornom A et al (1999) Passive ventricular constraint amends the course of heart failure: a study in an ovine model of dilated cardiomyopathy. Cardiovasc Res 44:549–555

    Article  PubMed  CAS  Google Scholar 

  34. Harada M, Tsuji Y, Sumida A et al (2009) Midkine prevents cardiac remodeling in rabbit congestive heart failure through its anti-apoptotic effect. Circulation J 73 (Suppl 1):143

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuru Horiba .

Editor information

Editors and Affiliations

Additional information

Funding: These works were supported by grants from the Ministry of Education, Culture, Sports, Science and technology, Japan.

Conflict of Interest: None.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Horiba, M., Kadomatsu, K. (2012). Midkine and Heart Failure. In: Ergüven, M., Muramatsu, T., Bilir, A. (eds) Midkine: From Embryogenesis to Pathogenesis and Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4234-5_9

Download citation

Publish with us

Policies and ethics