Skip to main content

The Role of Midkine in Neural Development and Patterning

  • Chapter
  • First Online:
  • 449 Accesses

Abstract

Since its discovery almost 25 years ago, numerous functions have been reported for the growth factor midkine in different cellular contexts. In this chapter, we will discuss approaches to understand the function of midkine in the developing nervous system of vertebrates. Functional studies in several animal models have revealed midkine’s role in important cell fate decisions during embryonic neurogenesis. Among these models, zebrafish has been particularly useful for the analysis of midkine, as a genome duplication during teleost evolution resulted in two midkine genes with non-overlapping expression and activities, allowing a detailed dissection of functional aspects during neurogenesis. In zebrafish, the knock-down of midkine results in the absence of distinct cell types in the developing spinal cord, highlighting its importance in cell fate specification during neural patterning. In humans, midkine and its putative receptor Anaplastic Lymphoma Kinase (ALK) are implicated in a variety of neurological disorders including cancers of neural origin. Therefore, studies that aim at understanding midkines’ function and activity in the developing nervous system could become extremely helpful for understanding the molecular mechanisms underlying these diseases. This in turn could lead to the development of novel strategies that use midkine and its associated factors as promising therapeutic targets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kadomatsu K, Huang RP, Suganuma T et al (1990) A retinoic acid responsive gene MK found in the teratocarcinoma system is expressed in spatially and temporally controlled manner during mouse embryogenesis. J Cell Biol 110:607–616

    Article  PubMed  CAS  Google Scholar 

  2. Michikawa M, Kikuchi S, Muramatsu H et al (1993) Retinoic acid responsive gene product, midkine, has neurotrophic functions for mouse spinal cord and dorsal root ganglion neurons in culture. J Neurosci Res 35:530–539

    Article  PubMed  CAS  Google Scholar 

  3. Kaneda N, Talukder AH, Nishiyama H et al (1996) Midkine, a heparin-binding growth/differentiation factor, exhibits nerve cell adhesion and guidance activity for neurite outgrowth in vitro. J Biochem 119:1150–1156

    Article  PubMed  CAS  Google Scholar 

  4. Maeda N, Ichihara-Tanaka K, Kimura T et al (1999) A receptor-like protein-tyrosine phosphatase PTPzeta/RPTPbeta binds a heparin-binding growth factor midkine. Involvement of arginine 78 of midkine in the high affinity binding to PTPzeta. J Biol Chem 274:12474–12479

    Article  PubMed  CAS  Google Scholar 

  5. Wada M, Kamata M, Aizu Y et al (2002) Alteration of midkine expression in the ischemic brain of humans. J Neurol Sci 200:67–73

    Article  PubMed  CAS  Google Scholar 

  6. Choudhuri R, Zhang HT, Donnini S et al (1997) An angiogenic role for the neurokines midkine and pleiotrophin in tumorigenesis. Cancer Res 57:1814–1819

    PubMed  CAS  Google Scholar 

  7. Yoshida Y, Goto M, Tsutsui J et al (1995) Midkine is present in the early stage of cerebral infarct. Brain Res Dev Brain Res 85:25–30

    Article  PubMed  CAS  Google Scholar 

  8. Ohta S, Muramatsu H, Senda T et al (1999) Midkine is expressed during repair of bone fracture and promotes chondrogenesis. J Bone Miner Res 14:1132–1144

    Article  PubMed  CAS  Google Scholar 

  9. Muramatsu T (2002) Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem 132:359–371

    Article  PubMed  CAS  Google Scholar 

  10. Kadomatsu K, Hagihara M, Akhter S et al (1997) Midkine induces the transformation of NIH3T3 cells. Br J Cancer 75:354–359

    Article  PubMed  CAS  Google Scholar 

  11. Nakagawara A, Milbrandt J, Muramatsu T et al (1995) Differential expression of pleiotrophin and midkine in advanced neuroblastomas. Cancer Res 55:1792–1797

    PubMed  CAS  Google Scholar 

  12. Mishima K, Asai A, Kadomatsu K et al (1997) Increased expression of midkine during the progression of human astrocytomas. Neurosci Lett 233:29–32

    Article  PubMed  CAS  Google Scholar 

  13. Kadomatsu K, Muramatsu T (2004) Midkine and pleiotrophin in neural development and cancer. Cancer Lett 204:127–143

    Article  PubMed  CAS  Google Scholar 

  14. Ochiai K, Muramatsu H, Yamamoto S et al (2004) The role of midkine and pleiotrophin in liver regeneration. Liver Int 24:484–491

    Article  PubMed  CAS  Google Scholar 

  15. Sakakima H, Yoshida Y, Muramatsu T et al (2004) Traumatic injury-induced midkine expression in the adult rat spinal cord during the early stage. J Neurotrauma 21:471–477

    Article  PubMed  Google Scholar 

  16. Muramatsu H, Zou K, Sakaguchi N et al (2000) LDL receptor-related protein as a component of the midkine receptor. Biochem Biophys Res Commun 270:936–941

    Article  PubMed  CAS  Google Scholar 

  17. Stoica GE, Kuo A, Powers C et al (2002) Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem 277:35990–35998

    Article  PubMed  CAS  Google Scholar 

  18. Tamai K, Semenov M, Kato Y et al (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407:530–535

    Article  PubMed  CAS  Google Scholar 

  19. Sakakima H, Yoshida Y, Kadomatsu K et al (2004) Midkine expression in rat spinal motor neurons following sciatic nerve injury. Brain Res Dev Brain Res 153:251–260

    Article  PubMed  CAS  Google Scholar 

  20. Sakaguchi N, Muramatsu H, Ichihara-Tanaka K et al (2003) Receptor-type protein tyrosine phosphatase zeta as a component of the signaling receptor complex for midkine-dependent survival of embryonic neurons. Neurosci Res 45:219–224

    Article  PubMed  CAS  Google Scholar 

  21. Owada K, Sanjo N, Kobayashi T et al (1999) Midkine inhibits caspase-dependent apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase in cultured neurons. J Neurochem 73:2084–2092

    PubMed  CAS  Google Scholar 

  22. Fan QW, Muramatsu T, Kadomatsu K (2000) Distinct expression of midkine and pleiotrophin in the spinal cord and placental tissues during early mouse development. Dev Growth Differ 42:113–119

    Article  PubMed  CAS  Google Scholar 

  23. Matsumoto K, Wanaka A, Takatsuji K et al (1994) A novel family of heparin-binding growth factors, pleiotrophin and midkine, is expressed in the developing rat cerebral cortex. Brain Res Dev Brain Res 79:229–241

    Article  PubMed  CAS  Google Scholar 

  24. Amet LE, Lauri SE, Hienola A et al (2001) Enhanced hippocampal long-term potentiation in mice lacking heparin-binding growth-associated molecule. Mol Cell Neurosci 17:1014–1024

    Article  PubMed  CAS  Google Scholar 

  25. Nakamura E, Kadomatsu K, Yuasa S et al (1998) Disruption of the midkine gene (Mdk) resulted in altered expression of a calcium binding protein in the hippocampus of infant mice and their abnormal behaviour. Genes Cells 3:811–822

    Article  PubMed  CAS  Google Scholar 

  26. Ohgake S, Shimizu E, Hashimoto K et al (2009) Dopaminergic hypofunctions and prepulse inhibition deficits in mice lacking midkine. Prog Neuropsychopharmacol Biol Psychiatry 33:541–546

    Article  PubMed  CAS  Google Scholar 

  27. Prediger RD, Rojas-Mayorquin AE, Aguiar AS Jr et al (2011) Mice with genetic deletion of the heparin-binding growth factor midkine exhibit early preclinical features of Parkinson’s disease. J Neural Transm 118:1215–1225

    Article  PubMed  CAS  Google Scholar 

  28. Sekiguchi K, Yokota C, Asashima M et al (1995) Restricted expression of Xenopus midkine gene during early development. J Biochem 118:94–100

    PubMed  CAS  Google Scholar 

  29. Yokota C, Takahashi S, Eisaki A et al (1998) Midkine counteracts the activin signal in mesoderm induction and promotes neural formation. J Biochem 123:339–346

    Article  PubMed  CAS  Google Scholar 

  30. Zhou H, Muramatsu T, Halfter W et al (1997) A role of midkine in the development of the neuromuscular junction. Mol Cell Neurosci 10:56–70

    Article  PubMed  CAS  Google Scholar 

  31. Liedtke D, Winkler C (2008) Midkine-b regulates cell specification at the neural plate border in zebrafish. Dev Dyn 237:62–74

    Article  PubMed  CAS  Google Scholar 

  32. Winkler C, Schafer M, Duschl J et al (2003) Functional divergence of two zebrafish midkine growth factors following fish-specific gene duplication. Genome Res 13:1067–1081

    Article  PubMed  CAS  Google Scholar 

  33. Schafer M, Rembold M, Wittbrodt J et al (2005) Medial floor plate formation in zebrafish consists of two phases and requires trunk-derived Midkine-a. Genes Dev 19:897–902

    Article  PubMed  Google Scholar 

  34. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367

    Article  PubMed  CAS  Google Scholar 

  35. Foley JE, Yeh JR, Maeder ML et al (2009) Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS One 4:e4348

    Article  PubMed  Google Scholar 

  36. Venkatesh B (2003) Evolution and diversity of fish genomes. Curr Opin Genet Dev 13:588–592

    Article  PubMed  CAS  Google Scholar 

  37. Amores A, Suzuki T, Yan YL et al (2004) Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res 14:1–10

    Article  PubMed  CAS  Google Scholar 

  38. Amores A, Force A, Yan YL et al (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714

    Article  PubMed  CAS  Google Scholar 

  39. Hoegg S, Brinkmann H, Taylor JS et al (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190–203

    Article  PubMed  CAS  Google Scholar 

  40. Jaillon O, Aury JM, Brunet F et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Article  PubMed  Google Scholar 

  41. Volff JN (2005) Genome evolution and biodiversity in teleost fish. Heredity 94:280–294

    Article  PubMed  CAS  Google Scholar 

  42. Seiler C, Finger-Baier KC, Rinner O et al (2005) Duplicated genes with split functions: independent roles of protocadherin15 orthologues in zebrafish hearing and vision. Development 132:615–623

    Article  PubMed  CAS  Google Scholar 

  43. Locascio A, Manzanares M, Blanco MJ et al (2002) Odularity and reshuffling of Snail and Slug expression during vertebrate evolution. Proc Natl Acad Sci USA 99:16841–16846

    Article  PubMed  CAS  Google Scholar 

  44. Draper BW, Stock DW, Kimmel CB et al (2003) Zebrafish fgf24 functions with fgf8 to promote posterior mesodermal development. Development 130:4639–4654

    Article  PubMed  CAS  Google Scholar 

  45. Peyrot SM, Wallingford JB, Harland RM (2011) A revised model of Xenopus dorsal midline development: differential and separable requirements for Notch and Shh signaling. Dev Biol 352:254–266

    Article  PubMed  CAS  Google Scholar 

  46. Briscoe J, Pierani A, Jessell TM et al (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101:435–445

    Article  PubMed  CAS  Google Scholar 

  47. Charron F, Stein E, Jeong J et al (2003) The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113:11–23

    Article  PubMed  CAS  Google Scholar 

  48. Le Douarin NM, Halpern ME (2000) Discussion point. Origin and specification of the neural tube floor plate: insights from the chick and zebrafish. Curr Opin Neurobiol 10:23–30

    Article  PubMed  Google Scholar 

  49. Placzek M, Dodd J, Jessell TM (2000) Discussion point. The case for floor plate induction by the notochord. Curr Opin Neurobiol 10:15–22

    Article  PubMed  CAS  Google Scholar 

  50. Dodd J, Jessell TM, Placzek M (1998) The when and where of floor plate induction. Science 282:1654–1657

    Article  PubMed  CAS  Google Scholar 

  51. Teillet MA, Lapointe F, Le Douarin NM (1998) The relationships between notochord and floor plate in vertebrate development revisited. Proc Natl Acad Sci USA 95:11733–11738

    Article  PubMed  CAS  Google Scholar 

  52. Appel B, Fritz A, Westerfield M et al (1999) Delta-mediated specification of midline cell fates in zebrafish embryos. Curr Biol 9:247–256

    Article  PubMed  CAS  Google Scholar 

  53. Strahle U, Lam CS, Ertzer R et al (2004) Vertebrate floor-plate specification: variations on common themes. Trends Genet 20:155–162

    Article  PubMed  Google Scholar 

  54. Tian J, Yam C, Balasundaram G et al (2003) A temperature-sensitive mutation in the nodal-related gene cyclops reveals that the floor plate is induced during gastrulation in zebrafish. Development 130:3331–3342

    Article  PubMed  CAS  Google Scholar 

  55. Winkler C, Moon RT (2001) Zebrafish mdk2, a novel secreted midkine, participates in posterior neurogenesis. Dev Biol 229:102–118

    Article  PubMed  CAS  Google Scholar 

  56. Roy S, Ng T (2004) Blimp-1 specifies neural crest and sensory neuron progenitors in the zebrafish embryo. Curr Biol 14:1772–1777

    Article  PubMed  CAS  Google Scholar 

  57. Bowden ET, Stoica GE, Wellstein A (2002) Anti-apoptotic signaling of pleiotrophin through its receptor, anaplastic lymphoma kinase. J Biol Chem 277:35862–35868

    Article  PubMed  CAS  Google Scholar 

  58. Powers C, Aigner A, Stoica GE et al (2002) Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth. J Biol Chem 277:14153–14158

    Article  PubMed  CAS  Google Scholar 

  59. Morris SW, Kirstein MN, Valentine MB et al (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263:1281–1284

    Article  PubMed  CAS  Google Scholar 

  60. Soda M, Choi YL, Enomoto M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566

    Article  PubMed  CAS  Google Scholar 

  61. Chiarle R, Voena C, Ambrogio C et al (2008) The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 8:11–23

    Article  PubMed  CAS  Google Scholar 

  62. Hurley SP, Clary DO, Copie V et al (2006) Naplastic lymphoma kinase is dynamically expressed on subsets of motor neurons and in the peripheral nervous system. J Comp Neurol 495:202–212

    Article  PubMed  CAS  Google Scholar 

  63. Vernersson E, Khoo NK, Henriksson ML et al (2006) Characterization of the expression of the ALK receptor tyrosine kinase in mice. Gene Expr Patterns 6:448–461

    Article  PubMed  CAS  Google Scholar 

  64. Dirks WG, Fahnrich S, Lis Y et al (2002) Expression and functional analysis of the anaplastic lymphoma kinase (ALK) gene in tumor cell lines. Int J Cancer 100:49–56

    Article  PubMed  CAS  Google Scholar 

  65. Mosse YP, Laudenslager M, Longo L et al (2008) Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455:930–935

    Article  PubMed  CAS  Google Scholar 

  66. Chen Y, Takita J, Choi YL et al (2008) Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455:971–974

    Article  PubMed  CAS  Google Scholar 

  67. Janoueix-Lerosey I, Lequin D, Brugieres L et al (2008) Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455:967–970

    Article  PubMed  CAS  Google Scholar 

  68. George RE, Sanda T, Hanna M et al (2008) Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455:975–978

    Article  PubMed  CAS  Google Scholar 

  69. Koshizawa SH, Matsumura T, Kadono Y et al (1997) Alteration of midkine expression associated with chemically-induced differentiation in human neuroblastoma cells. Cancer Lett 111:117–125

    Article  PubMed  CAS  Google Scholar 

  70. Ikematsu S, Nakagawara A, Nakamura Y et al (2008) Plasma midkine level is a prognostic factor for human neuroblastoma. Cancer Sci 99:2070–2074

    Article  PubMed  CAS  Google Scholar 

  71. Canoll PD, Petanceska S, Schlessinger J et al (1996) Three forms of RPTP-beta are differentially expressed during gliogenesis in the developing rat brain and during glial cell differentiation in culture. J Neurosci Res 44:199–215

    Article  PubMed  CAS  Google Scholar 

  72. Nagata S, Saito R, Yamada Y et al (2001) Multiple variants of receptor-type protein tyrosine phosphatase beta are expressed in the central nervous system of Xenopus. Gene 262:81–88

    Article  PubMed  CAS  Google Scholar 

  73. Ivanova A, Agochiya M, Amoyel M et al (2004) Receptor tyrosine phosphatase zeta/beta in astrocyte progenitors in the developing chick spinal cord. Gene Expr Patterns 4:161–166

    Article  PubMed  CAS  Google Scholar 

  74. Hayashi N, Oohira A, Miyata S (2005) Synaptic localization of receptor-type protein tyrosine phosphatase zeta/beta in the cerebral and hippocampal neurons of adult rats. Brain Res 1050:163–169

    Article  PubMed  CAS  Google Scholar 

  75. Harroch S, Palmeri M, Rosenbluth J et al (2000) No obvious abnormality in mice deficient in receptor protein tyrosine phosphatase beta. Mol Cell Biol 20:7706–7715

    Article  PubMed  CAS  Google Scholar 

  76. Horvat-Brocker A, Reinhard J, Illes S et al (2008) Receptor protein tyrosine phosphatases are expressed by cycling retinal progenitor cells and involved in neuronal development of mouse retina. Neuroscience 152:618–645

    Article  PubMed  CAS  Google Scholar 

  77. Lafont D, Adage T, Greco B et al (2009) A novel role for receptor like protein tyrosine phosphatase zeta in modulation of sensorimotor responses to noxious stimuli: evidences from knockout mice studies. Behav Brain Res 201:29–40

    Article  PubMed  CAS  Google Scholar 

  78. Fukazawa N, Yokoyama S, Eiraku M et al (2008) Receptor type protein tyrosine phosphatase zeta-pleiotrophin signaling controls endocytic trafficking of DNER that regulates neuritogenesis. Mol Cell Biol 28:4494–4506

    Article  PubMed  CAS  Google Scholar 

  79. Perez-Pinera P, Zhang W, Chang Y et al (2007) Anaplastic lymphoma kinase is activated through the pleiotrophin/receptor protein-tyrosine phosphatase beta/zeta signaling pathway: an alternative mechanism of receptor tyrosine kinase activation. J Biol Chem 282:28683–28690

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Winkler .

Editor information

Editors and Affiliations

Additional information

Funding:  This work is supported by an AcRF Tier 1 grant from NUS (R-154-000-478-112).

Conflict of interest: The authors state that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yao, S., Winkler, C. (2012). The Role of Midkine in Neural Development and Patterning. In: Ergüven, M., Muramatsu, T., Bilir, A. (eds) Midkine: From Embryogenesis to Pathogenesis and Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4234-5_2

Download citation

Publish with us

Policies and ethics