Skip to main content

Plant Nutrition and Defense Mechanism: Frontier Knowledge

  • Chapter
  • First Online:
Book cover Advances in Citrus Nutrition

Abstract

Nutrition level of plants and their defense mechanism are highly interrelated. A large number of studies showed the beneficial effects of some mineral nutrients on both health and natural defense of different crops in response to the action of diverse types of pathogens. The main biochemical pathways and mechanisms involved in natural plant defense response against the attack of pathogens through schematic presentation is necessary in order to evaluate the potential role of certain mineral nutrients in the correct expression of this plant response. Defining the biological-chemical character of the action of different mineral nutrients on the activation of plant defense mechanisms has lend strong support in favor of existing synergies. As a function of the biological character of these effects, the action of each nutrient will be included in a specific level or class enclosed in the above-mentioned general classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blée E (1998) Phytooxylipins and plant defense reactions. Prog Lipid Res 37:33–72

    Article  PubMed  Google Scholar 

  • Boller T, Felix GA (2009) Renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  PubMed  CAS  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744

    Article  PubMed  CAS  Google Scholar 

  • Bolwell GP, Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defence – a broad perspective. Physiol Mol Plant Pathol 51:347–366

    Article  CAS  Google Scholar 

  • Carswell Ch, Grant B, Theodorou M et al (1996) The fungicide phosphonate disrupts the phosphate-starvation response in Brassica nigra seedlings. Plant Physiol 110:105–110

    PubMed  CAS  Google Scholar 

  • Cenoz S, García Cantera R, García-Mina JM (1998) Effect of diverse formulations on PAL activity and the in vitro and in vivo development of Penicillium expansum in apple fruits (Fuji sp.) Spanish (Efecto de diferentes productos de origen natural sobre la actividad PAL y el control del crecimiento del hongo in vitro e in vivo en manzanas (Fuji sp.) infectadas por Penicillium expansum) Inab-Rapp. No 148. Roullier Group, Pamplona (Spain)

    Google Scholar 

  • Dann EK, Muir S (2002) Peas grown in media with elevated plant-available silicon levels have higher activities of chitinases and β-1,3 Glucanase, are less susceptible to a fungal leaf spot pathogen and accumulate more foliar silicon. Australas Plant Pathol 31:9–13

    Article  Google Scholar 

  • Datnoff EL, Elmer WH, Huber DM (2007a) Mineral nutrition and plant disease. The American Phytopayhological Society, St. Paul

    Google Scholar 

  • Datnoff LE, Rodrigues FA, Seebold KW (2007b) Silicon and plant disease. In: Datnoff LE et al (eds) Mineral nutrition and plant disease. The American Phytopayhological Society, St. Paul

    Google Scholar 

  • Deslandes L, Rivas S (2011) The plant cell nucleus: a true arena for the fight between plants and pathogens. Plant Signal Behav 6:42–48

    Article  PubMed  CAS  Google Scholar 

  • Duffy B (2007) Zinc and plant disease. In: Datnoff LE et al (eds) Mineral nutrition and plant disease. The American Phytopathological Society, St Paul, pp 155–176

    Google Scholar 

  • Evans I, Solberg E, Huber DM (2007) Copper and plant disease. In: Datnoff LE et al (eds) Mineral nutrition and plant disease. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Expert D (2007) Iron and plant disease. In: Datnoff LE et al (eds) Mineral nutrition and plant disease. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Ferrari D, Garcia-Mina JM (2004) Efficacy evaluation of eurofit viti and max formulations against Phytophthora citrophthora on Citrus sp. in southern Italy. Spanish (Eficiencia del producto Eurofit Max en el control de la afección causada por Phytophthora citrophthora en naranjos cultivados en condiciones de campo). Lev Agr 371:217–220

    Google Scholar 

  • García-Mina JM, Cenoz S, García Cantera R et al (1999) Composición capaz de estimular el mecanismo de defensa adquirida de las plantas. Spanish Patent 2 134 167

    Google Scholar 

  • Garnica M, Houdusse F, Zamarreño AM et al (2010) Nitrate supply enhances active forms of cytokinins and indole acetic content and reduces abscisic acid in wheat plants grown with ammonium. J Plant Physiol 167:1264–1272

    Article  PubMed  CAS  Google Scholar 

  • Gen-Ichiro A, Ozawa R, Massimo EM (2011) Recent advances in plant early signaling in response to herbivory. Int J Mol Sci 12:3723–3739

    Article  Google Scholar 

  • Graham RD, Stangoulis JCR (2007) Molybdenum and plant disease. In: Datnoff LE et al (eds) Mineral nutrition and plant disease. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Guest D, Grant B (1991) The complex action of phosphonates as antifungal agents. Biol Rev 66:159–187

    Article  Google Scholar 

  • Haneklaus S, Bloem E, Schnug E (2007) Sulfur and plant disease. In: Datnoff LE et al (eds) Mineral nutrition and plant disease. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Huber DM, Thompson IA (2007) Nitrogen and plant disease. In: Datnoff LE et al (eds) Mineral nutrition and plant disease. The American Phytopathological Society, St. Paul

    Google Scholar 

  • John M, Röhrig H, Schmidt J et al (1997) Cell signaling by oligosacharides. Trends Plant Sci 2:111–115

    Article  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Jones JF, Huber DM (2007) Magnesium and plant disease. In: Datnoff LE et al (eds) Mineral nutrition and plant disease. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Lapeña I, Tuset JJ, García-Mina JM (2003) Effect of diverse phosphorous acid-based formulations on the disease caused by Phytophthora citrophthora in orange plant seedlings Spanish (Efecto fungitóxico del acido fosforoso en naranjo dulce a la infección con zoosporas de Phytophthora citrophthora). Bol San Veg Plagas 29:413–420

    Google Scholar 

  • Liñan C (2011) Vademecum de productos fitosanitarios y nutricionales. Spanish (Compendium of pesticides and nutritional products in Spanish market). Ediciones Agrotécnicas, Madrid

    Google Scholar 

  • Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8:532–540

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Qi Z, Smigel A et al (2009) Ca2+, cAMP, and transduction of non-self perception during plant immune responses. Proc Natl Acad Sci USA 106:20995–21000

    Article  PubMed  CAS  Google Scholar 

  • Maekawa K, Watanabe K, Kanto T et al (2002) Accumulation of silicon around penetration sites of Magnaporthe grisea and silicon-dependent promotion of superoxide generation after inoculation of rice leaf. In: Matoh T (ed) Second “silicon in agriculture” conference. Press-Net, Kioto

    Google Scholar 

  • Manandhar HK, Jorgensen H, Mathur SB et al (1998) Resistance to rice blast induced by iron chloride, di-potassium hydrogen phosphate and salicylic acid. Crop Prot 17:323–329

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, San Diego

    Google Scholar 

  • McDonald AE, Grant BR, Plaxton WC (2001) Phosphite (phosphorous acid): its relevance in the environment and agriculture and influence on plant phosphate starvation response. J Plant Nutr 24:1505–1519

    Article  CAS  Google Scholar 

  • Mur LAJ, Kenton P, Atzorn R et al (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262

    Article  PubMed  CAS  Google Scholar 

  • Niki T, Mitsuhara I, Seo S et al (1998) Antagonistic effect of salicylic acid and jasmonic acid on the expression of PR protein genes in wounded mature tobacco leaves. Plant Cell Physiol 39:500–507

    Article  CAS  Google Scholar 

  • Ohashi Y, Ohshima M (1992) Stress-induced expression of genes for pathogenesis-relates proteins in plants. Plant Cell Physiol 33:819–826

    CAS  Google Scholar 

  • Prabhu AS, Fageria NK, Huber DM et al (2007a) Potassium and plant disease. In: Datnoff LE et al (eds) Mineral nutrition and plant disease. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Prabhu AS, Fageria NK, Berni RF et al (2007b) Phosphorus and plant disease. In: Datnoff LE et al (eds) Mineral nutrition and plant disease. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Rahman M, Punja ZK (2007) Calcium and plant disease. In: Datnoff LE et al (eds) Mineral nutrition and plant disease. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Reuveni R, Reuveni M (1998) Foliar fertilizer therapy. Crop Prot 17:111–118

    Article  CAS  Google Scholar 

  • Reuveni R, Dor G, Reuveni M (1998a) Local and systemic control of powery mildew (Leveillula taurica) on pepper plants by foliar spray of mono-potassium phosphate. Crop Prot 17:703–709

    Article  CAS  Google Scholar 

  • Reuveni R, Oppenheim D, Reuveni M (1998b) Integrated control of powery mildew on apple trees by foliar spray of mono-potassium phosphate and sterol inhibiting fungicides. Crop Prot 17:563–568

    Article  CAS  Google Scholar 

  • Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1:404–411

    Article  PubMed  CAS  Google Scholar 

  • Rickard DA (2000) Review of phosphorous acid and its salts as fertilizer materials. J Plant Nutr 23:161–180

    Article  CAS  Google Scholar 

  • Rodrigues FA, McNally DJ, Datnoff LE et al (2004) Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology 94:177–183

    Article  PubMed  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits M et al (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    PubMed  CAS  Google Scholar 

  • Saindrenan P, Guest D (1995) Involvement of phytoalexins in the response of phosphonate-treated plants to infection by phytophthora species. In: Daniel M, Purkasyastha RP (eds) Handbook of phytoalexin metabolism and action. Marcel Dekker, Inc, New York

    Google Scholar 

  • Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11:440–448

    Article  PubMed  CAS  Google Scholar 

  • Stangoulis JCR, Graham RD (2007) Boron and plant disease. In: Datnoff LE et al (eds) Mineral nutrition and plant disease. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Tamás L, Huttová J (1996) Accumulation of pathogenesis-related proteins in barley induced by phosphate and salicylic acid. Biologia (Bratislaba) 51:479–484

    Google Scholar 

  • Thompson IA, Huber DM (2007) Manganese and plant disease. In: Datnoff LE et al (eds) Mineral nutrition and plant disease. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Wood BW, Reilly CHC (2007) Nickel and plant disease. In: Datnoff LE et al (eds) Mineral nutrition and plant disease. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Xu Y, Chang P, Liu M et al (1994) Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6:1077–1085

    PubMed  CAS  Google Scholar 

  • Zamarreño AM, Urdaniz A, García-Mina JM (2002) Effects of formulations containing phosphite and phosphate on the mineral nutrition and growth of wheat plant seedlings. Spanish (Distribución de la fracción soluble de los aniones fosfato y fosfito en plantas de trigo tratadas con aplicaciones foliares de ambas fuentes de fósforo, y su relación con el desarrollo de las plantas). In: Abadia J et al (eds) Actas del IX Simposio Ibérico sobre nutrición mineral de las plantas. Institución Fernando el Católico (Diputación de Zaragoza), Zaragoza (Spain) No 2295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Garcia-Mina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Garcia-Mina, J.M. (2012). Plant Nutrition and Defense Mechanism: Frontier Knowledge. In: Srivastava, A. (eds) Advances in Citrus Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4171-3_1

Download citation

Publish with us

Policies and ethics