Skip to main content

Cropland Soil Carbon Dynamics

  • Chapter
  • First Online:
Recarbonization of the Biosphere

Abstract

Humans began thousands of years ago to cultivate land for growing crops after clearing the previous vegetation cover and plowing the soil. The soil disturbance altered soil carbon (C) dynamics which has been recently exacerbated by the increase in crop intensification (i.e., fertilization, irrigation, mechanization). For example, conversion to croplands may release up to 36% of soil organic carbon (SOC) to 27-cm depth in temperate regions, and up to 30% of SOC to 48-cm depth in tropical regions. In 2000, about 12% of Earth’s ice-free land surface or 15 million km2 were covered by croplands. Climate, geology and land and crop management practices control the size of the cropland soil C pool. A major fraction (25–70%) of the carbon dioxide (CO2) fixed during plant photosynthesis in croplands by gross primary production (GPP) is respired autotrophically (Ra) back to the atmosphere. Globally, cropland GPP is about 14.8 Pg C year−1 (1 Pg = 1015 g). The remaining net primary production (NPP = GPP−Ra) is the main natural C input into cropland soils aside addition of manure and organic residues. Cropland NPP includes the production of biomass in foliage, shoots and roots, weed and seed production, root exudation, the C transfer to microorganisms that are symbiotically associated with roots, and the volatile organic carbon (VOC) emissions that are lost from leaves to the atmosphere. NPP enters soil by rhizodeposition and decomposition of plant litter but the major fraction is heterotrophically converted back to CO2 by soil respiration and some lost as methane (CH4). Aside decomposition, C losses from croplands occur also by fire, erosion, leaching, and most importantly harvest removing about 2.2 Pg C year−1 in the 1990s. Thus, a small amount of fixed C remains in cropland soils and accumulates in the SOC pool due to a combination of short- and long-term stabilization processes. Stabilization processes include physical protection of organic matter (OM) against decomposers and their enzymes, stabilization by organomineral complexes and organo-metal interactions, and some as biochemically recalcitrant black carbon (BC). Soil aggregation, in particular, may be the most important stabilization process in cropland topsoils. Site-specific factors including climate, physicochemical characteristics, soil and vegetation management determine the balance between C input and losses. Cropland soils can be recarbonized to some extent through adoption of recommended management practices (RMPs) such as conservation tillage, residue mulching and use of cover crops, practices which all contribute to soil C accumulation and sequestration by an additional transfer of C from the atmosphere to the soil. Whether cultivation of SOC-accreting crops can also contribute to the recarbonization of cropland soils needs additional research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AM:

Arbuscular mycorrhiza

AUR:

Acid-unhydrolyzable residue

BC:

Black carbon

BIO:

Microbial biomass

CQT:

Carbon quality-temperature

DIC:

Dissolved inorganic carbon

DOC:

Dissolved organic carbon

DPM:

Decomposable plant material

ECM:

Ecto-mycorrhiza

ERM:

Ericoid mycorrhiza

EU:

European Union

FAO:

Food and Agriculture Organization of the United Nations

GPP:

Gross primary production

HI:

Harvest index

HUM:

Humified organic matter

NBP:

Net biome production

NPP:

Net primary production

NT:

No-tillage

OM:

Organic matter

PT:

Plow tillage

PTF:

Plant functional type

Ra :

Autotrophic respiration

RMP:

Recommended management practices

RothC:

Rothamsted carbon model

RPM:

Resistant plant material

SIC:

Soil inorganic carbon

SOC:

Soil organic carbon

SOM:

Soil organic matter

UK:

United Kingdom

USA:

United States of America

VOC:

Volatile organic carbon

References

  • Ainsworth EA, McGrath JM (2010) Direct effects of rising atmospheric carbon dioxide and ozone on crop yields. In: Lobell D, Burke M (eds) Climate change and food security. Springer, Dordrecht, pp 109–130

    Chapter  Google Scholar 

  • Ajayi OC, Place F, Akinnifesi FK, Sileshi GW (2011) Agricultural success from Africa: the case of fertilizer tree systems in southern Africa (Malawi, Tanzania, Mozambique, Zambia and Zimbabwe). Int J Agric Sustain 9:129–136

    Article  Google Scholar 

  • Alexander M (1965) Biodegradation: problems of molecular recalcitrance and microbial fallibility. Adv Appl Microbiol 7:35–80

    Article  PubMed  CAS  Google Scholar 

  • Alvarez R (2005) A review of nitrogen fertilizer and conservative tillage effects on soil organic storage. Soil Use Manage 21:38–52

    Article  Google Scholar 

  • Amelung W, Brodowski S, Sandhage-Hofmann A, Bol R (2008) Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Adv Agron 100:155–250

    Article  CAS  Google Scholar 

  • Amthor JS (2010) From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy. New Phytol 188:939–959

    Article  PubMed  CAS  Google Scholar 

  • Andreae MO (2004) Assessment of global emissions from vegetation fires. Int For Fire News 31:112–121

    Google Scholar 

  • Ayres E, Wall DH, Bardgett RD (2009) Trophic interactions and their implications for soil carbon fluxes. In: Kutsch WL, Bahn M, Heinemeyer A (eds) Soil carbon dynamics: an integrated methodology. Cambridge University Press, Cambridge, UK, pp 187–206

    Google Scholar 

  • Bachmann J, Guggenberger G, Baumgartl Th, Ellerbrock R, Urbanek E, Goebel M-O, Kaiser K, Horn R, Fischer WR (2008) Physical carbon-sequestration mechanisms under special consideration of soil wettability. J Plant Nutr Soil Sci 171:14–26

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Baldock JA, Nelson PN (2000) Soil organic matter. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp B25–B84

    Google Scholar 

  • Bardgett RD (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford

    Google Scholar 

  • Basile-Doelsch I, Brun T, Borschneck D, Masion A, Marol C, Balesdent J (2009) Effect of landuse on organic matter stabilized in organomineral complexes: a study combining density fractionation, mineralogy and δ13C. Geoderma 151:77–86

    Article  CAS  Google Scholar 

  • Beare MH, Parmelee RW, Hendrix PF, Cheng W, Coleman DC, Crossley DA (1992) Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecol Monogr 62:569–591

    Article  Google Scholar 

  • Beer C, Reichstein M, Ciais P, Farquhar GD, Papale D (2007) Mean annual GPP of Europe derived from its water balance. Geophys Res Lett 34:L05401. doi:10.1029/2006GL029006

    Article  CAS  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Altaf Arain M, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendal E, Viovy N, Williams C, Ian Woodward F, Papale D (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838

    Article  PubMed  CAS  Google Scholar 

  • Bell MJ, Worrall F, Smith P, Bhogal A, Bhogal A, Black H, Lilly A, Barraclough D, Barraclough D, Merrington G (2011) UK land-use change and its impact on SOC: 1925–2007. Glob Biogeochem Cycle 25:GB4015. doi:10.1029/2010GB0038

    Article  CAS  Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter: decomposition, humus formation, carbon sequestration. Springer, Berlin

    Google Scholar 

  • Billings SA, Buddemeier RW, deB Richter D, Van Oost K, Bohling G (2010) A simple method for estimating the influence of eroding soil profiles on atmospheric CO2. Glob Biogeochem Cycle 24:GB2001. doi:10.1029/2009GB003560

    Article  CAS  Google Scholar 

  • Blair N, Faulkner RD, Till AR, Körschens M, Schulz E (2006a) Long-term management impacts on soil C, N and physical fertility. Part II: Bad Lauchstädt static and extreme FYM experiments. Soil Till Res 91:39–47

    Article  Google Scholar 

  • Blair N, Faulkner RD, Till AR, Poulton PR (2006b) Long-term management impacts on soil C, N and physical fertility Part I: Broadbalk experiment. Soil Till Res 91:30–38

    Article  Google Scholar 

  • Bocock KL, Gilbert O (1957) The disappearance of leaf litter under different woodland conditions. Plant Soil 9:179–185

    Article  Google Scholar 

  • Bolan NS, Adriano DC, Kunhikrishnan A, James T, McDowell R, Senesi N (2011) Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Adv Agron 110:1–75

    Article  CAS  Google Scholar 

  • Bolinder MA, Angers DA, Giroux M, Laverdiere MR (1999) Estimating C inputs retained as soil organic matter from corn (Zea mays L.). Plant Soil 215:85–91

    Article  CAS  Google Scholar 

  • Bolinder MA, Janzen HH, Gregorich EG, Angers DA, VandenBygaart AJ (2007) An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agric Ecosyst Environ 118:29–42

    Article  Google Scholar 

  • Bonan GB, Lawrence PJ, Oleson KW, Levis S, Jung M, Reichstein M, Lawrence DM, Swenson SC (2011) Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J Geophys Res 116:G02014. doi:10.1029/2010JG001593

    Article  Google Scholar 

  • Bondeau A, Smith P, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Müller C, Reichstein M, Smith B (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Change Biol 13:679–706

    Article  Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) A global database of soil respiration data. Biogeosciences 7:1915–1926

    Article  CAS  Google Scholar 

  • Bossuyt H, Six J, Hendrix PF (2005) Protection of soil carbon by microaggregates within earthworm casts. Soil Biol Biochem 37:251–258

    Article  CAS  Google Scholar 

  • Botha A (2011) The importance and ecology of yeasts in soil. Soil Biol Biochem 43:1–8

    Article  CAS  Google Scholar 

  • Bradford JB, Lauenroth WK, Burke IC (2005) The impact of cropping on primary production in the U.S. Great Plains. Ecology 86:1863–1872

    Article  Google Scholar 

  • Broadbent FE, Nakashima T (1974) Mineralization of carbon and nitrogen in soil amended with carbon-13 and nitrogen-15 labeled plant material. Soil Sci Soc Am Proc 38:313–315

    Article  CAS  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Cameron DD (2010) Arbuscular mycorrhizal fungi as (agro)ecosystem engineers. Plant Soil 333:1–5

    Article  CAS  Google Scholar 

  • Chantigny MH (2003) Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma 113:357–380

    Article  CAS  Google Scholar 

  • Chapin FS III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Chen Z, Pawluk S, Ng J (1997) Impact of variations in granular structures on carbon sequestration in two Alberta mollisols. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil processes and the carbon cycle. CRC Press, Boca Raton, pp 225–243

    Google Scholar 

  • Christensen BT (1996) Carbon in primary and secondary organomineral complexes. In: Carter MR, Stewart BA (eds) Structure and organic matter storage in agricultural soils. CRC Press, Boca Raton, FL, pp 97–165

    Google Scholar 

  • Ciais P, Wattenbach M, Vuichard N, Smith P, Piao SL, Don A, Luyssaert S, Janssens IA, Bondeau A, Dechow R, Leip A, Smith PC, Beer C, Van DerWerf GR, Gervois S, Van Oost K, Tomelleri E, Freibauer A, Schulze E-D, CARBOEUROPE Synthesis Team (2010) The European carbon balance. Part 2: Croplands. Glob Change Biol 16:1409–1428

    Article  Google Scholar 

  • Ciais P, Gervois S, Vuichard N, Piao SL, Viovy N (2011) Effects of land use change and management on the European cropland carbon balance. Glob Change Biol 17:320–338

    Article  Google Scholar 

  • Clemente JS, Simpson AJ, Simpson MJ (2011) Association of specific organic matter compounds in size fractions of soils under different environmental controls. Org Geochem 42:1169–1180

    Article  CAS  Google Scholar 

  • Coleman K, Jenkinson DS (1995) ROTHC-26.3. A model for the turnover of carbon in soil. Model description and user’s guide. Lawes Agricultural Trust, Harpenden

    Google Scholar 

  • Cotrufo MF, Del Galdo I, Piermatteo D (2009) Litter decomposition: concepts, methods and future perspectives. In: Kutsch WL, Bahn M, Heinemeyer A (eds) Soil carbon dynamics: an integrated methodology. Cambridge University Press, Cambridge, pp 76–90

    Google Scholar 

  • Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669–1678

    Article  PubMed  CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  PubMed  CAS  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry; Chapter 7. In: Intergovernmental Panel on Climate Change (ed) Climate change 2007: the physical science basis, Cambridge University Press, Cambridge

    Article  PubMed  CAS  Google Scholar 

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Glob Change Biol 17:1658–1670

    Article  Google Scholar 

  • Dufranne D, Moureaux C, Vancutsem F, Bodson B, Aubinet M (2011) Comparison of carbon fluxes, growth and productivity of a winter wheat crop in three contrasting growing seasons. Agric Ecosyst Environ 141:133–142

    Article  Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Chapman and Hall, London

    Google Scholar 

  • Ekschmitt K, Kandeler E, Poll C, Brune A, Buscot F, Friedrich M, Gleixner G, Hartmann A, Kästner M, Marhan S, Miltner A, Scheu S, Wolters V (2008) Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. J Plant Nutr Soil Sci 171:27–35

    Article  CAS  Google Scholar 

  • Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–447

    Article  Google Scholar 

  • Ewing SA, Sandermann J, Baisden WT, Wang Y, Amundson R (2006) Role of large-scale soil structure in organic carbon turnover: evidence from California grassland soils. J Geophys Res 111:G03012. doi:10.1029/2006JG000174

    Article  Google Scholar 

  • Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Guomundsson J, Hollinger D, Kowalski AS, Katul G, Law BE, Malhi Y, Meyers T, Monson RK, Munger JW, Oechel W, Paw UKT, Pilegaard K, Rannik U, Rebmann C, Suyker AE, Valentini R, Wilson K, Wofsy S (2002) Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric For Meteorol 113:53–74

    Article  Google Scholar 

  • Falloon P, Smith P (2003) Accounting for changes in soil carbon under the Kyoto Protocol: need for improved long-term data sets to reduce uncertainty in model projections. Soil Use Manage 19:265–269

    Article  Google Scholar 

  • Falloon P, Smith P (2009) Modelling soil carbon dynamics. In: Kutsch WL, Bahn M, Heinemeyer A (eds) Soil carbon dynamics: an integrated methodology. Cambridge University Press, Cambridge, pp 221–244

    Google Scholar 

  • Feng X, Hills KM, Simpson AJ, Whalen JK, Simpson MJ (2011) The role of biodegradation and photo-oxidation in the transformation of terrigenous organic matter. Org Geochem 42:262–274

    Article  CAS  Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176

    Article  CAS  Google Scholar 

  • Flessa H, Amelung W, Helfrich M, Wiesenberg GLB, Gleixner G, Brodowski S, Rethemeyer J, Kramer C, Grootes PM (2008) Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: a synthesis. J Plant Nutr Soil Sci 131:36–51

    Article  CAS  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  PubMed  CAS  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  PubMed  CAS  Google Scholar 

  • Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–281

    Article  PubMed  CAS  Google Scholar 

  • Fox O, Vetter S, Ekschmitt K, Wolters V (2006) Soil fauna modifies the recalcitrance-persistence relationship of soil carbon pools. Soil Biol Biochem 38:1353–1363

    Article  CAS  Google Scholar 

  • Franzluebbers AJ (2010) Will we allow soil carbon to feed our needs? Carbon Manage 1:237–251

    Article  CAS  Google Scholar 

  • Freibauer A, Rounsevell M, Smith P, Verhagen A (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122:1–23

    Article  CAS  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Ghannoum O (2009) C4 photosynthesis and water stress. Ann Bot 103:635–644

    Article  PubMed  CAS  Google Scholar 

  • Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861

    Article  PubMed  CAS  Google Scholar 

  • Gibbs KH, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci USA 107:16732–16737

    Article  PubMed  CAS  Google Scholar 

  • Gill RA, Kelly RH, Parton WJ, Day KA, Jackson RB, Morgan JA, Scurlock JMO, Tieszen LL, Castle JV, Ojima DS, Zhang XS (2002) Using simple environmental variables to estimate belowground productivity in grasslands. Glob Ecol Biogeogr 11:79–86

    Article  Google Scholar 

  • Glover JD, Reganold JP, Bell LW, Borevitz J, Brummer EC, Buckler ES, Cox CM, Cox TS, Crews TE, Culman SW, DeHaan LR, Eriksson D, Gill BS, Holland J, Hu F, Hulke BS, Ibrahim AMH, Jackson W, Jones SS, Murray SC, Paterson AH, Ploschuk E, Sacks EJ, Snapp S, Tao D, Van Tassel DL, Wade LJ, Wyse DL, Xu Y (2010) Increased food and ecosystem security via perennial grains. Science 328:1638–1639

    Article  PubMed  CAS  Google Scholar 

  • Goebel M-O, Woche SK, Bachmann J (2009) Do soil aggregates really protect encapsulated organic matter against microbial decomposition? Biologia 64:443–448

    Article  CAS  Google Scholar 

  • Goudriaan J, Groot JJR, Uithol PWJ (2001) Productivity of agro-ecosystems. In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic, San Diego, pp 301–313

    Chapter  Google Scholar 

  • Govaerts B, Verhulst N, Castellanos-Navarrete A, Sayre KD, Dixon J, Dendooven L (2009) Conservation agriculture and soil carbon sequestration: between myth and farmer reality. Crit Rev Plant Sci 28:97–122

    Article  CAS  Google Scholar 

  • Gray CM, Monson RK, Fierer N (2010) Emissions of volatile organic compounds during the decomposition of plant litter. J Geophys Res 115:G03015. doi:10.1029/2010JG001291

    Article  CAS  Google Scholar 

  • Greenhouse Gas Working Group (2010) Agriculture’s role in greenhouse gas emissions & capture. Greenhouse Gas Working Group Rep. ASA, CSSA, and SSSA, Madison

    Google Scholar 

  • Gregory PJ, Palta JA, Batts GR (1997) Root systems and root: mass ratio – carbon allocation under current and projected atmospheric conditions in arable crops. Plant Soil 187:221–228

    Article  Google Scholar 

  • Guo D, Li H, Mitchell RJ, Han W, Hendricks JJ, Fahey TJ, Hendrick RL (2008) Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytol 177:443–456

    Article  PubMed  CAS  Google Scholar 

  • Haberl H, Erb K-H, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci USA 104:12942–12947

    Article  PubMed  CAS  Google Scholar 

  • Hammes K, Torn MS, Lapenas AG, Schmidt MWI (2008) Centennial black carbon turnover in a Russian steppe soil. Biogeosciences 5:1339–1350

    Article  CAS  Google Scholar 

  • Harmon ME, Silver WL, Fasth B, Chen H, Burke IC, Parton WJ, Hart SC, Currie WS, LIDET (2009) Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison. Glob Change Biol 15:1320–1338

    Article  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Article  Google Scholar 

  • Hicke JA, Lobell DB, Asner GP (2004) Cropland area and net primary production computed from 30 years of USDA agricultural harvest data. Earth Interact 8:1–21

    Article  Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    Article  CAS  Google Scholar 

  • Hofmann A, Heim A, Christensen BT, Miltner A, Gehre M, Schmidt MWI (2009) Lignin dynamics in two 13C-labelled arable soils during 18 years. Eur J Soil Sci 60:205–257

    Article  CAS  Google Scholar 

  • Horn R, Smucker A (2005) Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils. Soil Till Res 82:5–14

    Article  Google Scholar 

  • Houghton RA (2010) How well do we know the flux of CO2 from land-use change? Tellus 62B:337–351

    CAS  Google Scholar 

  • Insam H, Seewald MSA (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213

    Article  CAS  Google Scholar 

  • Jansson C, Wullschleger SD, Kalluri UC, Tuskan GA (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60:685–696

    Article  Google Scholar 

  • Jenkinson DS, Coleman K (2008) The turnover of organic carbon in subsoils. Part 2: Modelling carbon turnover. Eur J Soil Sci 59:400–413

    Article  Google Scholar 

  • Jiang GM, Noonan MJ, Buchan GD, Smith N (2005) Transport and deposition of Bacillus subtilis through an intact soil column. Aust J Soil Res 43:695–703

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Joergensen RG, Wichern F (2008) Quantiative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977–2991

    Article  CAS  Google Scholar 

  • Johnson JMF, Allmaras RR, Reicosky DC (2006) Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron J 98:622–636

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Kalbitz K, Solinger S, Park J-H, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304

    Article  CAS  Google Scholar 

  • Kampichler C, Bruckner A (2009) The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies. Biol Rev 84:375–389

    Article  PubMed  Google Scholar 

  • Kelleher BP, Simpson AJ (2006) Humic substances in soils: are they really chemically distinct? Environ Sci Technol 40:4605–4611

    Article  PubMed  CAS  Google Scholar 

  • Kindler R, Siemens J, Kaiser K, Walmsley DC, Bernhofer C, Buchmann N, Cellier P, Eugster W, Gleixner G, Grûnwald T, Heim A, Ibrom A, Jones SK, Jones M, Klumpp K, Kutsch W, Larsen KS, Lehuger S, Loubet B, McKenzie R, Moor E, Osborne B, Pilegaard K, Rebmann C, Saunders M, Schmidt MWI, Schrumpf M, Seyfferth J, Skiba U, Soussana J-F, Sutton MA, Tefs C, Vowinckel B, Zeeman MJ, Kaupenjohann M (2011) Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Glob Change Biol 17:1167–1185

    Article  Google Scholar 

  • Kleber M (2010a) What is recalcitrant soil organic matter? Environ Chem 7:320–332

    Article  CAS  Google Scholar 

  • Kleber M (2010b) Response to the Opinion paper by Margit von Lützow and Ingrid Kögel-Knabner on ‘What is recalcitrant soil organic matter?’ by Markus Kleber. Environ Chem 7:336–337

    Article  CAS  Google Scholar 

  • Kleber M, Johnson MG (2010) Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment. Adv Agron 106:77–142

    Article  CAS  Google Scholar 

  • Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral associations in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85:9–24

    Article  Google Scholar 

  • Kleber M, Nico PS, Plante A, Filley T, Kramer M, Swanston C, Sollins P (2011) Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Glob Change Biol 17:1097–1107

    Article  Google Scholar 

  • Knacker T, Förster B, Römbke J, Frampton GK (2003) Assessing the effects of plant protection products on organic matter breakdown in arable fields-litter decomposition test systems. Soil Biol Biochem 35:1269–1287

    Article  CAS  Google Scholar 

  • Kong AYY, Six J (2010) Tracing root vs. residue carbon into soils from conventional and alternative cropping systems. Soil Sci Soc Am J 74:1201–1210

    Article  CAS  Google Scholar 

  • Krull ES, Baldock JA, Skjemstad JO (2003) Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct Plant Biol 30:207–222

    Article  Google Scholar 

  • Kutsch WL, Bahn M, Heinemeyer A (2009) Soil carbon relations: an overview. In: Kutsch WL, Bahn M, Heinemeyer A (eds) Soil carbon dynamics: an integrated methodology. Cambridge University Press, Cambridge, pp 1–15

    Google Scholar 

  • Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–396

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Rev J Plant Nutr Soil Sci 163:421–431

    Article  CAS  Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450

    Article  PubMed  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lal R (2007) Farming carbon. Soil Till Res 96:1–5

    Article  Google Scholar 

  • Lal R (2009) Soils and food sufficiency. A review. Agron Sustain Dev 29:113–133

    Article  Google Scholar 

  • Lal R, Follett RF (2009a) Preface. In: Lal R, Follett RF (eds) Soil carbon sequestration and the greenhouse effect, vol 57, 2nd edn, SSSA special publication. Soil Science Society of America, Madison, pp xi–xii

    Google Scholar 

  • Lal R, Follett RF (2009b) Soils and climate change. In: Lal R, Follett RF (eds) Soil carbon sequestration and the greenhouse effect, vol 57, 2nd edn, SSSA special publication. Soil Science Society of America, Madison, pp xxi–xxviii

    Google Scholar 

  • Lambers H, Robinson SA, Ribas-Carbo M (2005) Regulation of respiration in vivo. In: Lambers H, Ribas-Carbo M (eds) Plant respiration: from cell to ecosystem. Springer, Dordrecht, pp 43–61

    Google Scholar 

  • Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the Earth system. New Phytol 183:27–51

    Article  PubMed  CAS  Google Scholar 

  • Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Article  Google Scholar 

  • Leff JW, Fierer N (2008) Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem 40:1629–1636

    Article  CAS  Google Scholar 

  • Lehmann J, Solomon D, Kinyangi J, Dathe L, Wirick S, Jacobsen C (2008) Spatial complexity of soil organic matter forms at nanometre scales. Nat Geosci 1:238–242

    Article  CAS  Google Scholar 

  • Lei H-M, Yang D-W (2010) Seasonal and interannual variations in carbon dioxide exchange over a cropland in the North China Plain. Global Change Biol 16:2944–2957

    Google Scholar 

  • Lorenz K, Lal R (2005) The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv Agron 88:35–66

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R, Preston CM, Nierop KGJ (2007) Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 142:1–10

    Article  CAS  Google Scholar 

  • Loreto F, Kesselmeier J, Schnitzler JP (2008) Volatile organic compounds in the biosphere–atmosphere system: a preface. Plant Biol 10:2–7

    Article  PubMed  CAS  Google Scholar 

  • Macías F, Arbestain MC (2010) Soil carbon sequestration in a changing global environment. Mitig Adapt Strateg Glob Change 15:511–529

    Article  Google Scholar 

  • Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP, Higuera PE, Joos F, Power MJ, Prentice IC (2008) Climate and human influences on global biomass burning over the past two millennia. Nat Geosci 1:697–702

    Article  CAS  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Marschner B, Kalbitz K (2003) Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113:211–235

    Article  CAS  Google Scholar 

  • Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes PM, Hamer U, Heim A, Jandl G, Ji R, Kaiser K, Kalbitz K, Kramer C, Leinweber P, Rethemeyer J, Schäffer A, Schmidt MWI, Schwark L, Wiesenberg GLB (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? J Plant Nutr Soil Sci 171:91–110

    Article  CAS  Google Scholar 

  • Martin A (1991) Short- and long-term effects of the endogenic earthworm Millsonia anomala (Omodeo) (Megascolecidae: Oligochaeta) of tropical savanna, on soil organic matter. Biol Fertil Soils 11:234–238

    Article  Google Scholar 

  • McGuire KL, Treseder KK (2010) Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biol Biochem 42:529–535

    Article  CAS  Google Scholar 

  • Mendez-Millan M, Dignac MF, Rumpel C, Rasse DP, Derenne S (2010) Molecular dynamics of shoot vs. root biomarkers in an agricultural soil estimated by natural abundance 13  C labelling. Soil Biol Biochem 42:169–177

    Article  CAS  Google Scholar 

  • Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579–584

    Article  Google Scholar 

  • Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root:shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96

    Article  Google Scholar 

  • Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob Biogeochem Cycle 22:GB1022. doi:10.1029/2007GB002947

    Article  CAS  Google Scholar 

  • Moni C, Rumpel C, Virto I, Chabbi A, Chenu C (2010) Relative importance of sorption versus aggregation for organic matter storage in subsoil horizons of two contrasting soils. Eur J Soil Sci 61:958–969

    Article  CAS  Google Scholar 

  • Moore TR, Trofymow JA, Prescott CE, Titus BD, CIDET Working Group (2011) Nature and nurture in the dynamics of C, N and P during litter decomposition in Canadian forests. Plant Soil 339:163–175

    Article  CAS  Google Scholar 

  • Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–174

    Article  Google Scholar 

  • Moran KK, Jastrow JD (2010) Elevated carbon dioxide does not offset loss of soil carbon from a corn–soybean agroecosystem. Environ Pollut 158:1088–1094

    Article  PubMed  CAS  Google Scholar 

  • Murchie EH, Pinto M, Horton P (2009) Agriculture and the new challenges for photosynthesis research. New Phytol 181:532–552

    Article  PubMed  CAS  Google Scholar 

  • Nair PKR, Gordon AM, Mosquera-Losada M-R (2008) Agroforestry. In: Jorgensen SE, Fath BD (eds) Ecological engineering, encyclopedia of ecology, vol 1. Elsevier, Oxford, pp 101–110

    Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23

    Article  CAS  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307

    Article  CAS  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    Article  CAS  Google Scholar 

  • Oades JM (1984) Soil organic matter and structural stability, mechanisms and implications for management. Plant Soil 76:319–337

    Article  CAS  Google Scholar 

  • Olmstead AL, Rhode PW (2011) Adapting North American wheat production to climatic challenges, 1839–2009. Proc Natl Acad Sci USA 108:480–485

    Article  PubMed  CAS  Google Scholar 

  • Osler GHR, Sommerkorn M (2007) Toward a complete soil C and N cycle: incorporating the soil fauna. Ecology 88:1611–1621

    Article  PubMed  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51:1173–1179

    Article  CAS  Google Scholar 

  • Pechony O, Shindell DT (2010) Driving forces of global wildfires over the past millennium and the forthcoming century. Proc Natl Acad Sci USA 107:19167–19170

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Gitelson AA (2011) Application of chlorophyll-related vegetation indices for remote estimation of maize productivity. Agric For Meteorol 151:1267–1276

    Article  Google Scholar 

  • Peng Y, Gitelson AA, Keydan G, Rundquist DC, Moses W (2011) Remote estimation of gross primary production in maize and support for a new paradigm based on total crop chlorophyll content. Remote Sens Environ 115:978–989

    Article  Google Scholar 

  • Pielke RA, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Goldewijk KK, Nair U, Betts R, Fall S, Reichstein M, Kabat P, de Noblet N (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. WIREs Clim Change 2:828–850

    Article  Google Scholar 

  • Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael B, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone – carbon response functions as a model approach. Glob Change Biol 17:2415–2427

    Article  Google Scholar 

  • Polyakov V, Lal R (2004) Modeling soil organic matter dynamics as affected by soil water erosion. Environ Int 30:547–556

    Article  PubMed  CAS  Google Scholar 

  • Portmann FT, Siebert S, Döll P (2010) MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: a new high‐resolution data set for agricultural and hydrological modeling. Glob Biogeochem Cycles 24:GB1011. doi:10.1029/2008GB003435

    Article  CAS  Google Scholar 

  • Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc B 365:2959–2971

    Article  Google Scholar 

  • Powlson DS, Whitmore AP, Goulding KWT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62:42–55

    Article  CAS  Google Scholar 

  • Prescott CE (2005) Do rates of litter decomposition tell us anything we really need to know? For Ecol Manage 220:66–74

    Article  Google Scholar 

  • Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149

    Article  CAS  Google Scholar 

  • Preston CM, Trofymow JA, Sayer BG, Niu J (1997) 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can J Bot 75:1601–1613

    Article  CAS  Google Scholar 

  • Prince SD, Haskett J, Steininger M, Strand H, Wright R (2001) Net primary production of U.S. Midwest croplands from agricultural harvest yield data. Ecol Appl 11:1194–1205

    Article  Google Scholar 

  • Pritchard SG, Strand AE (2008) Can you believe what you see? Reconciling minirhizotron and isotopically derived estimates of fine root longevity. Plant Phytol 177:287–291

    Google Scholar 

  • Purin S, Rillig MC (2007) The arbuscular mycorrhizal fungal protein glomalin: limitations, progress, and a new hypothesis for its function. Pedobiologia 51:123–130

    Article  CAS  Google Scholar 

  • Quinton JN, Govers G, Van Oost K, Bardgett RD (2010) The impact of agricultural soil erosion on biogeochemical cycling. Nat Geosci 3:311–314

    Article  CAS  Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cycle 22:GB1003. doi:10.1029/2007GB002952

    Article  CAS  Google Scholar 

  • Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Rasse DP, Mulder J, Moni C, Chenu C (2006) Carbon turnover kinetics with depth in a French loamy soil. Soil Sci Soc Am J 70:2097–2105

    Article  CAS  Google Scholar 

  • Reay DS (2003) Sinking methane. Biologist 50:15–19

    PubMed  Google Scholar 

  • Rees RM, Bingham IJ, Baddeley JA, Watson CA (2005) The role of plants and land management in sequestering soil carbon in temperate arable and grassland ecosystems. Geoderma 128:130–154

    Article  CAS  Google Scholar 

  • Rillig MC, Ramsey PW, Morris S, Paul EA (2003) Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 253:293–299

    Article  CAS  Google Scholar 

  • Ritz K (1995) Growth responses of some fungi to spatially heterogeneous nutrients. FEMS Microbiol Ecol 16:269–280

    Article  CAS  Google Scholar 

  • Robbins M (2011) Crops and carbon. Earthscan, Oxon

    Google Scholar 

  • Robinson D (2007) Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc R Soc B 274:2753–2759

    Article  PubMed  CAS  Google Scholar 

  • Rovira AD, Greacen EL (1957) The effect of aggregate disruption on the activity of microorganisms in soil. Aust J Agric Res 8:659–673

    Article  Google Scholar 

  • Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158

    Article  CAS  Google Scholar 

  • Rutledge S, Campbell DI, Baldocchi D, Schipper LA (2010) Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter. Glob Change Biol 16:3065–3074

    Google Scholar 

  • Salomé C, Nunan N, Pouteau V, Lerch TZ, Chenu C (2010) Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Glob Change Biol 16:416–426

    Article  Google Scholar 

  • Sanaullah M, Chabbi A, Leifeld J, Bardoux G, Billou D, Rumpel C (2011) Decomposition and stabilization of root litter in top- and subsoil horizons: what is the difference? Plant Soil 338:127–141

    Article  CAS  Google Scholar 

  • Sanderman J, Amundson R (2008) A comparative study of dissolved organic carbon transport and stabilization in California forest and grassland soils. Biogeochemistry 89:309–327

    Article  Google Scholar 

  • Sanderman J, Baldock JA (2010) Accounting for soil carbon sequestration in national inventories: a soil scientist’s perspective. Environ Res Lett 5:034003

    Article  CAS  Google Scholar 

  • Sanderman J, Farquharson R, Baldock J (2010) Soil carbon sequestration potential: a review for Australian agriculture – a report prepared for department of climate change and energy efficiency, CSIRO land and water. http://www.csiro.au/resources/Soil-Carbon-Sequestration-Potential-Report.html

  • Sarkhot DV, Comerford NB, Jokela EJ, Reeves JB, Harris WG (2007) Aggregation and aggregate carbon in a forested southeastern coastal plain Spodosol. Soil Sci Soc Am J 71:1779–1787

    Article  CAS  Google Scholar 

  • Saugier B, Roy J, Mooney HA (2001) Estimations of global terrestrial productivity: converging toward a single number? In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic, San Diego, pp 543–557

    Chapter  Google Scholar 

  • Schenk HJ, Jackson RB (2005) Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126:129–140

    Article  Google Scholar 

  • Schindler FV, Mercer EJ, Rice JA (2007) Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biol Biochem 39:320–329

    Article  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  PubMed  CAS  Google Scholar 

  • Schomberg HH, Steiner JL, Unger PW (1994) Decomposition and nitrogen dynamics of crop residues: residue quality and water effects. Soil Sci Soc Am J 58:372–381

    Article  Google Scholar 

  • Schulze E-D, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, Berlin

    Google Scholar 

  • Schulze E-D, Luyssaert S, Ciais P, Freibauer A, Janssens IA et al (2009) Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance. Nat Geosci 2:842–850

    Article  CAS  Google Scholar 

  • Schulze E-D, Ciais P, Luyssaert S, Schrumpf M, Janssens IA, Thiruchittampalam B, Theloke J, Saurat M, Bringezu S, Lelieveld J, Lohila A, Rebmann C, Jung M, Bastviken D, Abril G, Grassi G, Leip A, Freibauer A, Kutsch W, Don A, Nieschulze J, Börner A, Gash JH, Dolman AJ (2010) The European carbon balance. Part 4: Integration of carbon and other trace-gas fluxes. Glob Change Biol 16:1451–1469

    Article  Google Scholar 

  • Sen R (2003) The root–microbe–soil interface: new tools for sustainable plant production. New Phytol 157:391–394

    Article  Google Scholar 

  • Séquaris J-M, Guisado G, Magarinos M, Moreno C, Burauel P, Narres H-D, Vereecken H (2010) Organic-carbon fractions in an agricultural topsoil assessed by the determination of the soil mineral surface area. J Plant Nutr Soil Sci 173:699–705

    Article  CAS  Google Scholar 

  • Shibu ME, Leffelaar PA, Van Keulen H, Aggarwal PK (2006) Quantitative description of soil organic matter dynamics – a review of approaches with reference to rice-based cropping systems. Geoderma 137:1–18

    Article  CAS  Google Scholar 

  • Siebert S, Döll P (2010) Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J Hydrol 384:198–217

    Article  Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419

    Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790

    Article  PubMed  CAS  Google Scholar 

  • Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103

    Article  CAS  Google Scholar 

  • Six J, Feller C, Denef K, Ogle SM, de Moraes Sa JC, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils – effects of no-tillage. Agronomie 22:755–775

    Article  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    Article  CAS  Google Scholar 

  • Smith KA, Conen F (2004) Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manage 20:255–263

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Smith TM, Shugart HH, Woodward FI, Burton PJ (1993) Plant functional types. In: Soloon AM, Shugart HH (eds) Vegetation dynamics and global change. Chapman and Hall, New York, pp 272–292

    Chapter  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philios Trans R Soc B 363:789–813

    Article  CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. Wiley, New York

    Google Scholar 

  • Stewart CE, Paustian K, Conant RT, Plante AF, Six J (2007) Soil carbon saturation: concept, evidence and evaluation. Biogeochem 86:19–31

    Article  CAS  Google Scholar 

  • Stewart CE, Plante AF, Paustian K, Conant RT, Six J (2008) Soil carbon saturation: linking concept and measurable carbon pools. Soil Sci Soc Am J 72:379–392

    Article  CAS  Google Scholar 

  • Stewart CE, Paustian K, Conant RT, Plante AF, Six J (2009) Soil carbon saturation: implications for measurable carbon pool dynamics in long-term incubations. Soil Biol Biochem 41:357–366

    Article  CAS  Google Scholar 

  • Still CJ, Berry JA, Collatz GJ, DeFries RS (2003) Global distribution of C3 and C4 vegetation: carbon cycle implications. Glob Biogeochem Cycle 17:1006. doi:10.1029/2001GB001807

    Article  CAS  Google Scholar 

  • Subedi KD, Ma BL, Liang BC (2006) New method to estimate root biomass in soil through root-derived carbon. Soil Biol Biochem 38:2212–2218

    Article  CAS  Google Scholar 

  • Suyker AE, Verma SB (2010) Coupling of carbon dioxide and water vapor exchanges of irrigated and rainfed maize–soybean cropping systems and water productivity. Agric For Meteorol 150:553–563

    Article  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley

    Google Scholar 

  • Talbot JM, Allison SD, Treseder KK (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–963

    Article  Google Scholar 

  • Thevenot M, Dignac M-F, Rumpel C (2010) Fate of lignins in soils: a review. Soil Biol Biochem 42:1200–1211

    Article  CAS  Google Scholar 

  • Tian H, Chen G, Liu M, Zhang C, Sun G, Lu C, Xu X, Ren W, Pan S, Chappelka A (2010) Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007. For Ecol Manage 259:1311–1327

    Article  Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389:170–173

    Article  CAS  Google Scholar 

  • Torn MS, Swanston CW, Castanha C, Trumbore SE (2009) Storage and turnover of natural organic matter in soil. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, Hoboken, pp 219–272

    Chapter  Google Scholar 

  • Treseder KK, Cross A (2006) Global distributions of arbuscular mycorrhizal fungi. Ecosystems 9:305–316

    Article  Google Scholar 

  • Treseder KK, Turner KM (2007) Glomalin in ecosystems. Soil Sci Soc Am J 71:1257–1266

    Article  CAS  Google Scholar 

  • U.S. Department of Energy (2008) Carbon cycling and biosequestration: integrating biology and climate through systems science. Report from the March 2008 workshop, DOE/SC-108, U.S. Department of Energy Office of Science. http://genomicsgtl.energy.gov/carboncycle/

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Van Hemelryck H, Fiener P, Van Oost K, Govers G (2009) The effect of soil redistribution on soil organic carbon: an experimental study. Biogeosci Discuss 6:5031–5071

    Article  Google Scholar 

  • Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, Marques Da Silva JR, Merckx R (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318:626–629

    Article  PubMed  CAS  Google Scholar 

  • Vancampenhout K, Wouters K, De Vos B, Buurman P, Swennen R, Deckers J (2009) Differences in chemical composition of soil organic matter in natural ecosystems from different climatic regions – a pyrolysis-GC/MS study. Soil Biol Biochem 41:568–579

    Article  CAS  Google Scholar 

  • Verbruggen E, Kiers ET (2010) Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl 3:547–560

    Article  Google Scholar 

  • Von Lützow M, Kögel-Knabner I (2010) Response to the concept paper: ‘What is recalcitrant soil organic matter?’ by Markus Kleber. Environ Chem 7:333–335

    Article  CAS  Google Scholar 

  • Von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. Eur J Soil Sci 57:426–445

    Article  CAS  Google Scholar 

  • Wang Z, Xiao X, Yan X (2010) Modeling gross primary production of maize cropland and degraded grassland in northeastern China. Agric For Meteorol 150:1160–1167

    Article  Google Scholar 

  • Whalen JK, Sampedro L (2009) Primary production. In: Whalen JK, Sampedro L (eds) Soil ecology and management. CAB International, Wallingford, pp 109–133

    Google Scholar 

  • Wickings K, Grandy AS (2011) The oribatid mite Scheloribates moestus (Acari: Oribatida) alters litter chemistry and nutrient cycling during decomposition. Soil Biol Biochem 43:351–358

    Article  CAS  Google Scholar 

  • Wilkinson MT, Richards PJ, Humphreys GS (2009) Breaking ground: pedological, geological, and ecological implications of soil bioturbation. Earth Sci Rev 97:254–269

    Article  Google Scholar 

  • Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    Article  PubMed  Google Scholar 

  • Wolters V (2000) Invertebrate control of soil organic matter stability. Biol Fert Soils 31:1–19

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586

    Article  CAS  Google Scholar 

  • Wright AL, Dou F, Hons FM (2007) Crop species and tillage effects on carbon sequestration in subsurface soil. Soil Sci 172:124–131

    Article  CAS  Google Scholar 

  • Wutzler T, Reichstein M (2007) Soils apart from equilibrium - consequences for soil carbon balance modelling. Biogeosciences 4:125–136

    Article  CAS  Google Scholar 

  • Yang F, Ichii K, White MA, Hashimoto H, Michaelis AR, Votava P, Zhu A, Huete A, Running SW, Nemani RR (2007) Developing a continental-scale measure of gross primary production by combining MODIS and AmeriFlux data through support vector machine approach. Remote Sens Environ 110:109–122

    Article  Google Scholar 

  • Young IM, Crawford JW, Nunan N, Otten W, Spiers A (2008) Microbial distribution in soils: physics and scaling. Adv Agron 100:81–121

    Article  Google Scholar 

  • Yu GR, Fu Y, Sun X, Wen X, Zhang L (2006) Recent progress and future directions of ChinaFLUX. Sci China Ser D 49(Suppl 1):1–23

    Article  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93

    Article  Google Scholar 

  • Zhang Y, Xu M, Chen H, Adams J (2009) Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Glob Ecol Biogeogr 18:280–290

    Article  Google Scholar 

  • Zhao M, Running S, Heinsch FA, Nemani R (2010) MODIS-derived terrestrial primary production. In: Ramachandran B, Justice CO, Abrams MJ (eds) Land remote sensing and global environmental change. Springer, Dordrecht, pp 635–659

    Chapter  Google Scholar 

  • Zimmerman AR, Chorover J, Goyne KW, Brantley SL (2004) Protection of mesopore-adsorbed organic matter from enzymatic degradation. Environ Sci Technol 38:4542–4548

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Lorenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lorenz, K., Lal, R. (2012). Cropland Soil Carbon Dynamics. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Recarbonization of the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4159-1_14

Download citation

Publish with us

Policies and ethics