Skip to main content

Recruitment of the Antiporter Module – A Key Event in Complex I Evolution

  • Chapter
  • First Online:

Abstract

It has long been known that NADH:quinone oxidoreductase or complex I is composed of proteins homologous to other smaller enzymes, electron carriers and transporters. By understanding the recruitment process of each of the smaller functional units, their individual functions and at what stage of complex I building the different functions were needed, we can also better understand the current functional mechanism of this large and intricate molecular machine. This work is focused on the role of the ion translocation proteins, important components of the energy coupling mechanism. We postulate that only one ion transporter protein is actually used for pumping protons in present day complex I, whereas the other two ion transporter proteins form a unit that is used to modulate the output from the proton pumping engine. When recruited to primordial complex I, the modulator unit allowed the proton pumping engine to adapt the stoichiometric output depending on the amount of energy available in different redox couple substrates. This critical step made the emerging complex I a vastly more useful and versatile enzyme, ensuring its evolutionary success. Today, when many members of the complex I family reside in more constant environments and need to use only a limited number of substrates, the most important function of the modulator unit is to function as an antiporter, regulating which type of ion gradient is maintained across the membrane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albanes D, Jones DY, Schatzkin A, Micozzi MS, Taylor PR (1998) Adult stature and risk of cancer. Cancer Res 48:1658–1662

    Google Scholar 

  • Amarneh B, Vik SB (2003) Mutagenesis of subunit N of the Escherichia coli complex I. Identification of the initiation codon and the sensitivity of mutants to decylubiquinone. Biochemistry 42:4800–4808

    Article  PubMed  CAS  Google Scholar 

  • Amarneh B, Vik SB (2010) Transmembrane topology of subunit N of complex I (NADH: ubiquinone oxidoreductase) from Escherichia coli. J Bioenerg Biomembr 42:511–516

    Article  PubMed  CAS  Google Scholar 

  • Baranova EA, Morgan DJ, Sazanov LA (2007) Single particle analysis confirms distal location of subunits NuoL and NuoM in Escherichia coli complex I. J Struct Biol 159:238–242

    Article  PubMed  CAS  Google Scholar 

  • Batista AP, Pereira MM (2011) Sodium influence on energy transduction by complexes I from Escherichia coli and Paracoccus denitrificans. Biochim Biophys Acta 1807:286–292

    Article  PubMed  CAS  Google Scholar 

  • Batista AP, Fernandes AS, Louro RO, Steuber J, Pereira MM (2010) Energy conservation by Rhodothermus marinus respiratory complex I. Biochim Biophys Acta 1797:509–515

    Article  PubMed  CAS  Google Scholar 

  • Battchikova N, Aro EM (2007) Cyanobacterial NDH-1 complexes: multiplicity in function and subunit composition. Physiol Plant 131:22–32

    Article  PubMed  CAS  Google Scholar 

  • Battchikova N, Eisenhut M, Aro EM (2011) Cyanobacterial NDH-1 complexes: novel insights and remaining puzzles. Biochim Biophys Acta 1807:935–944

    Article  PubMed  CAS  Google Scholar 

  • Berrisford JM, Sazanov LA (2009) Structural basis for the mechanism of respiratory complex I. J Biol Chem 284:29773–29783

    Article  PubMed  CAS  Google Scholar 

  • Bertsova YV, Bogachev AV (2004) The origin of the sodium-dependent NADH oxidation by the respiratory chain of Klebsiella pneumoniae. FEBS Lett 563:207–212

    Article  PubMed  CAS  Google Scholar 

  • Brandt U (1997) Proton-translocation by membrane-bound NADH: ubiquinone-oxidoreductase (complex I) through redox-gated ligand conduction. Biochim Biophys Acta 1318:79–91

    Article  PubMed  CAS  Google Scholar 

  • Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75:69–92

    Article  PubMed  CAS  Google Scholar 

  • Brandt U, Kerscher S, Dröse S, Zwicker K, Zickermann V (2003) Proton pumping by NADH: ubiquinone oxidoreductase. A redox driven conformational change mechanism? FEBS Lett 545:9–17

    Article  PubMed  CAS  Google Scholar 

  • Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE (2006) Bovine complex I is a complex of 45 different subunits. J Biol Chem 281:32724–32727

    Article  PubMed  CAS  Google Scholar 

  • Darrouzet E, Issartel JP, Lunardi J, Dupuis A (1998) The 49-kDa subunit of NADH-ubiquinone oxidoreductase (complex I) is involved in the binding of piericidin and rotenone, two quinone-related inhibitors. FEBS Lett 431:34–38

    Article  PubMed  CAS  Google Scholar 

  • Dutton PL, Moser CC, Sled VD, Daldal F, Ohnishi T (1998) A reductant-induced oxidation mechanism for complex I. Biochim Biophys Acta 1364:245–257

    Article  PubMed  CAS  Google Scholar 

  • Efremov RG, Sazanov LA (2011) Structure of the membrane domain of respiratory complex I. Nature 476:414–420

    Article  PubMed  CAS  Google Scholar 

  • Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–447

    Article  PubMed  CAS  Google Scholar 

  • Euro L, Belevich G, Verkhovsky MI, Wikström M, Verkhovskaya M (2008) Conserved lysine residues of the membrane subunit NuoM are involved in energy conversion by the proton-pumping NADH: ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 1777:1166–1172

    Article  PubMed  CAS  Google Scholar 

  • Fearnley IM, Walker JE (1992) Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. Biochim Biophys Acta 1140:105–134

    Article  PubMed  CAS  Google Scholar 

  • Fisher N, Rich PR (2000) A motif for quinone binding sites in respiratory and photosynthetic systems. J Mol Biol 296:1153–1162

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T (1998) The NADH: ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochim Biophys Acta 1364:134–146

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T (2001) Complex I: a chimaera of a redox and conformation-driven proton pump? J Bioenerg Biomembr 33:169–177

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T, Scheide D (2000) The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 479:1–5

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T, Weiss H (1997) Modular evolution of the respiratory NADH ubiquinone oxidoreductase and the origin of its modules. J Theor Biol 187:529–540

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T, Weidner U, Nehls U, Fecke W, Schneider R, Weiss H (1993) Attempts to define distinct parts of NADH: ubiquinone oxidoreductase (complex I). J Bioenerg Biomembr 25:331–337

    Article  PubMed  CAS  Google Scholar 

  • Galkin A, Grivennikova VG, Vinogradov AD (1999) H+/e stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles. FEBS Lett 451:157–161

    Article  PubMed  CAS  Google Scholar 

  • Gemperli AC, Dimroth P, Steuber J (2002) The respiratory complex I (NDH I) from Klebsiella pneumoniae, a sodium pump. J Biol Chem 277:33811–33817

    Article  PubMed  CAS  Google Scholar 

  • Gemperli AC, Schaffitzel C, Jakob C, Steuber J (2007) Transport of Na+ and K+ by an antiporter-related subunit from the Escherichia coli NADH dehydrogenase I produced in Saccharomyces cerevisiae. Arch Microbiol 188:509–521

    Article  PubMed  CAS  Google Scholar 

  • Gong X, Xie T, Yu L, Hesterberg M, Scheide D, Friedrich T, Yu CA (2003) The ubiquinone-binding site in NADH: ubiquinone oxidoreductase from Escherichia coli. J Biol Chem 278:25731–25737

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson T, Trane M, Moparthi VK, Miklovyte E, Moparthi L, Gorecki K, Leiding T, Årsköld SP, Hägerhäll C (2010) A cytochrome c fusion protein domain for convenient detection, quantification, and enhanced production of membrane proteins in Escherichia coli-expression and characterization of cytochrome-tagged complex I subunits. Protein Sci 19:1445–1460

    Article  PubMed  CAS  Google Scholar 

  • Hamamoto T, Hashimoto M, Hino M, Kitada M, Seto Y, Kudo T, Horikoshi K (1994) Characterization of a gene responsible for the Na+/H+ antiporter system of alkalophilic Bacillus species strain C-125. Mol Microbiol 14:939–946

    Article  PubMed  CAS  Google Scholar 

  • Hedderich R (2004) Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. J Bioenerg Biomembr 36:65–75

    Article  PubMed  CAS  Google Scholar 

  • Hiramatsu T, Kodama K, Kuroda T, Mizushima T, Tsuchiya T (1998) A putative multisubunit Na+/H+ antiporter from Staphylococcus aureus. J Bacteriol 180:6642–6648

    PubMed  CAS  Google Scholar 

  • Hirst J (2003) The dichotomy of complex I: a sodium ion pump or a proton pump. Proc Natl Acad Sci USA 100:773–775

    Article  PubMed  CAS  Google Scholar 

  • Holt PJ, Morgan DJ, Sazanov LA (2003) The location of NuoL and NuoM subunits in the membrane domain of the Escherichia coli complex I – implications for the mechanism of proton pumping. J Biol Chem 278:43114–43120

    Article  PubMed  CAS  Google Scholar 

  • Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202

    Article  PubMed  CAS  Google Scholar 

  • Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329:448–451

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Guffanti AA, Oudega B, Krulwich TA (1999) Mrp, a multigene, multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na+ and in pH homeostasis. J Bacteriol 181:2394–2402

    PubMed  CAS  Google Scholar 

  • Ito M, Guffanti AA, Wang W, Krulwich TA (2000) Effects of nonpolar mutations in each of the seven Bacillus subtilis mrp genes suggest complex interactions among the gene products in support of Na+ and alkali but not cholate resistance. J Bacteriol 182:5663–5670

    Article  PubMed  CAS  Google Scholar 

  • Kajiyama Y, Otagiri M, Sekiguchi J, Kosono S, Kudo T (2007) Complex formation by the mrpABCDEFG gene products, which constitute a principal Na+/H+ antiporter in Bacillus subtilis. J Bacteriol 189:7511–7514

    Article  PubMed  CAS  Google Scholar 

  • Kajiyama Y, Otagiri M, Sekiguchi J, Kudo T, Kosono S (2009) The MrpA, MrpB and MrpD subunits of the Mrp antiporter complex in Bacillus subtilis contain membrane-embedded and essential acidic residues. Microbiology 155:2137–2147

    Article  PubMed  CAS  Google Scholar 

  • Kao MC, Di Bernardo S, Matsuno-Yagi A, Yagi T (2003) Characterization and topology of the membrane domain Nqo10 subunit of the proton-translocating NADH-quinone oxidoreductase of Paracoccus denitrificans. Biochemistry 42:4534–4543

    Article  PubMed  CAS  Google Scholar 

  • Kerscher S, Kashani-Poor N, Zwicker K, Zickermann V, Brandt U (2001) Exploring the catalytic core of complex I by Yarrowia lipolytica yeast genetics. J Bioenerg Biomembr 33:187–196

    Article  PubMed  CAS  Google Scholar 

  • Kitada M, Kosono S, Kudo T (2000) The Na+/H+ antiporter of alkaliphilic Bacillus sp. Extremophiles 4:253–258

    Article  PubMed  CAS  Google Scholar 

  • Kosono S, Morotomi S, Kitada M, Kudo T (1999) Analyses of a Bacillus subtilis homologue of the Na+/H+ antiporter gene which is important for pH homeostasis of alkaliphilic Bacillus sp. C-125. Biochim Biophys Acta 1409:171–175

    Article  PubMed  CAS  Google Scholar 

  • Krulwich TA, Hicks DB, Ito M (2009) Cation/proton antiporter complements of bacteria: why so large and diverse? Mol Microbiol 74:257–260

    Article  PubMed  CAS  Google Scholar 

  • Kurki S, Zickermann V, Kervinen M, Hassinen I, Finel M (2000) Mutagenesis of three conserved Glu residues in a bacterial homologue of the ND1 subunit of complex I affects ubiquinone reduction kinetics but not inhibition by dicyclohexylcarbodiimide. Biochemistry 39:13496–13502

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydrophobic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Lunardi J, Darrouzet E, Dupuis A, Issartel JP (1998) The nuoM arg(368)his mutation in NADH: ubiquinone oxidoreductase from Rhodobacter capsulatus: a model for the human ND4-11778 mtDNA mutation associated with Leber’s hereditary optic neuropathy. Biochim Biophys Acta 1407:114–124

    PubMed  CAS  Google Scholar 

  • Magnitsky S, Toulokhonova L, Yano T, Sled VD, Hägerhäll C, Grivennikova VG, Burbaev DS, Vinogradov AD, Ohnishi T (2002) EPR characterization of ubisemiquinones and iron-sulfur cluster N2, central components of the energy coupling in the NADH-ubiquinone oxidoreductase (complex I) in situ. J Bioenerg Biomembr 34:193–208

    Article  PubMed  CAS  Google Scholar 

  • Mathiesen C, Hägerhäll C (2002) Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim Biophys Acta 1556:121–132

    Article  PubMed  CAS  Google Scholar 

  • Mathiesen C, Hägerhäll C (2003) The ‘antiporter module’ of respiratory chain complex I includes the MrpC/NuoK subunit – a revision of the modular evolution scheme. FEBS Lett 549:7–13

    Article  PubMed  CAS  Google Scholar 

  • Moparthi VK, Hägerhäll C (2011) The evolution of respiratory chain complex I from a smaller last common ancestor consisting of 11 protein subunits. J Mol Evol 72:484–497

    Article  PubMed  CAS  Google Scholar 

  • Moparthi VK, Kumar B, Mathiesen C, Hägerhäll C (2011) Homologous protein subunits from Escherichia coli NADH:quinone oxidoreductase can functionally replace MrpA and MrpD in Bacillus subtilis. Biochim Biophys Acta 1807:427–436

    Article  PubMed  CAS  Google Scholar 

  • Morino M, Natsui S, Swartz TH, Krulwich TA, Ito M (2008) Single gene deletions of mrpA to mrpG and mrpE point mutations affect activity of the Mrp Na+/H+ antiporter of alkaliphilic Bacillus and formation of hetero-monieric Mrp complexes. J Bacteriol 190:4162–4172

    Article  PubMed  CAS  Google Scholar 

  • Morino M, Natsui S, Ono T, Swartz TH, Krulwich TA, Ito M (2010) Single site mutations in the hetero-oligomeric Mrp antiporter from alkaliphilic Bacillus pseudofirmus OF4 that affect Na+/H+ antiport activity, sodium exclusion, individual Mrp protein levels, or Mrp complex formation. J Biol Chem 285:30942–30950

    Article  PubMed  CAS  Google Scholar 

  • Nakamaru-Ogiso E, Sakamoto K, Matsuno-Yagi A, Miyoshi H, Yagi T (2003) The ND5 subunit was labeled by a photoaffinity analogue of fenpyroximate in bovine mitochondrial complex I. Biochemistry 42:746–754

    Article  PubMed  CAS  Google Scholar 

  • Nakamaru-Ogiso E, Han H, Matsuno-Yagi A, Keinan E, Sinha SC, Yagi T, Ohnishi T (2010a) The ND2 subunit is labeled by a photoaffinity analogue of asimicin, a potent complex I inhibitor. FEBS Lett 584:883–888

    Article  PubMed  CAS  Google Scholar 

  • Nakamaru-Ogiso E, Kao MC, Chen H, Sinha SC, Yagi T, Ohnishi T (2010b) The membrane subunit NuoL(ND5) is involved in the indirect proton pumping mechanism of Escherichia coli complex I. J Biol Chem 285:39070–39078

    Article  PubMed  CAS  Google Scholar 

  • Nozaki K, Inaba K, Kuroda T, Tsuda M, Tsuchiya T (1996) Cloning and sequencing of the gene for Na+/H+ antiporter of Vibrio parahaemolyticus. Biochem Biophys Res Commun 222:774–779

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi ST, Salerno JC, Ohnishi T (2010a) Possible roles of two quinone molecules in direct and indirect proton pumps of bovine heart NADH-quinone oxidoreductase (complex I). Biochim Biophys Acta 1797:1891–1893

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi T, Nakamaru-Ogiso E, Ohnishi ST (2010b) A new hypothesis on the simultaneous direct and indirect proton pump mechanisms in NADH-quinone oxidoreductase (complex I). FEBS Lett 584:4131–4137

    Article  PubMed  CAS  Google Scholar 

  • Okun JG, Lummen P, Brandt U (1999) Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH: ubiquinone oxidoreductase). J Biol Chem 274:2625–2630

    Article  PubMed  CAS  Google Scholar 

  • Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88

    Article  PubMed  CAS  Google Scholar 

  • Peng L, Yamamoto H, Shikanai T (2011) Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex. Biochim Biophys Acta 1807:945–953

    Article  PubMed  CAS  Google Scholar 

  • Ragan CI, Hinkle PC (1975) Ion transport and respiratory control in vesicles formed from reduced nicotinamide adenine dinucleotide coenzyme Q reductase and phospholipids. J Biol Chem 250:8472–8476

    PubMed  CAS  Google Scholar 

  • Rothery RA, Workun GJ, Weiner JH (2008) The prokaryotic complex iron-sulfur molybdoenzyme family. Biochim Biophys Acta 1778:1897–1929

    Article  PubMed  CAS  Google Scholar 

  • Saraste M (1999) Oxidative phosphorylation at the fin de siecle. Science 283:1488–1493

    Article  PubMed  CAS  Google Scholar 

  • Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430–1436

    Article  PubMed  CAS  Google Scholar 

  • Steimle S, Bajzath C, Dorner K, Schulte M, Bothe V, Friedrich T (2011) Role of subunit NuoL for proton translocation by respiratory complex I. Biochemistry 50:3386–3393

    Article  PubMed  CAS  Google Scholar 

  • Steuber J (2001) The Na+-translocating NADH:quinone oxidoreductase (NDH I) from Klebsiella pneumoniae and Escherichia coli: Implications for the mechanism of redox-driven cation translocation by complex I. J Bioenerg Biomembr 33:179–186

    Article  PubMed  CAS  Google Scholar 

  • Steuber J (2003) The C-terminally truncated NuoL subunit (ND5 homologue) of the Na+-dependent complex I from Escherichia coli transports Na+. J Biol Chem 278:26817–26822

    Article  PubMed  CAS  Google Scholar 

  • Steuber J, Schmid C, Rufibach M, Dimroth P (2000) Na+ translocation by complex I (NADH:quinone oxidoreductase) of Escherichia coli. Mol Microbiol 35:428–434

    Article  PubMed  CAS  Google Scholar 

  • Stolpe S, Friedrich T (2004) The Escherichia coli NADH: ubiquinone oxidoreductase (complex I) is a primary proton pump but may be capable of secondary sodium antiport. J Biol Chem 279:18377–18383

    Article  PubMed  CAS  Google Scholar 

  • Swartz TH, Ikewada S, Ishikawa O, Ito M, Krulwich TA (2005) The Mrp system: a giant among monovalent cation/proton antiporters? Extremophiles 9:345–354

    Article  PubMed  CAS  Google Scholar 

  • Swartz TH, Ito M, Ohira T, Natsui S, Hicks DB, Krulwich TA (2007) Catalytic properties of Staphylococcus aureus and Bacillus members of the secondary cation/proton antiporter-3 (Mrp) family are revealed by an optimized assay in an Escherichia coli host. J Bacteriol 189:3081–3090

    Article  PubMed  CAS  Google Scholar 

  • Tocilescu MA, Zickermann V, Zwicker K, Brandt U (2010) Quinone binding and reduction by respiratory complex I. Biochim Biophys Acta 1797:1883–1890

    Article  PubMed  CAS  Google Scholar 

  • Torres-Bacete J, Nakamaru-Ogiso E, Matsuno-Yagi A, Yagi T (2007) Characterization of the NuoM (ND4) subunit in Escherichia coli NDH-1 – conserved charged residues essential for energy-coupled activities. J Biol Chem 282:36914–36922

    Article  PubMed  CAS  Google Scholar 

  • Torres-Bacete J, Sinha PK, Castro-Guerrero N, Matsuno-Yagi A, Yagi T (2009) Features of subunit NuoM (ND4) in Escherichia coli NDH-1 topology and implications of conserved Glu(144) for coupling site 1. J Biol Chem 284:33062–33069

    Article  PubMed  CAS  Google Scholar 

  • Tuppen HAL, Blakely EL, Turnbull DM, Taylor RW (2010) Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 1797:113–128

    PubMed  CAS  Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    Article  PubMed  CAS  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    PubMed  CAS  Google Scholar 

  • Wikström M (1984) Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone. FEBS Lett 169:300–304

    Article  PubMed  Google Scholar 

  • Yagi T, Yano T, Di Bernardo S, Matsuno-Yagi A (1998) Procaryotic complex I (NDH-1), an overview. Biochim Biophys Acta 1364:125–133

    Article  PubMed  CAS  Google Scholar 

  • Yano T, Yagi T, Sled VD, Ohnishi T (1995) Expression and characterization of the 66-kilodalton (NQO3) iron-sulfur subunit of the proton-translocating NADH-quinone oxidoreductase of Paracoccus denitrificans. J Biol Chem 270:18264–18270

    Article  PubMed  CAS  Google Scholar 

  • Yano T, Sled VD, Ohnishi T, Yagi T (1996) Expression and characterization of the flavoprotein subcomplex composed of 50-kDa (NQO1) and 25-kDa (NQO2) subunits of the proton-translocating NADH-quinone oxidoreductase of Paracoccus denitrificans. J Biol Chem 271:5907–5913

    Article  PubMed  CAS  Google Scholar 

  • Yip CY, Harbour ME, Jayawardena K, Fearnley IM, Sazanov LA (2011) Evolution of respiratory complex I “supernumerary” subunits are present in the alpha-proteobacterial enzyme. J Biol Chem 286:5023–5033

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Hägerhäll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moparthi, V.K., Hägerhäll, C. (2012). Recruitment of the Antiporter Module – A Key Event in Complex I Evolution. In: Sazanov, L. (eds) A Structural Perspective on Respiratory Complex I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4138-6_7

Download citation

Publish with us

Policies and ethics