Skip to main content

Interfaces and Interphases

  • Chapter
  • First Online:
Micromechanics of Composite Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 186))

  • 4468 Accesses

Abstract

Several types of bonds may exist at the juncture between adjacent phases in contact. On the microscale of many composite materials, most desired is a perfect bond along a sharp spatial boundary S of vanishing thickness. It guarantees that both traction and displacement vectors remain continuous on S. Contact between phase surfaces may also involve presence of one or more interphases, thin bonded layers of additional homogeneous phases introduced, for example, as coatings on particles or fibers, or as products of an interfacial chemical reaction. During composites manufacture and/or loading, an interface is expected to transmit certain tractions between adjacent constituents. When the resolved tensile and/or shear stress reaches a high magnitude, the interface may become imperfect by allowing partial or complete decohesion, a displacement jump, possibly accompanied by a distribution of ‘adhesive’ tractions. In an opposite situation, a high compressive stress may cause radial cracking in one of the phases in contact, or in the surrounding matrix. While magnitudes of interface tractions determine material propensity to distributed damage, the work required by either decohesion or radial cracking must be provided by release of potential energy, which is proportional to phase volume Chap. 5. Therefore, small inhomogeneities are less likely sources of damage than large ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Additional References for Chapter 9

  • Benveniste, Y. (2006). A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. Journal of the Mechanics and Physics of Solids, 54, 708–734.

    Article  MathSciNet  MATH  Google Scholar 

  • Benveniste, Y., & Berdichevsky, O. (2010). On two models of arbitrarily curved three-dimensional thin interphases in elasticity. International Journal of Solids and Structures, 47, 1899–1915.

    Article  MATH  Google Scholar 

  • Benveniste, Y., & Miloh, T. (2001). Imperfect soft and stiff interfaces in two-dimensional elasticity. Mechanics of Materials, 33, 309–323.

    Article  Google Scholar 

  • Cammarata, R. C., Trimble, T. M., & Srolovitz, D. J. (2000). Surface stress model for instrinsic stresses in thin films. Journal of Materials Research, 15, 2468–2474.

    Article  Google Scholar 

  • Chen, T., & Dvorak, G. J. (2006). Fibrous nanocomposites with interface stress: Hill’s and Levin’s connections for effective moduli. Applied Physics Letters, 88, 211912. 1–3.

    Google Scholar 

  • Chen, T., Chiu, M. S., & Weng, C. N. (2006). Derivation of the generalized Young-Laplace equation of curved interfaces in nano-scaled solids. Journal of Applied Physics, 100, 1–5.

    Article  Google Scholar 

  • Chen, T., Dvorak, G. J., & Yu, C. C. (2007a). Solids containing spherical nano- inclusions with interface stresses: Effective properties and thermal-mechanical connections. International Journal of Solids and Structures, 44, 941–955.

    Article  MATH  Google Scholar 

  • Chen, T., Dvorak, G. J., & Yu, C. C. (2007b). Size-dependent elastic properties of unidirectional nano-composites with interface stresses. Acta Mechanica, 188, 39–54.

    Article  MATH  Google Scholar 

  • Dionne, P. J., Ozisik, R., & Picu, R. C. (2005). Structure and dynamics of polyethylene nanocomposites. Macromolecules, 38, 9351–9358.

    Article  Google Scholar 

  • Dionne, P. J., Picu, R. C., & Ozisik, R. (2006). Adsorption and desorption dynamics of linear polymer chains to spherical nanoparticles: A Monte Carlo investigation. Macromolecules, 39, 3089–3092.

    Article  Google Scholar 

  • Duan, H. L., Wang, J., Huang, Z. P., & Karihaloo, B. L. (2005a). Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. Journal of the Mechanics and Physics of Solids, 53, 1574–1596.

    Article  MathSciNet  MATH  Google Scholar 

  • Duan, H. L., Wang, J., Huang, Z. P., & Karihaloo, B. L. (2005b). Eshelby formalism for nano-inhomogeneities. Proceedings of the Royal Society of London, A 461, 3335–3353.

    MathSciNet  Google Scholar 

  • Gibbs, J. W. (1928). The collected works of J.W. Gibbs (Vol. 1, p. 315). Longmans: New York.

    Google Scholar 

  • Gurtin, M. E., & Murdoch, A. I. (1975). A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57, 291–323, and 59, 389–390.

    Google Scholar 

  • Gurtin, M. E., Weissmuller, J., & Larche, F. (1998). A general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine A, 78, 1093–1109.

    Article  Google Scholar 

  • Hatami-Marbini, H., & Picu, R. C. (2009). Heterogeneous long-range correlated deformation of semiflexible random fiber networks. Physical Review E, 80, 046703-1-11.

    Google Scholar 

  • Landau, L. D., & Lifshitz, E. M. (1987). Fluid mechanics (2nd ed.). Oxford: Pergamon Press.

    MATH  Google Scholar 

  • Miller, R. E., & Shenoy, V. B. (2000). Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 11, 139–147.

    Article  Google Scholar 

  • Nix, W. D., & Gao, H. (1998). An atomistic interpretation of interface stress. Scripta Materialia, 39, 1653–1661.

    Article  Google Scholar 

  • Ozmusul, M. S., & Picu, R. C. (2002). Elastic moduli for particulate composites with graded filler-matrix interfaces. Polymer Composites, 23, 110–119.

    Article  Google Scholar 

  • Ozmusul, M. S., & Picu, R. C. (2003). Structure of linear polymeric chains confined between spherical impenetrable walls. The Journal of Chemical Physics, 118, 11239–11248.

    Article  Google Scholar 

  • Ozmusul, M. S., Picu, R. C., Sternstein, S. S., & Kumar, S. (2005). Lattice Monte Carlo simulations of chain conformations in polymer nanocomposites. Macromolecules, 38, 4495–4500.

    Article  Google Scholar 

  • Picu, R. C. (2009). Multiscale approach to predicting the mechanical behavior of polymeric melts. In B. Farahmand (Ed.), Virtual testing and predictive modeling: Fatigue and fracture allowances. Dordrecht: Springer.

    Google Scholar 

  • Picu, R. C., Sarvestani, A., & Ozmusul, M. S. (2004). Elastic moduli of polymer nanocomposites derived from their molecular structure. In V. M. Harik (Ed.), Trends in nanoscale mechanics: Analysis of nanostructured materials and multiscale modeling (pp. 61–88). Dordrecht: Kluwer Academic Press.

    Google Scholar 

  • Povstenko, Y. Z. (1993). Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. Journal of the Mechanics and Physics of Solids, 41, 1499–1514.

    Article  MathSciNet  MATH  Google Scholar 

  • Ramanathan, T., Liu, H., & Brinson, L. C. (2005). Functionalized SWNT polymer nanocomposites for dramatic property improvement. Journal of Polymer Science: Polymer Physics, 43, 2269–2279.

    Article  Google Scholar 

  • Ramanathan, T., Abdala, A. A., Stankovich, S., et al. (2008). Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology, 3(6), 327–331.

    Article  Google Scholar 

  • Sarvestani, A. S., & Picu, R. C. (2005). A frictional molecular model for the viscoelasticity of entangled polymer nanocomposites. Rheologica Acta, 45, 132–141.

    Article  Google Scholar 

  • Sharma, P., & Ganti, S. (2004). Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. ASME Journal of Applied Mechanics, 71, 663–671.

    Article  MATH  Google Scholar 

  • Sharma, P., Ganti, S., & Bhate, N. (2003). Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Applied Physics Letters, 82, 535–537.

    Article  Google Scholar 

  • Spaepen, F. (2000). Interfaces and stresses in thin films. Acta Materialia, 48, 31–42.

    Article  Google Scholar 

  • Tvergaard, V. (2003). Debonding of short fibers among particulates in metal matrix composites. International Journal of Solids and Structures, 40, 6957–6967.

    Article  MATH  Google Scholar 

  • Watcharotone, S., Wood, C. D., Friedrich, R., Chen, X., Qiao, R., Putz, K. W., & Brinson, L. C. (2011). Revealing the effects of interphase, interface and substrate on mechanical properties of polymers using coupled experiments and modeling of nanoindentation. Advanced Engineering Materials, 13, 400–404.

    Article  Google Scholar 

  • Yang, F. Q. (2004). Size-dependent effective modulus of elastic composite materials: Spherical nanocavities at dilute concentrations. Journal of Applied Physics, 95, 3516–3520.

    Article  Google Scholar 

  • Chen, T. (1993a). Green’s functions and the non-uniform transformation problem in a piezoelectric medium. Mechanics Research Communications, 20, 271–278.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrante, J., Smith, J. R., & Rose, J. H. (1982). Universal binding energy relations in metallic adhesion. In J. M. Georges (Ed.), Microscopic aspects of adhesion and lubrication (pp. 19–30). Amsterdam: Elsevier.

    Google Scholar 

  • Laws, N. (1975). On interfacial discontinuities in elastic composites. Journal of Elasticity, 5, 227–235.

    Article  MATH  Google Scholar 

  • Chen, T. (1993b). The rotation of a rigid ellipsoidal inclusion embedded in an anisotropic piezoelectric medium. International Journal of Solids and Structures, 30, 1983–1995.

    Article  MATH  Google Scholar 

  • Hashin, Z. (2002). Thin interphase/imperfect interface in elasticity with application to coated fiber composites. Journal of the Mechanics and Physics of Solids, 50, 2509–2537.

    Article  MathSciNet  MATH  Google Scholar 

  • Hill, R. (1972). An invariant treatment of interfacial discontinuities in elastic composites. In L. I. Sedov (Ed.), Continuum mechanics and related problems of analysis, N. I. Muskhelishvili 80th anniversary volume (pp. 597–604). Moscow: Acad. Sciences.

    Google Scholar 

  • Hill, R. (1983). Interfacial operators in the mechanics of composite media. Journal of the Mechanics and Physics of Solids, 31, 247–357.

    Article  Google Scholar 

  • Laws, N. (1977). The determination of stress and strain concentrations in an ellipsoidal inclusion in an anisotropic material. Journal of Elasticity, 7, 91–97.

    Article  MathSciNet  MATH  Google Scholar 

  • Hill, R. (1961). Discontinuity relations in mechanics of solids. In I. N. Sneddon & R. Hill (Eds.), Progress in solid mechanics (Vol. II, pp. 245–276). Amsterdam: North Holland Publications.

    Google Scholar 

  • Hashin, Z. (1991). The spherical inclusion with imperfect interface. Journal of Applied Mechanics, 58, 444–449.

    Article  Google Scholar 

  • Kunin, I. A., & Sosnina, E. G. (1973). Stress concentration on an ellipsoidal inhomogeneity in an anisotropic elastic medium. Prikl. Mat. Mekh., 37, 306–315.

    Google Scholar 

  • Hashin, Z. (1990). Thermoelastic properties of fiber composites with imperfect interface. Mechanics of Materials, 8, 333–348.

    Article  Google Scholar 

  • Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society London A, 241, 376–396.

    Article  MathSciNet  MATH  Google Scholar 

  • Walpole, L. J. (1981). Elastic behavior of composite materials: Theoretical foundations. In Advances in applied mechanics (Vol. 21, pp. 169–242). New York: Academic.

    Google Scholar 

  • Herakovich, C. T. (1998). Mechanics of fibrous composites. New York: Wiley.

    Google Scholar 

  • Achenbach, J. D., & Zhu, H. (1989). Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites. Journal of the Mechanics and Physics of Solids, 37, 381–393.

    Article  Google Scholar 

  • Jefferson, G., Haritos, G. K and McMeeking, R. M. (2002)The elastic response of a cohesive aggregate – a discrete element model with coupled particle interactions. J. Mech. Phys. Solids, 50, 2539–2575.

    Google Scholar 

  • Benveniste, Y., & Miloh, T. (2001). Imperfect soft and stiff interfaces in two-dimensional elasticity. Mechanics of Materials, 33, 309–323.

    Article  Google Scholar 

  • Jasiuk, I., Mura, T., & Tsuchida, E. (1988). Thermal stresses and thermal expansion coefficient of short fiber composites with sliding interfaces. Journal of Engineering Materials and Technology, 110, 96–110.

    Google Scholar 

  • Jasiuk, I., & Kouider, M. W. (1993). The effect of an inhomogeneous interphase on elastic constants of transversely isotropic composites.

    Google Scholar 

  • Qu, J. (1993). The effect of slightly weakened interface on the overall elastic properties of composite materials. Mechanics of Materials, 14, 269–281

    Google Scholar 

  • Zhou, L. G., & Huang, H. (2004), Are Surfaces Elastically Softer or Stiffer? Applied Physics Letters, 84, 1940–1942.

    Google Scholar 

  • Shim, H. W., Zhou, L. G., Huang, H., & Cale, T. S. (2005). Nanoplate elasticity under surface reconstruction. Applied Physics Letters 86, 151912-1-3.

    Google Scholar 

  • Liang, H. Y., Upmanyu, M., & Huang, H. (2005). Size dependent elasticity of nanowires: Non-linear effects. Physical Review B 71, 241403R-1-4.

    Google Scholar 

  • Park, H. S., Klein, P. A., & Wagner, G. J. (2006). A surface Cauchy-Born model for nanoscale materials. International Journal for Numerical Methods in Engineering, 68, 1072–1095.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dvorak, G.J. (2013). Interfaces and Interphases. In: Micromechanics of Composite Materials. Solid Mechanics and Its Applications, vol 186. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4101-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4101-0_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4100-3

  • Online ISBN: 978-94-007-4101-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics