Skip to main content

New Approaches to Teaching Early Number Skills and to Remediate Number Fact Dyscalculia

  • Chapter
  • First Online:

Part of the book series: Literacy Studies ((LITS,volume 6))

Abstract

The contents of this chapter are twofold: First, we will provide the reader with a brief overview of current concepts of how early number skills develop and how they may be fostered. While most respective intervention programs focus on the establishment of domain-specific number skills (such as number sense and counting procedures and principles), there is emerging evidence that also domain-general training has the potential to foster the establishment of early number skills. Here, we will present findings from a kindergarten study showing that training spatial skills facilitate the establishment of number sense in typically developing children.

Second, we will present preliminary but highly promising findings regarding the effectiveness of new intervention approaches for the remediation of number fact knowledge (e.g., 3 × 6). Going beyond the well established drill and problem-solving approaches (the first emphasizes learning by repetition, while the latter aims at establishing procedural/conceptual knowledge to compensate for the number fact deficit; e.g., 3 × 6 equals 6 + 6 + 6), we present a new multisensory approach to teach number facts. Our preliminary findings are encouraging and show that associating colors with number magnitudes clearly facilitates the retrieval of multiplication fact knowledge in dyscalculic children.

In the concluding paragraph we will provide an outlook for future research endeavors targeted at developing and evaluating novel intervention methods that aim that aim (i) at fostering early number skills and (ii) at the remediation of arithmetic difficulties (e.g. incorporating embodiment into targeted cognitive intervention).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The term numerosity denotes the number of a set and thus, represents semantic number knowledge (Butterworth 2005).

  2. 2.

    Handl and Kaufmann (2008) reported data from an additional experimental group being subjected to a combined numerical and spatial training. However, due to space limitations only data from the main experimental groups (i.e., those receiving either numerical or spatial training) will be presented here.

  3. 3.

    The two subtests were similarities (indexing children’s verbal intelligence) and block design (indexing non-verbal intelligence). As for the current German-language version of the Wechsler intelligence tests used in this study (HAWIK-IV, Petermann and Petermann 2008) no prorating formula exists that allows to prorate a full intelligence quotient from a limited number of subtests, we chose to report mean scaled scores as an estimate of children’s intellectual abilities.

References

  • Alais, D., Newell, F. N., & Mamassian, P. (2010). Multisensory processing in review: From physiology to behavior. Seeing and Perceiving, 23, 3–38.

    Article  PubMed  Google Scholar 

  • American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Association.

    Google Scholar 

  • Anderson, M. L. (2003). Embodied cognition: A field guide. Artificial Intelligence, 149, 91–130.

    Article  Google Scholar 

  • Ashcraft, M. H. (1992). Cognitive arithmetic: A review of data and theory. Cognition, 44, 75–106.

    Article  PubMed  Google Scholar 

  • Brannon, E. M. (2005). The independence of language and mathematical reasoning. Proceedings of the National Academy of Sciences of the United States of America, 102, 3177–3178.

    Article  PubMed  Google Scholar 

  • Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children’s mathematics ability: Inhibition, switching, and working memory. Developmental Neuropsychology, 19, 273–293.

    Article  PubMed  Google Scholar 

  • Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46, 3–18.

    Article  PubMed  Google Scholar 

  • Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.

    Google Scholar 

  • Domahs, F., Lochy, A., Eibl, G., & Delazer, M. (2004). Adding colour to multiplication: Rehabilitation of arithmetic fact retrieval in a patient with traumatic brain injury. Neuropsychological Rehabilitation, 14, 303–328.

    Article  Google Scholar 

  • Dowker, A. (1996). How important is spatial ability to mathematics? Commentary to Geary, D.C. Sexual selection and sex differences in mathematics. The Behavioral and Brain Sciences, 19, 251.

    Article  Google Scholar 

  • Dowker, A. (2007). What can intervention tell us about arithmetical difficulties? Educational and Child Psychology, 24, 64–75.

    Google Scholar 

  • Fairhall, S. L., & Macaluso, E. (2009). Spatial attention can modulate audiovisual integration at multiple cortical and subcortical sites. The European Journal of Neuroscience, 29, 1247–1257.

    Article  PubMed  Google Scholar 

  • Fodor, J. (1983). Modularity of mind. Cambridge, MA: MIT Press.

    Google Scholar 

  • Fuson, K. (1988). Children’s counting and concepts of number. New York: Springer.

    Book  Google Scholar 

  • Geary, D. C. (2000). From infancy to adulthood: The development of numerical abilities. European Child & Adolescent Psychiatry, 9(Suppl. II), 11–16.

    Article  Google Scholar 

  • Gelman, R., & Butterworth, B. (2005). Number and language: How are they related? Trends in Cognitive Sciences, 9, 6–10.

    Article  PubMed  Google Scholar 

  • Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gevers, W., Santens, S., Dhooge, E., Chen, Q., Van den Bossche, L., Fias, W., & Verguts, T. (2010). Verbal-spatial and visuo-spatial coding of number-space interactions. Journal of Experimental Psychology. General, 139, 180–190.

    Article  PubMed  Google Scholar 

  • Girelli, L., Delazer, M., Semenza, C., & Denes, G. (1996). The representation of arithmetical facts: Evidence from two rehabilitation studies. Cortex, 32, 49–66.

    PubMed  Google Scholar 

  • Haffner, J., Baro, K., Parzer, P., & Resch, F. (2005). Heidelberger Rechentest (HRT 1–4). Erfassung mathematischer Basiskompetenzen im Grundschulalter. Göttingen: Hogrefe.

    Google Scholar 

  • Handl, P., & Kaufmann, L. (2008). Numerische Frühförderung: Wie spezifisch sind Interventionseffekte? Prävention und Rehabilitation, 20, 140–148.

    Google Scholar 

  • Holloway, I., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103, 17–29.

    Article  PubMed  Google Scholar 

  • Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6, 435–448.

    Article  PubMed  Google Scholar 

  • Imbo, I., & Vandierendonck, A. (2007). The development of strategy use in elementary school children: Working memory and individual differences. Journal of Experimental Child Psychology, 96, 284–309.

    Article  PubMed  Google Scholar 

  • Karmiloff-Smith, A. (1997). Crucial differences between developmental cognitive neuroscience and adult neuropsychology. Developmental Neuropsychology, 13, 513–524.

    Article  Google Scholar 

  • Kaufmann, L. (2002). More evidence for the role of the central executive in retrieving arithmetic facts: A case study of severe developmental dyscalculia. Journal of Clinical and Experimental Neuropsychology, 24, 302–310.

    Article  PubMed  Google Scholar 

  • Kaufmann, L., & Nuerk, H.-C. (2005). Numerical development: Current issues and future perspectives. Psychology Science, 47, 142–170.

    Google Scholar 

  • Kaufmann, L., Handl, P., & Thöny, B. (2003). Evaluation of a numeracy intervention program focusing on basic numerical knowledge and conceptual knowledge: A pilot study. Journal of Learning Disabilities, 36, 564–573.

    Article  PubMed  Google Scholar 

  • Kaufmann, L., Lochy, A., Drexler, A., & Semenza, C. (2004). Deficient arithmetic fact retrieval – Storage or access problem? A case study. Neuropsychologia, 42, 482–496.

    Article  PubMed  Google Scholar 

  • Kaufmann, L., Vogel, S., Wood, G., Kremser, C., Schocke, M., Zimmerhackl, L.-B., & Koten, J. W. (2008). A developmental fMRI study of nonsymbolic numerical and spatial processing. Cortex, 44, 376–385.

    Article  PubMed  Google Scholar 

  • Kaufmann, L., Nuerk, H.-C., Graf, M., Krinzinger, H., Delazer, M., & Willmes, K. (2009). TEDI-MATH: Test zur Erfassung numerisch-rechnerischer Fertigkeiten vom Kindergarten bis zur 3. Klasse. Zürich: Hans-Huber-Verlag.

    Google Scholar 

  • Krajewski, K., & Schneider, W. (2009). Exploring the impact of phonological awareness, visual-spatial working memory, and preschool quantity-number competencies on mathematics achievement in elementary school: Findings from a 3-year longitudinal study. Journal of Experimental Child Psychology, 103, 516–531.

    Article  PubMed  Google Scholar 

  • Kroesbergen, E. H., Van Luit, J. E. H., Van Lieshout, E. C. D. M., Van Loosbroek, E., & Van de Rijt, B. A. M. (2009). Individual differences in early numeracy: The role of executive functions and subitizing. Journal of Psychoeducational Assessment, 27, 226–236.

    Article  Google Scholar 

  • Lakoff, G., & Nunez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.

    Google Scholar 

  • Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacity: A study of 8-9-year old students. Cognition, 93, 99–125.

    Article  PubMed  Google Scholar 

  • Lemaire, P., & Siegler, R. S. (1995). Four aspects of strategic choice: Contributions to children’s learning of multiplication. Journal of Experimental Psychology. General, 124, 83–97.

    Article  PubMed  Google Scholar 

  • Lemaire, P., Abdi, H., & Fayol, M. (1996). The role of working memory resources in simple cognitive arithmetic. European Journal of Cognitive Psychology, 8, 73–103.

    Article  Google Scholar 

  • Mazzocco, M. M. M., & Thompson, R. E. (2005). Kindergarten predictors of math learning disability. Learning Disabilities Research and Practice, 20, 142–155.

    Article  PubMed  Google Scholar 

  • McCloskey, M., Caramazza, A., & Basili, A. (1985). Cognitive mechanisms in number processing and calculation: Evidence from dyscalculia. Brain and Cognition, 4, 171–196.

    Article  PubMed  Google Scholar 

  • Mix, K. S., Huttenlocher, J., & Levine, S. C. (2002). Quantitative development in infancy and early childhood. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of executive functions and their contribution to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.

    Article  PubMed  Google Scholar 

  • Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H.-C. (2009). Children’s early mental number line: Logarithmic or decomposed linear? Journal of Experimental Child Psychology, 103, 503–515.

    Article  PubMed  Google Scholar 

  • Moyer, R. S., & Landauer, T. K. (1967). The time required for judgments of numerical inequality. Nature, 215, 1519–1520.

    Article  PubMed  Google Scholar 

  • Nieder, A. (2005). Counting on neurons: The neurobiology of numerical competence. Nature Reviews Neuroscience, 6, 177–190.

    Article  PubMed  Google Scholar 

  • Opfer, J. E., & Siegler, R. S. (2007). Representational change and children’s numerical estimation. Cognitive Psychology, 55, 169–195.

    Article  PubMed  Google Scholar 

  • Passolunghi, M. C., & Cornoldi, C. (2008). Working memory failures in children with arithmetical difficulties. Child Neuropsychology, 14, 387–400.

    Article  PubMed  Google Scholar 

  • Passolunghi, M. C., Mammarella, I. C., & Altoe, G. (2008). Cognitive abilities as precursors of the early acquisition of mathematical skills during first through second grades. Developmental Neuropsychology, 33, 229–250.

    Article  PubMed  Google Scholar 

  • Petermann, F., & Petermann, U. (2008). Hamburg-Wechsler-Intelligenztest für Kinder – IV (HAWIK-IV). Göttingen: Hogrefe Verlag.

    Google Scholar 

  • Rubinsten, O., & Henik, A. (2009). Developmental dyscalculia: Heterogeneity might not mean different mechanisms. Trends in Cognitive Sciences, 13, 92–99.

    Article  PubMed  Google Scholar 

  • Sekuler, R., & Mierkiewicz, D. (1977). Children’s judgments of inequality. Child Development, 48, 630–633.

    Article  Google Scholar 

  • Shalev, R., & Gross-Tsur, V. (2001). Developmental dyscalculia. Pediatric Neurology, 24, 337–342.

    Article  PubMed  Google Scholar 

  • Shalev, R., Manor, O., & Gross-Tsur, V. (2005). Developmental dyscalculia: A prospective six-year follow-up. Developmental Medicine and Child Neurology, 47, 121–125.

    Article  PubMed  Google Scholar 

  • Siegler, R. S. (1988). Strategy choice procedures and the development of multiplication skill. Journal of Experimental Psychology. General, 117, 258–275.

    Article  PubMed  Google Scholar 

  • Temple, C. (1991). Procedural dyscalculia and number fact dyscalculia: Double dissociation in developmental dyscalculia. Cognitive Neuropsychology, 8, 155–176.

    Article  Google Scholar 

  • Treccani, B., & Umiltá, C. (2011). How to cook a SNARC? Space may be the critical ingredient, after all: A comment on Fischer, Mills, and Shaki (2010). Brain and Cognition, 75, 310–315.

    Article  PubMed  Google Scholar 

  • Van Luit, J. E. H., Van de Rijt, B. A. M., & Hasemann, K. (2001). OTZ Osnabrücker Test zur Zahlbegriffsentwicklung. Göttingen: Hogrefe.

    Google Scholar 

  • Von Aster, M., & Shalev, R. (2007). Number development and developmental dyscalculia. Developmental Medicine and Child Neurology, 49, 868–873.

    Article  Google Scholar 

  • Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7, 483–488.

    Article  PubMed  Google Scholar 

  • Weiß, R., & Osterland, J. (1997). Grundintelligenztest Skala 1 (5th Rev. ed.). Göttingen: Hogrefe.

    Google Scholar 

  • Wilson, A., & Dehaene, S. (2007). Number sense and developmental dyscalculia. In D. Coch, G. Dawson, & K. Fischer (Eds.), Human behavior, learning, and the developing brain: Atypical development (pp. 212–238). New York: Guilford Press.

    Google Scholar 

  • Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749–750.

    Article  PubMed  Google Scholar 

  • Xu, F. (2003). Numerosity discrimination in infants: Evidence for two systems of representations. Cognition, 89, B15–B25.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liane Kaufmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kaufmann, L., Pixner, S. (2012). New Approaches to Teaching Early Number Skills and to Remediate Number Fact Dyscalculia. In: Breznitz, Z., Rubinsten, O., Molfese, V., Molfese, D. (eds) Reading, Writing, Mathematics and the Developing Brain: Listening to Many Voices. Literacy Studies, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4086-0_15

Download citation

Publish with us

Policies and ethics