Skip to main content

Current Status of Toxic Metals Addition to Environment and Its Consequences

  • Chapter
  • First Online:

Part of the book series: Environmental Pollution ((EPOL,volume 21))

Abstract

“Heavy metals” are the chemical elements which, in their standard state, have a specific gravity of more than about 5 g cm−3 i.e. their densities are five times greater than water. These constitute a very heterogeneous group of elements greatly varied in their chemical properties and biological functions. Heavy metals are kept under environmental pollutant category due to their toxic effects in plants, human and food particularly in areas with high anthropogenic pressure. Heavy metal pollution is one of the most important environmental problems today. Various industries produce and discharge wastes containing different heavy metals into the environment, such as mining and smelting of metalliferous, surface finishing industry, energy and fuel production, fertilizer and pesticide industry and application, metallurgy, iron and steel, electroplating, electrolysis, electro-osmosis, leatherworking, photography, electric appliance manufacturing, metal surface treating, aerospace and atomic energy installation etc. They are widely used in all fields of life i.e. batteries, dyes, alloys, chemical compounds, pharmaceutical and cosmetic products thus suggesting that the risk of pollution is very high. Thus, metal as a kind of resource is becoming shortage and also brings about serious environmental pollution, threatening human health and ecosystem. Three kinds of heavy metals are of concern, including toxic metals (such as Hg, Cr, Pb, Cd, As, etc.), precious metals (such as Pd, Pt, Ag, Au, Ru etc.) and radionuclides (such as U, Th, Ra, Am, etc.). The presence of heavy metal in atmosphere, soil and water, even in traces represent a severe risk to all organisms for their long term toxicological effects. Heavy metal bioaccumulation and biomagnifications in the food chain can be extremely dangerous to human health.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abernathy C, Morgan A (2000) Exposure and health effects. UN synthesis report on arsenic in drinking water. World Health Organization, Geneva

    Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments. Biogeochemistry, bioavailability, and risks of metals. Springer, New York, p 550

    Google Scholar 

  • Aelion CM, Davis HT, McDermott S, Lawson AB (2008) Metal concentrations in rural topsoil in South Carolina: potential for human health impact. Sci Total Environ 402:149–156

    Article  CAS  Google Scholar 

  • Ahmed FM (2003) Treatment of Arsenic contaminated water. In: Arsenic contamination: Bangladeshi perspective. ITN-Bangladesh, Dhaka

    Google Scholar 

  • Alexieva ZV, Burilkov T, Useva G (1981) Studies on death causes among the workers from non-ferrous metallurgy. Hig Zdraveopaz 24:136–140

    Google Scholar 

  • Al-Helal AA (1995) Effects of cadmium and mercury on seed germination and early seedling growth of rice and alfalfa. J Univ Kuwait (Sci) 22:76–82

    CAS  Google Scholar 

  • Al-Rmalli SW, Haris PI, Harrington CF, Ayub M (2005) A survey of arsenic in foodstuffs on sale in the United Kingdom and imported from Bangladesh. Sci Total Environ 337:23–30

    Article  CAS  Google Scholar 

  • Anastasio A, Caggiano R, Macchiato M, Paolo C, Ragosta M, Paino S, Cortesi ML (2006) Heavy metal concentrations in dairy products from sheep milk collected in two regions of southern Italy. Acta Vet Scand 47:69–74

    Article  Google Scholar 

  • Angelone M, Bini C (1992) Trace elements concentrations in soils and plants of Eastern Europe. In: Adriano DC (ed) Biogeochemistry of trace metals. Lewis, London/Boca Raton, pp 19–60

    Google Scholar 

  • Angier N (2007) The pernicious allure of lead. New York Times. http://www.nytimes.com/2007/08/21/science/21angi.html?_r=1&oref=slogin. Retrieved 7 May 2010

  • Anoliefo GO, Ikhajiagbe B, Okonokhua BO, Edegbai BO, Obasuyi DC (2008) Metal tolerant species distribution and richness in and around the metal based industries: possible candidates for phytoremediation. Afr J Environ Sci Technol 2:360–370

    Google Scholar 

  • Azmat R, Zill-e-Huma HA, Khanum T, Talat R (2005) The inhibition of bean plant metabolism by cadmium metal: effects of cadmium metal on physiological process of bean plant and Rhizobium species. Pak J Biol Sci 8:401–404

    Article  Google Scholar 

  • Bagshaw JC, Rafiee P, Matthews CO, MacRae TH (1986) Cadmium and zinc reversibly arrest development of Artemia larvae. Bull Environ Contam Toxicol 37:289–296

    Article  CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders – strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Barceĺo J, Poschenrieder C, Gunsé B (1986) Water relations of chromium VI treated bush bean plants (Phaseolus vulgaris L. cv. Contender) under both normal and water stress conditions. J Exp Bot 37:178–187

    Article  Google Scholar 

  • Baudouin C, Charveron M, Tarrouse R, Gall Y (2002) Environmental pollutants and skin cancer. Cell Biol Toxicol 18:341–348

    Article  CAS  Google Scholar 

  • Beaford W, Barber J, Barringer AR (1977) Uptake and distribution of mercury within higher plants. Physiol Plant 39:261–265

    Article  Google Scholar 

  • Bergeson LL (2008) The proposed lead NAAQS: is consideration of cost in the clean air act’s future? Environ Qual Manage 18:79–82

    Article  Google Scholar 

  • Bhattacharya P, Alan HW, Kenneth GS, Mike JM, Bundschuh J, Panaullah G (2007) Arsenic in the environment: biology and chemistry. Sci Total Environ 379:109–120

    Article  CAS  Google Scholar 

  • Bhutta MN, Ramzan M, Hafeez CA (2002) Groundwater quality and availability in Pakistan. In: Proceedings of seminar on strategies to address the present and future water quality issues, 6–7 Mar 2002. PCRWR, Islamabad. Pak Rev Sci Eau 12:671–686

    Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metal. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metal: using plants to cleanup the environmental. Wiley, Toronto, pp 53–70

    Google Scholar 

  • Blaylock NA, Shah A, Wilson VG (2000) Pharmacological evidence for pre- and post-junctional α2-adrenoceptors in the porcine isolated rectal artery. Braz J Pharmacol 131:80

    Google Scholar 

  • Bodek I, Lyman WJ, Reehl WF, Rosenblatt DH (1998) Environmental inorganic chemistry: properties, processes and estimation methods. Pergamon Press, Oxford

    Google Scholar 

  • Borgono JM, Greiber R (1971) Epidemiological study of arsenicism in the city of Autofagasta. Trace Subst Environ Health 5:13–24

    Google Scholar 

  • Boscolo P, Carmignani M (1988) Neurohumoral blood pressure regulation in lead exposure. Environ Health Perspect 78:101–106

    Article  CAS  Google Scholar 

  • Burkel RS, Stoll RC (1999) Naturally occurring arsenic in sandstone aquifer water supply wells of North Eastern Wisconsin. Ground Water Monit Rem 19:114–121

    Article  CAS  Google Scholar 

  • CABS/Chemical Agent Briefing Sheet (2006) Lead. Agency for toxic substances and disease Registry/Division of Toxicology and Environmental Medicine. http://www.atsdr.cdc.gov/cabs/lead/lead_cabs.pdf

  • Caggiano R, Sabia S, D’Emilio M, Macchiato M, Anastasio A, Ragosta M, Paino S (2005) Metal levels in fodder, milk, dairy products, and tissues sampled in ovine farms of Southern Italy. Environ Res 99:48–57

    Article  CAS  Google Scholar 

  • Cakmak I, Welch RM, Hart J, Norvell WA, Ozturk L, Kochian LV (2000) Uptake and retranslocation of leaf-applied cadmium (Cd-109) in diploid, tetraploid and hexaploid wheats. J Exp Bot 51:221–226

    Article  CAS  Google Scholar 

  • Cameron RE (1992) Guide to site and soil description for hazardous waste site characterisation. In: Metals, vol 1. Environmental Protection Agency, Las Vegas, EPA/600/4-91/029

    Google Scholar 

  • Cataldo DA, McFadden KM, Garland TR, Wildung RE (1988) Organicconstituents and complexation of nickel(II), iron(III), cadmium(II), and plutonium(IV) in soybean xylem exudates. Plant Physiol 86:734–739

    Article  CAS  Google Scholar 

  • Caussy D, Kumar P, Sein UT (2003) Health impact assessment needs in south-east Asian countries. Bull World Health Org 81:439–443

    Google Scholar 

  • Cebrian ME, Albores A, Aguilar M, Blakely E (1983) Chronic arsenic poisoning in the North of Mexico. Hum Toxicol 2:121–133

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Paul K, Chowdhury UK, Sengupta MK, Lodh D, Chanda CR, Saha KC, Mukherjee SC (2002) Arsenic calamity in the Indian subcontinent: what lessons have been learned? Talanta 58:3–22

    Article  CAS  Google Scholar 

  • Chen SL, Dzeng SR, Yang MH, Chiu KH, Shieh GM, Wai CM (1994) Arsenic species in groundwaters of the blackfoot disease area, Taiwan. Environ Sci Technol 33:877–881

    Article  Google Scholar 

  • Chen F, Dong J, Wang F, Wu FB, Zhang GP, Li GM, Chen ZF, Chen JX, Wei K (2007) Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere 67:2082–2088

    Article  CAS  Google Scholar 

  • Cho U, Park J (2000) Mercury induced oxidative stress in tomato seedlings. Plant Sci 156:1–9

    Article  CAS  Google Scholar 

  • Chopra BK, Bhat S, Mikheenko IP, Xu Z, Yang Y, Luo X, Chen H, Zwieten L, Lilley RMc, Zhang R (2007) The characteristics of rhizosphere microbes associated with plants arsenic contaminated soils from cattle dip sites. Sci Total Environ 378:331–342

    Article  CAS  Google Scholar 

  • Chowdhury TR, Basu GK, Mandal BK, Biswas BK, Samanta G, Chowdhury UK, Chanda CR et al (1999) Arsenic poisoning in the Ganges delta. Nature 401:545–546

    CAS  Google Scholar 

  • Clemens S, Antosiewicz DM, Ward JM, Schachtman DP, Schroeder JI (1998) The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sci USA 95:12043–12048

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Cohen AR, Trotzky MS, Pincus D (1981) Reassessment of the microcytic anemia of lead poisoning. Pediatrics 67:904–906

    CAS  Google Scholar 

  • Cordero B, Lodeiro P, Herrero R, Sastre E, de Vicente M (2004) Biosorption of cadmium by Fucus spiralis. Environ Chem 1:180–187

    Article  CAS  Google Scholar 

  • CPG Sec. 545.450 Pottery (Ceramics) (2010) Import and domestic – lead contamination. U.S. Food and Drug Administration. http://www.fda.gov/ICECI/ComplianceManuals/CompliancePolicyGuidanceManual/ucm074516.htm. Retrieved 2 Feb 2010

  • Das D, Chatterjee A, Samanta M, Chowdhury GBK, Chowdhury TR, Fowler BA (1983) Arsenic metabolism and toxicity to freshwater and marine species. In: Fowler BA (ed) Biological and environmental effects of arsenic, vol 6. Elsevier Science, Amsterdam, pp 155–170

    Google Scholar 

  • Davidson PW, Myers GJ, Weiss B (2004) Mercury exposure and child development outcomes. Pediatrics 113:1023–1029

    Google Scholar 

  • Davis A, Sherwin D, Ditmars R, Hoenke KA (2001) An analysis of soil arsenic records of decision. Environ Sci Technol 35:2401–2406

    Article  CAS  Google Scholar 

  • Dhar RK, Biswas BK, Samanta G (1997) Groundwater arsenic calamity in Bangladesh. Curr Sci 73:48–59

    CAS  Google Scholar 

  • Doumett S, Lamperi L, Checchini L, Azzarello E, Mugnai S, Mancuso S, Petruzzelli G, Bubba M (2008) Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents. Chemosphere 72:1481–1490

    Article  CAS  Google Scholar 

  • Dube BK, Kamlesh T, Chatterjee J, Chatterjee C (2003) Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere 53:1147–1153

    Article  CAS  Google Scholar 

  • ECD (European Commission Directive 98/83/EC) (1998) Related with drinking water quality intended for human consumption. ECD, Brussels

    Google Scholar 

  • Eco-USA (1996) Arsenic (Online). http://www.eco-usa.net/toxics/chemicals/arsenic.shtml

  • EFSA (European Food Safety Authority Panel on Contaminants in the Food Chain) (2009) Cadmium in food. Scientific opinion of the panel on contaminants in the food chain. The EFSA J 980:1–139

    Google Scholar 

  • Eto K (2000). Minamata disease. Neuropathology 20: S14–S19

    Article  Google Scholar 

  • Fassett DW (1980) Cadmium. In: Waldron HA (ed) Metals in the environment. Academic, New York, pp 61–11

    Google Scholar 

  • Feldmann J (2007) Importance of speciation in plant physiology-some key applications. In: Application of mass spectrometry to speciation analysis in the life sciences. Conference with exhibition, The Society of Chemical Industry (SCI), London, 20 Sept 2007

    Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil, rhizosphere, plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278

    Article  CAS  Google Scholar 

  • Gerhardsson L, Chettle DR, Englyst V (1992) Kidney effects in long-term exposed lead smelter workers. Braz J Ind Med 49:186–192

    CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Eco Environ Res 3:1–18

    Google Scholar 

  • Godzik B (1993) Heavy metal contents in plants from zinc dumps and reference area. Pol Bot Stud 5:113–132

    Google Scholar 

  • Gogoasa I, Gergen I, Rada M, Pârvu D, Ciobanu C, Bordean D, Marunoiu C, Moigradea D (2006) AAS detection of heavy metals in sheep cheese (the Banat area, Romania). Buletinul USAMV-CN 62:240–245

    Google Scholar 

  • Golub MS (ed) (2005) Metals, fertility, and reproductive toxicity. Taylor and Francis, Boca Raton, p 153

    Google Scholar 

  • Gonzaga M, Santos ISJAG, Ma LQ (2006a) Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L. Environ Pollut 143:254–260

    Article  CAS  Google Scholar 

  • Gonzaga MIS, Santos JAG, Ma LQ (2006b) Arsenic phytoextraction and hyperaccumulation by fern species (arsenic and fern Species). Sci Agri (Piracicaba, Braz) 63:90–101

    CAS  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of active oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29

    Article  CAS  Google Scholar 

  • Green J, Damji S (2007) Chemistry, 3rd edn. IBID Press, Melton

    Google Scholar 

  • Greenwood NN, Earnshaw A (1984) Chemistry of elements. Pergamon Press, Oxford

    Google Scholar 

  • Hall BD, Rosenberg DM, Wiens AP (1998) Methyl mercury in aquatic insects from an experimental reservoir. Can J Fish Aquat Sci 55:2036–2047

    Article  Google Scholar 

  • Han F, Sridhar BBM, Monts DL, Su Y (2004) Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea. New Phytol 162:489–499

    Article  CAS  Google Scholar 

  • Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ali MA et al (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science 298:1602–1606

    Article  CAS  Google Scholar 

  • Hashmi HN, Malik NE, Usman A (2007) An investigation of the characteristics of effluent mixing in streams. In: ESDev-2007, CIIT, Abbottabad, Pakistan, 26–28 Aug 2007

    Google Scholar 

  • Hassan MM (2005) Arsenic poisoning in Bangladesh: spatial mitigation planning with GIS and public participation. Health Policy 74:247–260

    Article  Google Scholar 

  • Henry MG, Atchison GJ (1991) Metal effects on fish behavior e advances in determining the ecological significance of responses. In: Newman MC, McIntosh AW (eds) Metal ecotoxicology: concepts and applications. Lewis, Chelsea, pp 131–143

    Google Scholar 

  • Herawati N, Susuki S, Hayashi K, Rivai IF, Koyama H (2000) Cadmium, copper, and zinc levels in rice and soil Japan, Indonesia and China by soil tipe. Bull Environ Contam Toxicol 64:33–39

    Article  CAS  Google Scholar 

  • Herren T, Feller U (1997) Transport of cadmium via xylem and phloem in maturing wheat shoots: comparison with the translocation of zinc, strontium and rubidium. Ann Bot Lond 80:623–628

    Article  CAS  Google Scholar 

  • Holleman AF, Wiberg E (1985) Lehebuch du Anoranischen chemie. Water de Gruyter, Berlin, p 868

    Google Scholar 

  • Hossain MF (2006) Arsenic contamination in Bangladesh – an overview. Agric Ecosyst Environ 113:1–16

    Article  CAS  Google Scholar 

  • http://www.derm.qld.gov.au/heritage/owning_a_heritage_place/general_exemptions/g1__maintenance_and_minor_repair/lead_paint_-cautionary_note.html. Retrieved 7April 2007

  • http://www.env.go.jp/en/chemi/hs/minamata2002/ Minamata disease: the history and measures, http://en.wikipedia.org/wiki/Ministry_of_the_Environment_(Japan) Ministry of the environment (Japan) Ministry of the environment, (2002). Retrieved 17 Jan 2007

  • http://www.epa.gov/lead/ Why do you need to be concerned about lead? Retrieved 15 May 2011

  • http://www.unicef.org/infobycountry/bangladesh_35701.html. Retrieved 20 May 2011

  • Hu H (1991) Knowledge of diagnosis and reproductive history among survivors of childhood plumbism. Am J Public Health 81:1070–1072

    Article  CAS  Google Scholar 

  • Humphreys DJ (1991) Effect of exposure to excessive quantities of lead animals. Br Vet J 147:18–30

    Article  CAS  Google Scholar 

  • Imran M, Talpur FN, Jan MS, Khan A, Khan I (2007) Analysis of nutritional components of some wild edible plants. J Chem Society of Pak 29(5):500–508

    Google Scholar 

  • Imran M, Khan H, Hassan SS, Khan R (2008) Physicochemical characteristics of various milk samples available in Pakistan. J Zhejiang Univ 9:546–551

    Article  CAS  Google Scholar 

  • Jensen A, Bro-Rasmussen F (1992) Environmental contamination in Europe. Rev Environ Contam Toxicol 125:101–181

    Article  CAS  Google Scholar 

  • Joo SH, Cheng IF (2006) Nanotechnology for environmental remediation. Springer, New York

    Google Scholar 

  • Kabata-Pendias A, Pendias H (2000) Trace elements in soils and plants. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kachenko AG, Singh B (2006) Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut 169:101–123

    Article  CAS  Google Scholar 

  • Kalimuthu K, Siva SR (1990) Physiological effects of heavy metals on Zea mays (maize) seedlings. Ind J Plant Physiol 33:242–244

    CAS  Google Scholar 

  • Kaneko E (1979) Arsenic concentration in ground waters in Sendai city. Chikyu Kagaku 13:1–6 (in Japanese)

    CAS  Google Scholar 

  • Karim MM (2000) Arsenic in groundwater and health problems in Bangladesh. Water Res 34:304–310

    Article  CAS  Google Scholar 

  • Khan AG (2001) Relationships between chromium biomagnifications ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Environ Int 26:417–423

    Article  CAS  Google Scholar 

  • Khan R, Israili SH, Ahmed H, Mohan A (2005) Heavy metal pollution assessment in surface water bodies and its suitability for irrigation around the Neyvel lignite mines and associated industrial complex, Tamil Nadu India. Miner Water Environ 24:155–161

    Article  CAS  Google Scholar 

  • Kimáková T, Koréneková B, Bernasovská K (2006) Comparison of effects of cadmium and selenium on renal histological changes in Japanese Quails. In: Second central and eastern Europe conference on health and the environment, Bratislava, s: 36

    Google Scholar 

  • Knasmuller S, Gottmann E, Steinkellner H, Fomin A, Pickl C, Paschke A (1998) Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutat Res 420:37–48

    CAS  Google Scholar 

  • Koch I, Feldmann J, Wang L, Andrewes P, Reimer KJ, Cullen WR (1999) Arsenic in the Meager Creek hot springs environment, British Columbia, Canada. Sci Total Environ 236:101–117

    Article  CAS  Google Scholar 

  • Koller LD (1985) Immunological effects of lead. In: Mahaffey KR (ed) Dietary and environmental lead: human health effects. Elsevier Science, Amsterdam, pp 339–354

    Google Scholar 

  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44

    Article  CAS  Google Scholar 

  • Krishna AK, Govil PK (2008) Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, Southern India. Environ Geol 54:1465–1472

    Article  CAS  Google Scholar 

  • Krishna AK, Satyanarayanan M, Govil PK (2009) Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: a case study from Patancheru, Medak District, Andhra Pradesh, India. J Hazard Mater 167:366–373

    Article  CAS  Google Scholar 

  • Krupa Z, Baszynski T (1995) Some aspects of heavy metal toxicity towards photosynthetic apparatus: direct and indirect effects on light and dark reaction. Acta Physiol Plant 17:177–190

    CAS  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  Google Scholar 

  • Lane SD, Martin ES (1977) A histochemical investigation of lead uptake in Raphanus sativus. New Phytol 79:281–286

    Article  CAS  Google Scholar 

  • Laurence DR (1966) Clinical pharmacology, 3rd edn. In: Lead paint information. Master painters, Australia. http://www.qld.mpa.org.au/index.php/content/33/. Retrieved 7 Apr 2007

  • Laxen DPH, Harrison RM (1977) The highway as a source of water pollution: an appraisal of heavy metal lead. Water Res 11:1–11

    Article  CAS  Google Scholar 

  • Lee SZ, Chang L, Yang HH, Chen CM, Liu MC (1998) Absorption characteristics of lead onto soils. J Hazard Mater 63:37–49

    Article  CAS  Google Scholar 

  • Licata P, Trombetta D, Cristani M, Giofre F, Martino D, Calo M, Naccari F (2004) Levels of “toxic” and “essential” metals in samples of bovine milk from various dairy farms in Calabria, Italy. Environ Res 30:1–6

    CAS  Google Scholar 

  • Linde AR, Sánchez-Galán S, Klein D, García-Vázquez E, Summer KH (1999) Metallothionein and heavy metals in brown trout (Salmo trutta) and European eel (Anguilla anguilla): a comparative study. Ecotoxicol Environ Safe 44:168–173

    Article  CAS  Google Scholar 

  • Liphadzi MS, Kirkham MB (2006) Chelate-assisted heavy metal removal by sunflower to improve soil with sludge. J Crop Improv 16:153–172

    Article  CAS  Google Scholar 

  • Little EE, Archeski RD, Flerov BA, Kozlovskaya VI (1990) Behavioral indicators of sublethal toxicity in rainbow trout. Arch Environ Contam Toxicol 19:380–385

    Article  CAS  Google Scholar 

  • Loghman-Adham M (1997) Renal effects of environmental and occupational lead exposure. Environ Health Perspect 105:928–938

    Article  CAS  Google Scholar 

  • Lösch R, Köhl KI (1999) Plant respiration under the influence of heavy metals. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystem. Springer, Berlin, pp 139–156

    Google Scholar 

  • Lugon-Moulin N, Zhang M, Gadani F, Rossi L, Koller D, Krauss M, Wagner GJ (2004) Critical review of the science and options for reducing cadmium in tobacco (Nicotiana tabacum L.) and other plants. Adv Agron 83:111–180

    Article  CAS  Google Scholar 

  • Ma C (1998) Mercury harm on cell membrane of rape leaf and cell endogenous protection effect. YingYong Shengtai Xuebao 9:23–26 (Chinese)

    Google Scholar 

  • Ma JF, Ueno D, Zhao FJ, McGrath SP (2005) Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220:731–736

    Article  CAS  Google Scholar 

  • Malik AH, Khan ZM, Mahmood Q, Nasreen S, Bhatti ZA (2009) Perspectives of low cost arsenic remediation of drinking water in Pakistan and other countries. J Hazard Mater 168:1–12

    Article  CAS  Google Scholar 

  • Malkowski E, Kita A, Galas W, Karcz W, Kuperberg JM (2002) Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. Plant Growth Regul 37:69–76

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  Google Scholar 

  • Mañay N, Cousillas AZ, Alvarez C, Heller T (2008) Lead contamination in Uruguay: the “La Teja” neighborhood case. Rev Environ Contam Toxicol 195:93–115

    Google Scholar 

  • Mei B, Puryear JD, Newton RJ (2002) Assessment of Cr tolerance and accumulation in selected plant species. Plant Soil 247:223–231

    Article  CAS  Google Scholar 

  • Meranger JC, Subramanian KS, McCurdy RF (1984) Arsenic in Nova Scotian groundwater. Sci Total Environ 39:49–55

    Article  CAS  Google Scholar 

  • Miller RJ, Koeppe DE (1971) Accumulation and physiological effects of lead in corn. In: Proceedings of University of Missouri, Columbia 4, pp 186–193

    Google Scholar 

  • Miranda ML, Kim D, Hull AP, Paul CJ, Galeano AMO (2007) Changes in blood lead levels associated with use of chloramines in water treatment systems. Environ Health Perspect 115:221–225

    Article  CAS  Google Scholar 

  • Mishra VK, Upadhyaya AR, Pandey SK, Tripathi BD (2008) Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Bioresource Technol 99:930–936

    Google Scholar 

  • Mohan D, Charles U, Jr P (2007) Arsenic removal from water/wastewater using adsorbents – a critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  • Mondal P, Majumder CB, Mohanty B (2006) Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater 137:464–479

    Article  CAS  Google Scholar 

  • Mondal P, Balomajumder C, Mohanty B (2007) A laboratory study for the treatment of arsenic, iron, and manganese bearing ground water using Fe3+ impregnated activated carbon: effects of shaking time, pH and temperature. J Hazard Mater 144:420–426

    Article  CAS  Google Scholar 

  • Monni S, Salemaa M, Miller N (2000) The tolerance of Empetrum nigrum to copper and nickel. Environ Pollut 109:221–229

    Article  CAS  Google Scholar 

  • Moral R, Navarro Pedreno J, Gomez I, Mataix J (1995) Effects of chromium on the nutrient element content and morphology of tomato. J Plant Nutr 18:815–822

    Article  CAS  Google Scholar 

  • Morch VM, Schetinges MRC, Martins AF, Rocha JBT (2002) Effects of cadmium, lead, mercury and zinc on delta amino levulinic acid dehydratase activity from radish leaves. Biol Plant 45:85–89

    Article  Google Scholar 

  • Morzeck JRE, Funicelli NA (1982) Effect of zinc and lead on germination of Spartina alterniflora Loisel seeds at various salinities. Environ Exp Bot 22:23–32

    Article  Google Scholar 

  • Mroczek EK (2005) Contributions of arsenic and chloride from the Kawerau geothermal field to the Tarawera River, New Zealand. Geothermics 34:218–233

    Article  CAS  Google Scholar 

  • Mukesh KR, Kumar P, Singh M, Singh A (2008) Toxic effect of heavy metals in livestock health. Veterin World 1:28–30

    Google Scholar 

  • National Research Council (1999) Arsenic in drinking water. National Academy Press, Washington, DC

    Google Scholar 

  • Navas-Acien A, Sharrett AR, Silbergeld EK, Schwartz BS, Nachman KE, Burke TA, Guallar E (2005) Arsenic exposure and cardiovascular disease: a systematic review of the epidemiologic evidence. Am J Epidemiol 162:1037–1049

    Article  Google Scholar 

  • Neathery MW, Miller WJ (1975) Metabolism and Toxicity of Cadmium, Mercury, and Lead in Animals: A Rev. J Dairy Sci 58:1767–1781

    Google Scholar 

  • Needleman HL, Schell A, Bellinger D, Leviton A, Allred E (1990) The long-term effects of exposure to low doses of lead in childhood. An 11-year follow-up report. New England J Med 322:83–88

    Article  CAS  Google Scholar 

  • Ng JC, Wang JP, Shraim A (2003) A global health problem caused by arsenic from natural sources. Chemosphere 52:1353–1359

    Article  CAS  Google Scholar 

  • NHMRC (1996) Australian drinking water guidelines. National Health and Medical Council, Agriculture and Resource Management Council of Australia and New Zealand, Commonwealth of Australia, PF S93

    Google Scholar 

  • Nickson RT, McArthur JM, Ravenscroft P, Burgess WG, Ahmed KM (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Environ Sci Technol 15:403–413

    CAS  Google Scholar 

  • NIOSH (2007) Adult blood lead epidemiology and surveillance. United States National Institute for Occupational Safety and Health. http://www.cdc.gov/niosh/topics/ABLES/ables-description.html. Retrieved 10 Apr 2007

  • Norrby LJ (1991) Why is mercury liquid? Or, why do relativistic effects not get into chemistry textbooks? J Chem Educ 68:110

    Article  CAS  Google Scholar 

  • Obiri-Danso K, Hogarh JN, Antwi-Agyei P (2008) Assessment of contamination of singed hides from cattle and goats by heavy metals in Ghan. Afr J Environ Sci Technol 2:217–221

    Google Scholar 

  • Oost VD, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  Google Scholar 

  • Pacyna EG, Pacyna JM (2001) Global emissions of mercury from anthropogenic sources in 1995. Water Air Soil Pollut 137:149–165

    Article  Google Scholar 

  • Paivoke AEA (2002) Soil lead alters phytase activity and mineral nutrient balance of Pisum sativum. Environ Exp Bot 48:61–73

    Article  CAS  Google Scholar 

  • Pandey S, Gupta K, Mukherjee AK (2007) Impact of cadmium and lead on Catharanthus roseus – a phytoremediation study. J Environ Biol 28:655–662

    CAS  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. The Bot Rev 66:379–422

    Article  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960

    Article  CAS  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  CAS  Google Scholar 

  • Petit CM, van de Geijn SC (1978) In vivo measurement of cadmium (Cd-115 m) transport and accumulation in stems of intact tomato plants (Lycopersicon esculentum Mill). 1. Long-distance transport and local accumulation. Planta 138:137–143

    Article  CAS  Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545

    Article  CAS  Google Scholar 

  • Prodgers RA, Inskeep WP (1981) Heavy metals tolerance of inland salt grass Distichlis spicata. Great Basin Nat 51:271–278

    Google Scholar 

  • Quamruzzaman Q, Rahman M, Asad KA (2003) Effects of arsenic on health. In: Arsenic contamination: Bangladesh perspective. ITN-Bangladesh, Dhaka

    Google Scholar 

  • Raskin I (1996) Plant genetic engineering may help with environmental cleanup. Proc Natl Acad Sci USA 93:3164–3166

    Article  CAS  Google Scholar 

  • Rathinasabapathi B, Ma LQ, Srivastava M (2006) Arsenic hyperaccumulating ferns and their application to phytoremediation of arsenic contaminated sites. Floriculture, Ornamen. Plant Biotechnol 62:845–857

    CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal accumulation plants. In: Raskin I, Ensely BD (eds) Phytoremediation of toxic metals: using plant to clean up the environment. Wiley, Torento, pp 193–229

    Google Scholar 

  • Rehman W, Zeb A, Noor N, Nawaz M (2008) Heavy metal pollution assessment in various industries of Pakistan. Environ Geol 55:353–358

    Article  CAS  Google Scholar 

  • Rodriguez L, Rincon J, Asencio I, Rodriguez LC (2007) The characteristics of rhizosphere microbes associated with plants in arsenic contaminated soils from cattle dip sites. Int J Phytoremediation 9:1–13

    Article  CAS  Google Scholar 

  • Sabir SM, Khan SW, Hayat I (2003) Effect of environmental pollution on quality of meat in district Bagh, Azad Kashmir. Pak J Nutr 2:98–101

    Article  Google Scholar 

  • Sakamoto M, Wakabayashi K, Kakita A, Takahashi H, Adachi T, Nakano A (1998) Widespread neuronal degeneration in rats following oral administration of methylmercury during the postnatal developing phase: a model of fetal-type Minamata disease. Brain Res 784:351–354

    Article  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Densely B, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Biol 49:643–668

    Article  CAS  Google Scholar 

  • Sanità DTL, Gabrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Sawidis T (2008) Effect of cadmium on pollen germination and tube growth in Lilium longiflorum and Nicotiana tabacum. Protoplasma 233:95–106

    Article  CAS  Google Scholar 

  • Scheuhammer AM (1987) The chronic toxicity of aluminium, cadmium, mercury, and lead in birds: A review. Environ Pollution 46:263–295

    Google Scholar 

  • Scheuhammer AM, Blancher PJ (1994) Potential risk to common loons (Gavia immer) from methylmercury exposure in acidified lakes. Hydrobiology 279–280:445–455

    Article  Google Scholar 

  • Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36:12–18

    Article  CAS  Google Scholar 

  • Schmid W (1975) The micronucleus test. Mutat Res 31:9–15

    CAS  Google Scholar 

  • Schoeters G, Den HE, Dhooge W, Van Larebeke N, Leijs M (2008) Endocrine disruptors and abnormalities of pubertal development. Basic Clin Pharmacol Toxicol 102:168–175

    Article  CAS  Google Scholar 

  • Selvam A, Wong JWC (2008) Phytochelation and synthesis and cadmium uptake by Brassica napus. Environ Technol 29:765–773

    Article  CAS  Google Scholar 

  • Senden M, Wolterbeek HT (1990) Effect of citric acid on the transport of cadmium through xylem vessels of excised tomato stem–leaf systems. Acta Bot Neerl 39:297–303

    CAS  Google Scholar 

  • Senese F (2007) Why is mercury a liquid at STP. General chemistry online at Frostburg State University. http://antoine.frostburg.edu/chem/senese/101/inorganic/faq/why-is-mercury-liquid.shtml. Retrieved 1 May 2007

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48:523–544

    Article  CAS  Google Scholar 

  • Seregin IV, Shpigun LK, Ivaniov VB (2004) Distribution and toxic effects of cadmium and lead on maize roots. Russ J Plant Physiol 51:525–553

    Article  CAS  Google Scholar 

  • Sethunathan N, Megharaj M, Smith L, Kamaludeen SPB, Avudainayagam S, Naidu R (2005) Microbial role in the failure of natural attenuation of chromium(VI) in long-term tannery waste contaminated soil. Agric Ecosyst Environ 105:657–661

    Article  CAS  Google Scholar 

  • Shafiq M, Iqbal MZ (2005) The toxicity effects of heavy metals on germination and seedling growth of Cassia siamea. Lamark. J New Seeds 7:95–105

    Article  Google Scholar 

  • Sharma AK (2006) Arsenic removal from water using naturally occurring iron, and the associated benefits on health in affected regions. Ph.D. thesis, Institute of Environment & Resources Technical University of Denmark

    Google Scholar 

  • Sharma RP, Street JC (1980) Public health aspects of toxic heavy metals in animal feeds. J Am Vet Med Assoc 177:149–153

    CAS  Google Scholar 

  • Shaw BP, Rout NP (2002) Hg and Cd induced changes in proline content and activities of proline biosynthesizing enzymes in Phaseolus aureus and Triticum aestivum. Biol Plant 45:267–271

    Article  CAS  Google Scholar 

  • Singh RP, Tripathi RD, Sinha SK, Maheshwari R, Srivastava HS (1997) Response of higher plants to lead contaminated environment. Chemosphere 34:2467–2493

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smith E, Juhasz AL, Weber J (2009) Arsenic uptake and speciation in vegetables grown under greenhouse conditions. Environ Geochem Health 31:125–132

    Article  CAS  Google Scholar 

  • Stejskal K, Supalkova V, Baloun J, Diopan V, Babula P, Adam V, Zehnalek J, Trnkova L, Havel L, Kizek R (2007) Affecting of sugar beet (Beta vulgaris var. Altissima) by lead chelate. Lis Cukrov Repar 123:351–355

    CAS  Google Scholar 

  • Thomine S, Wang RC, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996

    Article  CAS  Google Scholar 

  • Tsuji JS (2005) Inorganic arsenic (online). http://www.epa.gov/sab/pdf/acc_bio_panel_sab_presenta_9-12-05_joyce_tsuji.pdf

  • Tudoreanu L, Phillips CJC (2004) Modeling cadmium uptake and accumulation in plants. Adv Agron 84:121–157

    Article  CAS  Google Scholar 

  • United Nations Environment Program (UNEP) (1999) Global environment outlook 2000. Earthscan, London

    Google Scholar 

  • USEPA (United States Environmental Protection Agency) (1997) Mercury study report to congress, vol 3. USEPA, Washington, DC

    Google Scholar 

  • USEPA (2003) Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). USEPA, Washington, DC

    Google Scholar 

  • Vajpayee P, Sharma SC, Tripathi RD, Rai UN, Yunus M (1999) Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera Gaertn. Chemosphere 39:2159–2169

    Article  CAS  Google Scholar 

  • Van Assche F, Glijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Vázquez MD, Barceló J, Poschenrieder C, Madico J, Hatton P, Baker AJM, Cope GH (1992) Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. J Plant Physiol 140:350–355

    Article  Google Scholar 

  • Victery W (1988) Evidence for effects of chronic lead exposure on blood pressure in experimental animals: an overview. Environ Health Perspect 78:71–76

    Article  CAS  Google Scholar 

  • Vig K, Megharaj M, Sethunathan N, Naidu R (2003) Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv Environ Res 8:121–135

    Article  CAS  Google Scholar 

  • Vyas J, Puranik RM (1993) Inhibition of nitrate reductase activity by mercury in bean leaf segments. Ind J Plant Physiol 36:57–60

    CAS  Google Scholar 

  • Walker JA, Ghalambor CK, Griset OL, McKenney D, Reznick DN (2005) Do faster starts increase the probability of evading predators? Funct Ecol 19:808–815

    Article  Google Scholar 

  • WHO (1993) Guidelines for drinking water quality. World Health Organisation, Geneva, p 41

    Google Scholar 

  • WHO (1997) Health and environment in sustainable development. WHO, Geneva

    Google Scholar 

  • WHO (World Health Organization) (2001) Arsenic and arsenic compounds, 2nd edn. Environment Health Criteria, p 224

    Google Scholar 

  • WHO (World Health Organization) (2004) Guidelines for Drinking Water Quality, vol 1, 2nd edn. Recommendations Addendum, Geneva

    Google Scholar 

  • Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160

    Article  CAS  Google Scholar 

  • Wu F, Zhang G, Dominy P (2003) Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environ Exp Bot 50:63–78

    Article  CAS  Google Scholar 

  • Yoshikawa M, Aoki K, Ebine N, Kusunoki M, Okamoto A (2008) Correlation between the arsenic concentrations in the air and the SMR of lung cancer. Environ Health Prev Med 13:207–218

    Article  CAS  Google Scholar 

  • Zarcinas BA, Ishak CF, McLaughlin MJ, Cozens G (2004) Heavy metals in soils and crops in southeast Asia. 1. Peninsular Malaysia. Environ Geochem Health 26:343–357

    Article  CAS  Google Scholar 

  • Zhenli L, He E, Xia E, Yang PJS (2005) Trace elements in agro-ecosystems and impacts on the environment. J Trace Element Med Biol 19:125–140

    Article  CAS  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury- induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qaisar Mahmood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mahmood, Q., Rashid, A., Ahmad, S.S., Azim, M.R., Bilal, M. (2012). Current Status of Toxic Metals Addition to Environment and Its Consequences. In: Anjum, N., Ahmad, I., Pereira, M., Duarte, A., Umar, S., Khan, N. (eds) The Plant Family Brassicaceae. Environmental Pollution, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3913-0_2

Download citation

Publish with us

Policies and ethics